174
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of 4H-3,1-Benzothiazin-4-Ones via C-N/C-S Bond Forming Reactions

, , , , &
Pages 7416-7425 | Received 14 Aug 2022, Accepted 05 Oct 2022, Published online: 06 Nov 2022

References

  • (a) T. S. Safonova and M. P. Nemeryuk, “Nitrogen- and Sulfur-Containing Heterocycles,” Chemistry of Heterocyclic Compounds 2, no. 5 (1968): 547–9; (b) A. Dondoni, A. Battaglia, P. Giorgianni, G. Gilli, and M. Sacerdoti, “Cycloaddition of N-Arylketenimines to Thiobenzophenones. Formation of 4H-3,1-Benzothiazine and 2-Iminothietan Derivatives,” Journal of the Chemical Society, Chemical Communications no. 2 (1977): 43–4; (c) A. Dondoni, A. Battaglia, and P. Giorgianni, “Selectivity in Ketenimine-Thioketone Cycloadditions. 1. 1,4- and 1,2-Addition Pathways and the Synthesis of 4H-3,1-Benzothiazines, 2-Iminothietanes, and Thioacrylamides,” The Journal of Organic Chemistry 45, no. 19 (1980): 3766–73; (d) Y. Nomura, T. Hayama, Y. Takeuchi, S. Tomoda, and Y. Kato, “The Willgerodt-Kindler Reaction between Polycyclic Aromatic Amines and Benzaldehyde. Formation of 1,3-Thiazines,” Bulletin of the Chemical Society of Japan 57, no. 5 (1984): 1276–8; (e) T. Nishio, “Reaction of (1,ω)-N-Acylamino Alcohols with Lawesson’s Reagent: Synthesis of Sulfur-Containing Heterocycles,” The Journal of Organic Chemistry 62, no. 4 (1997): 1106–11; (f) T. Nishio and H. Sekiguchi, “Sulfur-Containing Heterocycles Derived by Reaction of N-Thioacylamino Alcohols with Lawesson’s Reagent and Saponification of N-Thioacylamino Esters,” Heterocycles 58, no. 1 (2002): 203–12; (g) P. Csomós, L. Fodor, G. Bernáth, J. Sinkkonen, J. Salminen, K. Wiinamäki, and K. Pihlaja, “Novel β-Lactam Condensed 3-Thiaquinolines: An Efficient Synthesis and Structural Characterization,” Tetrahedron 64, no. 6 (2008): 1002–11; (h) V. T. Abaev, F. A. Tsiunchik, A. V. Butin, and A. V. Gutnov, “Synthesis of 2,4-Difuryl-4H-3,1-Benzothiazines via a Furan Ring Migration Reaction,” Journal of Heterocyclic Chemistry. 45, no. 2 (2008): 475–81; (i) C. Gimbert and A. Vallribera, “A Straightforward Synthesis of Benzothiazines,” Organic Letters 11, no. 2 (2009): 269–71; (j) M. T. Corbett and S. Caille, “A Bench-Stable Vilsmeier Reagent for In Situ Alcohol Activation: Synthetic Application in the Synthesis of 2- Amino-2-Thiazolines,” Synlett 28, no. 10 (2017): 2845–50.
  • (a) A. Z. Halimehjani and Y. L. Nosood, “Synthesis of N,S-Heterocycles and Dithiocarbamates by the Reaction of Dithiocarbamic Acids and S-Alkyl Dithiocarbamates with Nitroepoxides,” Organic Letters 19, no. 24 (2017): 6748–51; (b) N. Vodnala, D. Kaldhi, S. Polina, V. P. R. K. Putta, R. Gupta, S. C. P. Promily, R. K. Linthoinganbi, V. Singh, and C. C. Malakar, “Pd-Catalyzed Domino Reactions of Nitroaromatics: A Surrogate Access towards the Saturated N-Heterocycles,” Tetrahedron Letters 57, no. 50 (2016): 5695–9; (c) D. Kaldhi, N. Vodnala, R. Gujjarappa, S. Nayak, V. Ravichandiran, S. Gupta, C. K. Hazra, and C. C. Malakar, “Organocatalytic Oxidative Synthesis of C2-Functionalized Benzoxazoles, Naphthoxazoles, Benzothiazoles and Benzimidazoles,” Tetrahedron Letters 60, no. 3 (2019): 223–9; (d) N. N. Makhova, L. I. Belen’kii, G. A. Gazieva, I. L. Dalinger, L. S. Konstantinova, V. V. Kuznetsov, A. N. Kravchenko, M. M. Krayushkin, O. A. Rakitin, A. M. Starosotnikov, et al., “Progress in the Chemistry of Nitrogen-, Oxygen- and Sulfur-Containing Heterocyclic Systems,” Russian Chemical Reviews 89, no. 1 (2020): 55–124.
  • (a) A. G. Hoechst, “3,1-Benzothiazine Derivatives and Process for Their Manufacture,” GB1214000A 25 Nov (1970); (b) B. A. Dreikorn, “Tetrazolo- and Triazolobenzothiazines,” US4001227A 22 Dec (1975); (c) S. I. El-Desoky, E. M. Kandeel, A. H. Abd-el-Rahman, and R. R. Schmidt, “Synthesis and Reactions of 4H-3,1-Benzothiazines,” Journal of Heterocyclic Chemistry 36, no. 1 (1999): 153–60; (d) J. Matysiak, “Synthesis, Antiproliferative and Antifungal Activities of Some 2-(2,4-Dihydroxyphenyl)-4H-3,1-Benzothiazines,” Bioorganic & Medicinal Chemistry 14, no. 8 (2006): 2613–9; (e) J. Huang, Y. Yong, H. Lu, Y. ZhiGang, X. Fan, and S. Qi, “Tandem Addition-Cyclization Reaction Catalyzed by Ytterbium Chloride: An Efficient One-Step Synthesis of 2-Amino-4H-3,1-Benzothiazine,” Chinese Science Bulletin 58, no. 7 (2013): 717–23.
  • (a) Pelosi S. S, “2-(3-Chloroanilino)-4H-3,1-Benzothiazine,” US4002622A 30 Oct (1975); (b) J. P. Rieu, J. F. Patoiseau, and G. W. John, “Heterocyclic Compounds for Treating Myocardial Ischemia,” US6011032A 4 Jan (2000); (c) Y. Su, Q. Guo, and G. Wang, “2-imino-Tetrahydro-1,3-Benzothiazine Derivative and Its Preparing Method,” CN1683349A 28 Feb (2005); (d) M. Anzini, A. Giordani, and F. Makovec, “Amidine, Thiourea and Guanidine Derivatives of 2-Aminobenzothiazoles and Aminobenzothiazines for Their Use as Pharmacological Agents for the Treatment of Neurodegenerative Pathologies,” WO2009040331A2 2 Apr (2009).
  • (a) T. M. V. D. Pinho e Melo, M. I. L. Soares, A. M. D. R. Gonsalves, J. A. Paixão, A. M. Beja, M. R. Silva, L. A. da Veiga, and J. C. Pessoa, “Synthesis of Chiral Pyrrolo[1,2-c]Thiazoles via Intramolecular Dipolar Cycloaddition of Münchnones: An Interesting Rearrangement to Pyrrolo[1,2-c]Thiazines,” The Journal of Organic Chemistry 67, no. 12 (2002): 4045–54; (b) G. Tarzia, F. Antonietti, A. Duranti, A. Tontini, M. Mor, S. Rivara, P. Traldi, G. Astarita, A. King, J. R. Clapper, et al, “Identification of a Bioactive Impurity in a Commercial Sample of 6-Methyl-2-p-Tolylaminobenzo[d][1,3]Oxazin-4-One (URB754),” Annali di Chimica 97, no. 9 (2007): 887–94; (c) M. Gütschow, M. Schlenk, J. Gäb, M. Paskaleva, M. W. Alnouri, S. Scolari, J. Iqbal, and C. E. Müller, “Benzothiazinones: A Novel Class of Adenosine Receptor Antagonists Structurally Unrelated to Xanthine and Adenine Derivatives,” Journal of Medicinal Chemistry 55, no. 7 (2012): 3331–41; (d) S. Blättermann, L. Peters, P. A. Ottersbach, A. Bock, V. Konya, C. D. Weaver, A. Gonzalez, R. Schröder, R. Tyagi, P. Luschnig, et al, “A Biased Ligand for OXE-R Uncouples Gα and Gβγ Signaling within a Heterotrimer,” Nature Chemical Biology 8, no. 7 (2012): 631–8; (e) A. Stössel, M. Schlenk, S. Hinz, P. Küppers, J. Heer, M. Gütschow, and C. E. Müller, “Dual Targeting of Adenosine A2A Receptors and Monoamine Oxidase B by 4H-3,1-Benzothiazin-4-Ones,” Journal of Medicinal Chemistry 56, no. 11 (2013): 4580–96; (f) Y. Yu, T. Mena-Barragán, K. Higaki, J. L. Johnson, J. E. Drury, R. L. Lieberman, N. Nakasone, H. Ninomiya, T. Tsukimura, H. Sakuraba, et al, “Molecular Basis of 1-Deoxygalactonojirimycin Arylthiourea Binding to Human α-Galactosidase A: Pharmacological Chaperoning Efficacy on Fabry Disease Mutants,” ACS Chemical Biology 9, no. 7 (2014): 1460–9.
  • (a) M. Palkó, Z. Molnár, H. Kivelä, J. Sinkkonen, K. Pihlaja, and F. Fülöp, “Ring Closure Reactions of Bicyclic Prolinol and Prolin Ester Enantiomers,” Arkivoc 2009, no. 6 (2009): 221–34; (b) M. Aguilar-Moncayo, M. I. García-Moreno, A. Trapero, M. Egido-Gabás, A. Llebaria, J. M. G. Fernández, and C. O. Mellet, “Bicyclic (Galacto)Nojirimycin Analogues as Glycosidase Inhibitors: Effect of Structural Modifications in Their Pharmacological Chaperone Potential towards β-Glucocerebrosidase,” Organic & Biomolecular Chemistry 9, no. 10 (2011): 3698–713; (c) M. Aguilar-Moncayo, T. Takai, K. Higaki, T. Mena-Barragán, Y. Hirano, K. Yura, L. Li, Y. Yu, H. Ninomiya, M. I. Garća-Moreno, et al, “Tuning Glycosidase Inhibition through Aglycone Interactions: pharmacological Chaperones for Fabry Disease and GM1 Gangliosidosis,” Chemical Communications (Cambridge, England) 48, no. 52 (2012): 6514–6; (d) A. De la Fuente, R. Rísquez-Cuadro, X. Verdaguer, J. M. G. Fernández, E. Nanba, K. Higaki, C. O. Mellet, and A. Riera, “Efficient Stereoselective Synthesis of 2-Acetamido-1,2-Dideoxyallonojirimycin (DAJNAc) and sp(2)-Iminosugar Conjugates: Novel Hexosaminidase Inhibitors with Discrimination Capabilities between the Mature and Precursor Forms of the Enzyme,” European Journal of Medicinal Chemistry 121 (2016): 926–38.
  • (a) B. R. Dixon, C. M. Bagi, C. R. Brennan, D. R. Brittelli, W. H. Bullock, J. Chen, W. L. Collibee, R. Dally, J. S. Johnson, H. C. E. Kluender, et al, “Substituted 2-Arylimino Heterocycles and Compositions Containing Them, for Use as Progesterone Receptor Binding Agents,” WO2000042031A3 20 Jul (2000); (b) B. R. Dixon, C. M. Bagi, C. R. Brennan, D. R. Brittelli, W. H. Bullock, J. Chen, W. L. Collibee, R. Dally, J. S. Johnson, H. C. E. Kluender, et al, “Substituted 2-Arylimino Heterocycles and Compositions Containing Them, for Use as Progesterone Receptor Binding Agents,” US6353006B1 5 Mar (2002); (c) P. R. Mali, N. B. Khomane, B. Sridhar, H. M. Meshram, and P. R. Likhar, “Synthesis of New Spiro Pyrrole/Pyrrolizine/Thiazole Derivatives via (3 + 2) Cycloaddition Reactions,” New Journal of Chemistry 42, no. 16 (2018): 13819–27.
  • (a) V. P. R. K. Putta, R. Gujjarappa, U. Tyagi, P. P. Pujar, and C. C. Malakar, “A Metal- and Base-Free Domino Protocol for the Synthesis of 1,3-Benzoselenazines, 1,3-Benzothiazines and Related Scaffolds,” Organic & Biomolecular Chemistry 17, no. 9 (2019): 2516–28; (b) V. P. R. K. Putta, N. Vodnala, R. Gujjarappa, U. Tyagi, A. Garg, S. Gupta, P. P. Pujar, and C. C. Malakar, “Reagent-Controlled Divergent Synthesis of 2-Amino-1,3-Benzoxazines and 2-Amino-1,3-Benzothiazines,” The Journal of Organic Chemistry 85, no. 2 (2020): 380–96; (c) S. Polina, V. P. R. K. Putta, R. Gujjarappa, V. Singh, P. P. Pujar, and C. C. Malakar, “P(III)-Mediated Cascade C-N/C-S Bond Formation: A Protocol towards the Synthesis of N,S-Heterocycles and Spiro Compounds,” Advanced Synthesis & Catalysis 363, no. 2 (2021): 431–45.
  • (a) S. Leistner, M. Gütschow, and S. Stach, “Mehrcyclische Azine Mit Heteroatomen in 1- Und 3-Stellung, 25. Mitt.: 2-Amino-4-Oxo-4H-3,1-Benzothiazine: Darstellung, Dimroth-Umlagerung zu 4-Oxo-2-Thioxo-1,2,3,4-Tetrahydrochinazolinen Und MS/MS-Fragmentierung,” Archiv Der Pharmazie 323, no. 10 (1990): 857–61; (b) M. Gütschow, K. Heinecke, W. Thiel, and S. Leistner, “Synthesis of 6,7-Dimethoxy Substituted 3,1-Benzothiazin-4-Ones,” Archiv Der Pharmazie 324, no. 7 (1991): 465–6; (c) M. Gütschow and U. Neumann, “2-Benzoylamino-6,7-Dimethoxy-4H-3,1-Benzoxazin-4-One: Synthesis and Investigation of Serine Protease Inactivation,” Monatshefte für Chemie Chemical Monthly 126, no. 10 (1995): 1145–9; (d) M. Gütschow, “Novel Heterocycles Derived from Substituted Aroylthioureas: Synthesis of 3, l-Benzothiazin-4-Ones, Thieno[3,2-d][1,3]Thiazin-4-Ones and 1,2,4-Thiadiazolo[2,3-a][3,1]Benzothiazin-5-Ones,” Journal of Heterocyclic Chemistry 33, no. 2 (1996): 355–60.
  • (a) Q. Ding and J. Wu, “A Facile Route to 2,4-Dihydro-1H-Benzo[d][1,3]Thiazines via Silver-Catalyzed Tandem Addition-Cyclization Reactions,” Journal of Combinatorial Chemistry 10, no. 4 (2008): 541–5; (b) Q. Ding, B. Cao, Z. Zong, and Y. Peng, “Silica Gel-Promoted Tandem Addition − Cyclization Reactions of 2-Alkynylbenzenamines with Isothiocyanates,” Journal of Combinatorial Chemistry 12, no. 3 (2010): 370–3; (c) H. Sashida, M. Kaname, and M. Minoura, “Studies on Chalcogen-Containing Heterocycles. Part 38: Regio- and Stereoselective Tandem Addition–Iodocyclization of 2-Ethynylphenyl Isothiocyanates with N- and O-Nucleophiles Affording 4-(Iodoalkylidene)Benzo[d][1,3]Thiazines,” Tetrahedron 69, no. 31 (2013): 6478–87; (d) R. K. Saunthwal, M. Patel, S. Kumar, and A. K. Verma, “Cu(II)-Catalyzed Tandem Synthesis of 2-Imino[1,3]Benzothiazines from 2-Aminoaryl Acrylates via Thioamidation and Concomitant Chemoselective thia-Michael Addition,” Tetrahedron Letters. 56, no. 5 (2015): 677–81; (e) T. Xie, Y. Xiao, S. Zhao, X.-Q. Hu, and P.-F. Xu, “Catalyst-Free Chemoselective Synthesis of 3,4-Dihydroquinazoline-2-Thiones and 2-Imino[1,3]Benzothiazines,” The Journal of Organic Chemistry 81, no. 21 (2016): 10499–505; (f) H.-G. Jun, E.-M. Kim, H.-J. Yoon, and Y.-D. Gong, “Microwave-Assisted Solid-Phase Synthesis of N-Substituted-2-Aminobenzo[d][1,3] Thiazine Derivatives from a BOMBA Resin,” Bulletin of the Korean Chemical Society 38, no. 3 (2017): 334–41.
  • (a) J. Sheehan, P. Cruickshank, and G. Boshart, “Notes- A Convenient Synthesis of Water-Soluble Carbodiimides,” The Journal of Organic Chemistry 26, no. 7 (1961): 2525–8; (b) N. Nakajima and Y. Ikada, “Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media,” Bioconjugate Chemistry 6, no. 1 (1995): 123–30; (c) J. P. López-Alonso, F. Diez-García, J. Font, M. Ribó, M. Vilanova, J. M. Scholtz, C. González, F. Vottariello, G. Gotte, M. Libonati, et al, “Carbodiimide EDC Induces Cross-Links That Stabilize RNase a C-Dimer against Dissociation: EDC Adducts Can Affect Protein Net Charge, Conformation, and Activity,” Bioconjugate Chemistry 20, no. 8 (2009): 1459–73; (d) J. Bart, R. Tiggelaar, M. Yang, S. Schlautmann, H. Zuilhof, and H. Gardeniers, “Room-Temperature Intermediate Layer Bonding for Microfluidic Devices,” Lab on a Chip 9, no. 24 (2009): 3481–8; (e) P. Y. Wang, A. N. Sexton, W. J. Culligan, and M. D. Simon, RNA 25 (2019): 135–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.