443
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Pharmacophore Modeling, 3D QSAR, Molecular Dynamics Studies and Virtual Screening on Pyrazolopyrimidines as anti-Breast Cancer Agents

, , &
Pages 7456-7473 | Received 19 Jan 2022, Accepted 09 Oct 2022, Published online: 06 Nov 2022

References

  • Rebecca Siegel, Jiemin Ma, Zhaohui Zou, and Ahmedin Jemal, “Cancer Statistics,” CA: a Cancer Journal for Clinicians 64, no. 1 (2014): 9–29. http://doi.org/10.3322/caac.21208
  • A. Mora, M. Taranta, N. Zaki, E. Badidi, C. Cinti, and E. Capobianco, “Ensemble Inference by Integrative Cancer Networks,” Frontiers in Genetics 5, no. 5 (2014): 59. http://doi.org/10.3389/fgene.2014.00059
  • L. A. Renfro, M. W. An, and S. J. Mandrekar, “Precision Oncology: A New Era of Cancer Clinical Trials,” Cancer Letters 387 (2017): 121–6. https://doi.org/10.1016/j.canlet.2016.03.015
  • E. A. Ariazi, J. L. Ariazi, F. Cordera, and V. C. Jordan, “Estrogen Receptors as Therapeutic Targets in Breast Cancer,” Current Topics in Medicinal Chemistry 6, no. 3 (2006): 195–213. http://doi.org/10.2174/156802606776173474
  • G. W. Small, Y. Y. Shi, L. S. Higgins, and R. Z. Orlowski, “Mitogen-Activated Protein Kinase Phosphatase-1 is a Mediator of Breast Cancer Chemoresistance,” Cancer Research 67, no. 9 (2007): 4459–66. http://doi.org/10.1158/0008-5472.can-06-2644
  • C. Vicier, M. V. Dieci, and F. Andre, “New Strategies to Overcome Resistance to Mammalian Target of Rapamycin Inhibitors in Breast Cancer,” Current Opinion in Oncology 25, no. 6 (2013): 587–93. http://doi.org/10.1097/cco.0000000000000014
  • F. Bernstam, and F. J. Esteva, “Potential Role of Mammalian Target of Rapamycin Inhibitors in Breast Cancer Therapy,” Clinical Breast Cancer 6, no. 4 (2005): 357–60. http://doi.org/10.3816/cbc.2005.n.041
  • C. J. Watson, and K. Hughes, “Breast Cancer: The Menacing Face of Janus Kinase,” Cell Death and Differentiation 21, no. 2 (2014): 185–6. https://doi.org/10.1038/cdd.2013.170
  • A. M. Weaver, and C. M. Silva, “Signal Transducer and Activator of Transcription 5b: A New Target of Breast Tumor Kinase/Protein Tyrosine Kinase 6,” Breast Cancer Research : BCR 9, no. 6 (2007): R79. https://doi.org/10.1186/bcr1794
  • H. Masuda, D. Zhang, C. Bartholomeusz, H. Doihara, G. N. Hortobagyi, and N. T. Ueno, “Role of Epidermal Growth Factor Receptor in Breast Cancer,” Breast Cancer Research and Treatment 136, no. 2 (2012): 331–45. https://doi.org/10.1007/s10549-012-2289-9
  • Anon. “Anti-Epidermal Growth Factor Receptor Strategies for Advanced Breast Cancer,” Breast Cancer (2007): 235–56. http://doi.org/10.3109/9781420019940-22
  • P. Giovannelli, M. Di. Donato, G. Galasso, E. Di. Zazzo, A. Bilancio, and A. Migliaccio, “The Androgen Receptor in Breast Cancer,” Frontiers in Endocrinology 9 (2018): 492. https://doi.org/10.3389/fendo.2018.00492
  • L. Livraghi, and J. E. Garber, “PARP Inhibitors in the Management of Breast Cancer: current Data and Future Prospects,” BMC Medicine 13, no. 1 (2015): 1–16. https://doi.org/10.1186/s12916-015-0425-1
  • K. E. McCann, and S. A. Hurvitz, “Advances in the Use of PARP Inhibitor Therapy for Breast Cancer,” Drugs in Context 7 (2018): 212540–30. http://doi.org/10.7573/dic.212540
  • R. L. Godone, G. M. Leitão, N. B. Araújo, C. H. M. Castelletti, J. L. Lima-Filho, and D. B. G. Martins, “Clinical and Molecular Aspects of Breast Cancer: Targets and Therapies,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 106 (2018): 14–34. https://doi.org/10.1016/j.biopha.2018.06.066
  • J. S. Carroll, “Mechanisms of Oestrogen Receptor (ER) Gene Regulation in Breast Cancer,” European Journal of Endocrinology 175, no. 1 (2016): R41–R49. https://doi.org/10.1530/eje-16-0124
  • A. Tessari, D. Palmieri, and S. Di. Cosimo, “Overview of Diagnostic/Targeted Treatment Combinations in Personalised Medicine for Breast Cancer Patients,” Pharmacogenomics and Personalized Medicine 7 (2013): 1–19. https://doi.org/10.2147/pgpm.s53304
  • M. Kono, T. Fujii, B. Lim, M. S. Karuturi, D. Tripathy, and N. T. Ueno, “Androgen Receptor Function and Androgen Receptor–Targeted Therapies in Breast Cancer: A Review,” JAMA Oncology 3, no. 9 (2017): 1266–73. https://doi.org/10.1001/jamaoncol.2016.4975
  • Yu Jin Kim, Jong-Sun Choi, Jinwon Seo, Ji-Young Song, Seung Eun Lee, Mi Jung Kwon, Mi Jeong Kwon, Juthika Kundu, Kyungsoo Jung, Ensel Oh, et al, “MET is a Potential Target for Use in Combination Therapy with EGFR Inhibition in Triple‐Negative/Basal‐like Breast Cancer,” International Journal of Cancer 134, no. 10 (2014): 2424–36. https://doi.org/10.1002/ijc.28566
  • T. Jubin, A. Kadam, M. Jariwala, S. Bhatt, S. Sutariya, A. R. Gani, S. Gautam, and R. Begum, " “The PARP Family: insights into Functional Aspects of Poly (ADP‐Ribose) Polymerase‐1 in Cell Growth and Survival,” Cell Proliferation 49, no. 4 (2016): 421–37. https://doi.org/10.1111/cpr.12268
  • C. Bartholomeusz, X. Xie, M. K. Pitner, K. Kondo, A. Dadbin, J. Lee, H. Saso, P. D. Smith, K. N. Dalby, and N. T. Ueno, “MEK Inhibitor Selumetinib (AZD6244; ARRY-142886) Prevents Lung Metastasis in a Triple-Negative Breast Cancer Xenograft Model,” Molecular Cancer Therapeutics 14, no. 12 (2015): 2773–81. https://doi.org/10.1158/1535-7163.mct-15-0243
  • R. L. Schroeder, C. L. Stevens, and J. Sridhar, “Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer,” Molecules (Basel, Switzerland) 19, no. 9 (2014): 15196–212. https://doi.org/10.3390/molecules190915196
  • Ayca Gucalp, Sara Tolaney, Steven J. Isakoff, James N. Ingle, Minetta C. Liu, Lisa A. Carey, Kimberly Blackwell, Hope Rugo, Lisle Nabell, Andres Forero, Translational Breast Cancer Research Consortium (TBCRC 011), et al, “Phase II Trial of Bicalutamide in Patients with Androgen Receptor–Positive, Estrogen Receptor–Negative Metastatic Breast Cancer,” Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 19, no. 19 (2013): 5505–12. https://doi.org/10.1158/1078-0432.ccr-12-3327
  • L. Cortesi, H. S. Rugo, and C. Jackisch, “An Overview of PARP Inhibitors for the Treatment of Breast Cancer,” Targeted Oncology 16, no. 3 (2021): 255–82. https://doi.org/10.1007/s11523-021-00796-4
  • E. Cichero, and P. Fossa, “Docking-Based 3D-QSAR Analyses of Pyrazole Derivatives as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors,” Journal of Molecular Modeling 18, no. 4 (2012): 1573–82. https://doi.org/10.1007/s00894-011-1190-5
  • Jeanne Fichez, Cathia Soulie, Laurent Le Corre, Sophie Sayon, Stéphane Priet, Karine Alvarez, Olivier Delelis, Patrick Gizzi, Guillaume Prestat, Christine Gravier-Pelletier, et al, “Discovery, SAR Study and ADME Properties of Methyl 4-Amino-3-Cyano-1-(2-Benzyloxyphenyl)-1 H-Pyrazole-5-Carboxylate as an HIV-1 Replication Inhibitor,” RSC Medicinal Chemistry 11, no. 5 (2020): 577–82. https://doi.org/10.1039/d0md00025f
  • A. M. K. El-Dean, A. M. Elkhawaga, S. M. Radwan, and M. M. Ahmed, “Synthesis of Some Pyridothienopyrazolopyrimidopyrimidine and Mercaptomethylpyrazolopyrimidine Derivatives,” Phosphorus, Sulfur, and Silicon 184, no. 8 (2009): 2034–48. https://doi.org/10.1080/10426500802418479
  • M. Ge, E. Cline, and L. Yang, “A General Method for the Preparation of 3-Acyl-4-Cyano-5-Amino-Pyrazoles,” Tetrahedron Letters 47, no. 32 (2006): 5797–9. https://doi.org/10.1016/j.tetlet.2006.05.173
  • H. El-Sherief, A. Mahmoud, and A. Ismaiel, “Studies on the Synthesis and Cyclisation Reactions of 2-(5-Amino-3-Arylpyrazol-1-yl)-3-Methylquinoxalines,” Journal of Chemical Research, Synopses 9(1997): 322-323. https://doi.org/10.1039/a603951k
  • A. A. Aly, “Synthesis of Polyfunctionally Substituted Pyrazolonaphthyridine, Pentaazanaphthalene, and Heptaazaphenanthrene Derivatives,” Phosphorus, Sulfur, and Silicon and the Related Elements 181, no. 10 (2006): 2395–409. https://doi.org/10.1080/10426500600695179
  • M. Katalinić, G. Rusak, J. D. Barović, G. Šinko, D. Jelić, R. Antolović, and Z. Kovarik, “Structural Aspects of Flavonoids as Inhibitors of Human Butyrylcholinesterase,” European Journal of Medicinal Chemistry 45, no. 1 (2010): 186–92. https://doi.org/10.1016/j.ejmech.2009.09.041
  • B. G. Ugarkar, H. B. Cottam, P. A. McKernan, R. K. Robins, and G. R. Revankar, “Synthesis and Antiviral/Antitumor Activities of Certain Pyrazolo [3, 4-d] Pyrimidine-4 (5H)-Selone Nucleosides and Related Compounds,” Journal of Medicinal Chemistry 27, no. 8 (1984): 1026–30. https://doi.org/10.1021/jm00374a015
  • J. L. Rideout, T. A. Krenitsky, E. Y. Chao, G. B. Elion, R. B. Williams, and V. S. Latter, “Pyrazolo [3, 4-d] Pyrimidine Ribonucleosides as Anticoccidials. 3. Synthesis and Activity of Some Nucleosides of 4-[(Arylalkenyl) Thio] Pyrazolo [3, 4-d] Pyrimidines,” Journal of Medicinal Chemistry 26, no. 10 (1983): 1489–94. https://doi.org/10.1021/jm00364a024
  • A. Ali, G. E. Taylor, K. Ellsworth, G. Harris, R. Painter, L. L. Silver, and K. Young, “Novel Pyrazolo [3, 4-d] Pyrimidine-Based Inhibitors of Staphlococcus Aureus DNA Polymerase III: design, Synthesis, and Biological Evaluation,” Journal of Medicinal Chemistry 46, no. 10 (2003): 1824–30. https://doi.org/10.1021/jm020483c
  • Fabrizio Manetti, Annalisa Santucci, Giada A. Locatelli, Giovanni Maga, Adriano Spreafico, Tommaso Serchi, Maurizio Orlandini, Giulia Bernardini, Nicola P. Caradonna, Andrea Spallarossa, et al, “Identification of a Novel Pyrazolo [3, 4-d] Pyrimidine Able to Inhibit Cell Proliferation of a Human Osteogenic Sarcoma in Vitro and in a Xenograft Model in Mice,” Journal of Medicinal Chemistry 50, no. 23 (2007): 5579–88. https://doi.org/10.1021/jm061449r
  • C. R. Petrie, III, H. B. Cottam, P. A. McKernan, R. K. Robins, and G. R. Revankar, “Synthesis and Biological Activity of 6-Azacadeguomycin and Certain 3, 4, 6-Trisubstituted Pyrazolo [3, 4-d] Pyrimidine Ribonucleosides,” Journal of Medicinal Chemistry 28, no. 8 (1985): 1010–6. https://doi.org/10.1021/jm00146a007
  • P. H. Hutson, E. N. Finger, B. C. Magliaro, S. M. Smith, A. Converso, P. E. Sanderson, D. Mullins, L. A. Hyde, B. K. Eschle, Z. Turnbull, et al, “The Selective Phosphodiesterase 9 (PDE9) Inhibitor PF-04447943 (6-[(3S, 4S)-4-Methyl-1-(Pyrimidin-2-Ylmethyl) Pyrrolidin-3-yl]-1-(Tetrahydro-2H-Pyran-4-yl)-1, 5-Dihydro-4H-Pyrazolo [3, 4-d] Pyrimidin-4-One) Enhances Synaptic Plasticity and Cognitive Function in Rodents,” Neuropharmacology 61, no. 4 (2011): 665–76. https://doi.org/10.1016/j.neuropharm.2011.05.009
  • M. M. Ghorab, F. A. Ragab, S. I. Alqasoumi, A. M. Alafeefy, and S. A. Aboulmagd, “Synthesis of Some New Pyrazolo [3, 4-d] Pyrimidine Derivatives of Expected Anticancer and Radioprotective Activity,” European Journal of Medicinal Chemistry 45, no. 1 (2010): 171–8. https://doi.org/10.1016/j.ejmech.2009.09.039
  • M. Amir, S. A. Javed, and H. Kumar, “Pyrimidine as Antiinflammatory Agent: A Review,” Indian Journal of Pharmaceutical Sciences 69, no. 3 (2007): 337. https://doi.org/10.4103/0250-474x.34540
  • A. Trivedi, D. Dodiya, J. Surani, S. Jarsania, H. Mathukiya, N. Ravat, and V. Shah, “Facile One‐Pot Synthesis and Antimycobacterial Evaluation of Pyrazolo [3, 4‐d] Pyrimidines,” Archiv Der Pharmazie 341, no. 7 (2008): 435–9. https://doi.org/10.1002/ardp.200800027
  • A. Trivedi, S. Vaghasiya, B. Dholariya, D. Dodiya, and V. Shah, “Synthesis and Antimycobacterial Evaluation of Various 6-Substituted Pyrazolo [3, 4-d] Pyrimidine Derivatives,” Journal of Enzyme Inhibition and Medicinal Chemistry 25, no. 6 (2010): 893–9. https://doi.org/10.3109/14756360903540276
  • S. Guccione, M. Modica, J. Longmore, D. Shaw, G. U. Barretta, A. Santagati, M. Santagati, and F. Russo, “Synthesis and NK-2 Antagonist Effect of 1, 6-Diphenyl-Pyrazolo [3, 4-d]-Thiazolo [3, 2-a] 4H-Pyrimidin-4-One,” Bioorganic & Medicinal Chemistry Letters 6, no. 1 (1996): 59–64. https://doi.org/10.1016/0960-894x(95)00558-b
  • Y. Xia, S. Chackalamannil, M. Czarniecki, H. Tsai, H. Vaccaro, R. Cleven, J. Cook, A. Fawzi, R. Watkins, and H. Zhang, “Synthesis and Evaluation of Polycyclic Pyrazolo [3, 4-d] Pyrimidines as PDE1 and PDE5 cGMP Phosphodiesterase Inhibitors,” Journal of Medicinal Chemistry 40, no. 26 (1997): 4372–7. https://doi.org/10.1021/jm970495b
  • J. P. James, D. Jyothi, and S. Priya, “In Silico Screening of Phytoconstituents with Antiviral Activities against SARS-COV-2 Main Protease, Nsp12 Polymerase, and Nsp13 Helicase Proteins,” Letters in Drug Design & Discovery 18, no. 8 (2021): 841–57. http://doi.org/10.2174/1570180818666210317162502
  • J. P. James, P. Kumar, A. Kumar, K. I. Bhat, and C. S. Shastry, “In Silico Anticancer Evaluation, Molecular Docking and Pharmacophore Modeling of Flavonoids against Various Cancer Targets,” Letters in Drug Design & Discovery 17, no. 12 (2020): 1485–501. https://doi.org/10.2174/1570180817999200730164222
  • Jainey P. James, Apoorva, Shreya Renita Monteiro, K. B. Sukesh, and A. Varun, “Design and Identification of Lead Compounds Targeting Nipah G Attachment Glycoprotein by in Silico Approaches,” Journal of Pharmaceutical Research International 33, no. 40A (2021): 156–69. doi: 10.9734/jpri/2021/v33i40A32232
  • G. S. Hassan, H. H. Kadry, S. M. Seri, M. M. Ali, and A. E. Mahmoud, “Synthesis and in Vitro Cytotoxic Activity of Novel Pyrazolo[3,4-d]Pyrimidines and Related Pyrazole Hydrazones toward Breast Adenocarcinoma MCF-7 Cell Line,” Bioorganic & Medicinal Chemistry 19, no. 22 (2011): 6808–17. https://doi.org/10.1016/j.bmc.2011.09.036
  • K. R. Abdellatif, E. K. Abdelall, M. A. Abdelgawad, R. R. Ahmed, and R. B. Bakr, “Synthesis and Anticancer Activity of Some New Pyrazolo[3,4-d]Pyrimidin-4-One Derivatives,” Molecules (Basel, Switzerland) 19, no. 3 (2014): 3297–309. http://doi.org/10.3390/molecules19033297
  • A. E. Rashad, H. A. Shamroukh, D. A. A. Osman, S. T. Gaballah, A. I. Hashem, H. S. Ali, and F. M. E. Abdel-Megeid, “Synthesis and Anticancer Evaluation of Some Fused Pyrazolopyrimidines and Their S-Acyclic Nucleosides,” Der Pharma Chemica 7, no. 5 (2015): 243–50.
  • A. H. Shamroukh, A. E. Rashad, R. E. Abdel-Megeid, H. S. Ali, and M. M. Ali, “Some Pyrazole and Pyrazolo[3,4-d]Pyrimidine Derivatives: synthesis and Anticancer Evaluation,” Archiv Der Pharmazie 347, no. 8 (2014): 559–65.
  • E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, et al, “OPLS3: A Force Field Providing Broad Coverage of Druglike Small Molecules and Proteins,” Journal of Chemical Theory and Computation 12, no. 1 (2016): 281–96. https://doi.org/10.1021/acs.jctc.5b00864
  • S. L. Dixon, A. M. Smondyrev, E. H. Knoll, S. N. Rao, D. E. Shaw, and R. A. Friesner, “PHASE: A New Engine for Pharmacophore Perception, 3D QSAR Model Development, and 3D Database Screening: 1. Methodology and Preliminary Results,” Journal of Computer-Aided Molecular Design 20, no. 10-11 (2006): 647–71. https://doi.org/10.1007/s10822-006-9087-6
  • M. K. Hamid, M. D. Mihovilovic, and H. B. El-Nassan, “Synthesis of Novel Pyrazolo [3, 4-d] Pyrimidine Derivatives as Potential anti-Breast Cancer Agents,” European Journal of Medicinal Chemistry 57 (2012): 323–8. https://doi.org/10.1016/j.ejmech.2012.09.031
  • Kevin D. Dykstra, Liangqin Guo, Elizabeth T. Birzin, Wanda Chan, Yi Tien Yang, Edward C. Hayes, Carolyn A. DaSilva, Lee-Yuh Pai, Ralph T. Mosley, Bryan Kraker, et al, “Estrogen Receptor Ligands. Part 16: 2-Aryl Indoles as Highly Subtype Selective Ligands for Erα,” Bioorganic & Medicinal Chemistry Letters 17, no. 8 (2007): 2322–8. https://doi.org/10.1016/j.bmcl.2007.01.054
  • I. Petit-Topin, M. Fay, M. Resche-Rigon, A. Ulmann, E. Gainer, M. E. Rafestin-Oblin, and J. Fagart, “Molecular Determinants of the Recognition of Ulipristal Acetate by Oxo-Steroid Receptors,” The Journal of Steroid Biochemistry and Molecular Biology 144 (2014): 427–35. https://doi.org/10.1016/j.jsbmb.2014.08.008
  • Y. Yosaatmadja, C. J. Squire, M. McKeage, J. U. Flanagan, "1.85 Angstrom Structure of EGFR Kinase Domain with Gefitinib” (2014). https://doi.org/10.2210/pdb4WKQ/pdb
  • A. M. März, A. K. Fabian, C. Kozany, A. Bracher, and F. Hausch, “Large FK506-Binding Proteins Shape the Pharmacology of Rapamycin,” Molecular and Cellular Biology 33, no. 7 (2013): 1357–67. https://doi.org/10.1128/mcb.00678-12
  • R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, and D. T. Mainz, “Extra Precision Glide: docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes,” Journal of Medicinal Chemistry 49, no. 21 (2006): 6177–96. https://doi.org/10.1021/jm051256o
  • M. P. Jacobson, D. L. Pincus, C. S. Rapp, T. J. F. Day, B. Honig, D. E. Shaw, and R. A. Friesner, “Hierarchical Approach to All-Atom Protein Loop Prediction,” Proteins 55, no. 2 (2004): 351–67. https://doi.org/10.1002/prot.10613
  • Z. Guo, U. Mohanty, J. Noehre, T. K. Sawyer, W. Sherman, and G. Krilov, “Probing the α-Helical Structural Stability of Stapled p53 Peptides: molecular Dynamics Simulations and Analysis,” Chemical Biology & Drug Design 75, no. 4 (2010): 348–59. https://doi.org/10.1111/j.1747-0285.2010.00951.x
  • Schrödinger Release 2021-4: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2021. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2021.
  • M. Sivashanmugam, K. N. Sulochana, and V. Umashankar, “Virtual Screening of Natural Inhibitors Targeting Ornithine Decarboxylase with Pharmacophore Scaffolding of DFMO and Validation by Molecular Dynamics Simulation Studies,” Journal of Biomolecular Structure & Dynamics 37, no. 3 (2019): 766–80. https://doi.org/10.1080/07391102.2018.1439772
  • C. Stork, J. Wagner, N. O. Friedrich, C. B. Kops, M. Sicho, and J. Kirchmair, “Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters,” ChemMedChem 13, no. 6 (2018): 564–71.
  • A. Golbraikh, and A. Tropsha, “Beware of q2,” Journal of Molecular Graphics & Modelling 20, no. 4 (2002): 269–76. https://doi.org/10.1016/s1093-3263(01)00123-1
  • R. P. Sheridan, S. B. Singh, E. M. Fluder, and S. K. Kearsley, “Protocols for Bridging the Peptide to Nonpeptide Gap in Topological Similarity Searches,” Journal of Chemical Information and Computer Sciences 41, no. 5 (2001): 1395–406.
  • J. Kirchmair, P. Markt, S. Distinto, G. Wolber, and T. Langer, “Evaluation of the Performance of 3D Virtual Screening Protocols: RMSD Comparisons, Enrichment Assessments, and Decoy Selection – What Can we Learn from Earlier Mistakes?,” Journal of Computer-Aided Molecular Design 22, no. 3-4 (2008): 213–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.