108
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimental and Theoretical Investigation on Imidazole Derivatives Using Magnetic Nanocatalyst: Green Synthesis, Characterization, and Mechanism Study

, ORCID Icon & ORCID Icon
Pages 7890-7911 | Received 27 May 2022, Accepted 24 Oct 2022, Published online: 30 Nov 2022

References

  • S. A. Rasal, M. S. Tamore, and N. G. J. C. Shimpi, “Ultrasound‐Mediated Synthesis of Novel α‐Aminophosphonates Using Graphene Nanosheets‐Silver Nanoparticles (GNS‐AgNPs) as a Recyclable Heterogeneous Catalyst,” ChemistrySelect 4, no. 8 (2019): 2293–300.
  • A. P. Shah, S. Jain, and N. G. J. C. Shimpi, “Enhanced Photocatalytic Activity of Electrospun PAN/Ag‐G NFs under Solar Irradiation for Effective Degradation of Hazardous Organic Dyes,” ChemistrySelect 5, no. 13 (2020): 3897–905.
  • E. Vessally, S. Mohammadi, M. Abdoli, A. Hosseinian, and P. Ojaghloo, “Convenient and Robust Metal-Free Synthesis of Benzazole-2-Ones through the Reaction of Aniline Derivatives and Sodium Cyanate in Aqueous Medium,” Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 39 (2020): 11–9.
  • R. Dua, S. Shrivastava, S. Sonwane, and S.J.A.i.B.R. Srivastava, “Pharmacological Significance of Synthetic Heterocycles Scaffold: a Review,” Advances in Biological Research 5 (2011): 120–44.
  • A. R. Moosavi-Zare, and H. Afshar-Hezarkhani, “Application of [Pyridine-1-SO3H-2-COOH]Cl as an Efficient Catalyst for the Preparation of Hexahyroquinolines,” Eurasian Chemical Communications 2 (2020): 465–74.
  • B. Maleki, and F. Taimazi, “One-Pot Synthesis of 1-Amidoalkyl-2-Naphthols under Solvent-Free Conditions,” Organic Preparations and Procedures International 46, no. 3 (2014): 252–60.
  • M. Nikpassand, and L. Zare Fekri, Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran“Catalyst-Free Synthesis of Mono and Bis Spiro Pyrazolopyridines in DSDABCO as a Novel Media,” Chemical Methodologies 4, no. 4 (2020): 437–46.
  • E. Haddazadeh, and M. K. Mohammadi, “One-Pot Synthesize of Phenyl Phenanthro Imidazole Derivatives Catalyzed by Lewis Acid in the Presence of Ammonium Acetate,” Chemical Methodologies 4 (2020): 324–32.
  • A. Khazaei, A. R. Moosavi-Zare, H. Afshar-Hezarkhani, and V. Khakyzadeh, “Programming of Fe-Catalyzed Cascade Knoevenagel-Michael-Cyclocondensation Reaction: create out Pseudo Acridine Derivatives under Solvent Free Conditions,” Eurasian Chemical Communications 2 (2020): 27–34.
  • A. R. Salih, and Z. A. K. Al-Messri, “Synthesis of Pyranopyrazole and Pyranopyrimidine Derivatives Using Magnesium Oxide Nanoparticles and Evaluation as Corrosion Inhibitors for Lubricants,” Eurasian Chemical Communications 3 (2021): 533–41.
  • S. Darvishy, H. Alinezhad, M. Vafaeezadeh, S. Peiman, and B. Maleki, “S-(+) Camphorsulfonic Acid Glycine (CSAG) as Surfactant-Likes Brønsted Acidic Ionic Liquid for One-Pot Synthesis of ß-Amino Carbonyl,” Polycyclic Aromatic Compounds (2022): 1–13. doi: 10.1080/10406638.2022.2094419
  • H. Alinezhad, M. Tajbakhsh, B. Maleki, and F. Pourshaban Oushibi, “Acidic Ionic Liquid [H-NP]HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b]Pyridines and Polysubstituted Imidazoles,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1485–500.
  • B. Maleki, S. S. Ashrafi, and R. Tayebee, “Lewis Acid Free Synthesis of 3,4-Dihydro-1H-Indazolo[1,2-b]Phthalazine-1,6,11(2H,13H)-Triones Promoted by 1,1,1,3,3,3-Hexafluoro-2-Propanol,” RSC Adv. 4, no. 78 (2014): 41521–8.
  • B. Maleki, and S. Sheikh, “Nano Polypropylenimine Dendrimer (DAB-PPI-G1): as a Novel Nano Basic-Polymer Catalyst for One-Pot Synthesis of 2-Amino-2-Chromene Derivatives,” RSC Advances 5, no. 54 (2015): 42997–3005.
  • C. Kalinski, H. Lemoine, J. Schmidt, C. Burdack, J. Kolb, M. Umkehrer, and G. J. S. Ross, “Multicomponent Reactions as a Powerful Tool for Generic Drug Synthesis,” Synthesis 2008, no. 24 (2008): 4007–11.
  • R. S. Varma, “Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials,” ACS Sustainable Chemistry & Engineering 4, no. 11 (2016): 5866-78.
  • S. Abdolmohammadi, “ZnO Nanoparticles-Catalyzed Cyclocondensation Reaction of Arylmethylidenepyruvic Acids with 6-Aminouracils,” Combinatorial Chemistry & High Throughput Screening 16, no. 1 (2013): 32–6.
  • S. Abdolmohammadi, B. Mirza, and E. Vessally, “Immobilized TiO2 Nanoparticles on Carbon Nanotubes: An Efficient Heterogeneous Catalyst for the Synthesis of Chromeno[b]Pyridine Derivatives under Ultrasonic Irradiation,” RSC Advances 9, no. 71 (2019): 41868–76.
  • S. Soleimani-Amiri, M. Arabkhazaeli, Z. Hossaini, S. Afrashteh, and A. A. Eslami, “Synthesis of Chromene Derivatives via Three-Component Reaction of 4-Hydroxycumarin Catalyzed by Magnetic Fe3O4 Nanoparticles in Water,” Journal of Heterocyclic Chemistry 55, no. 1 (2018): 209–13.
  • S. Soleimani‐Amiri, F. Shafaei, A. Varasteh Moradi, F. Gholami‐Orimi, and ZJJoHC. Rostami, “A Novel Synthesis and Antioxidant Evaluation of Functionalized [1, 3]‐Oxazoles Using Fe3O4‐Magnetic Nanoparticles,” Journal of Heterocyclic Chemistry 56, no. 10 (2019): 2744–52.
  • Z. Samiei, S. Soleimani-Amiri, and Z. Azizi, “Fe3O4@ C@ OSO3H as an Efficient, Recyclable Magnetic Nanocatalyst in Pechmann Condensation: green Synthesis, Characterization, and Theoretical Study,” Molecular Diversity 25, no. 1 (2021): 67–86.
  • S. Soleimani Amiri, Z. Hossaini, and Z. Azizi, “Synthesis and Investigation of Antioxidant and Antimicrobial Activity of New Pyrazinopyrroloazepine Derivatives Using Fe3O4/CuO/ZnO@MWCNT MNCs as Organometallic Nanocatalyst by New MCRs,” Applied Organometallic Chemistry 36, no. 4 (2022): e6573.
  • F. Zarei, S. Soleimani-Amiri, and Z. Azizi, “Heterogeneously Catalyzed Pechmann Condensation Employing the HFe(SO4)2.4H2O-Chitosan Nano-Composite: Ultrasound-Accelerated Green Synthesis of Coumarins,” Polycyclic Aromatic Compounds 42, no. 9 (2022): 6072–89.
  • M. Feizpour Bonab, S. Soleimani-Amiri, and B. Mirza, “Fe3O4@C@PrS-SO3H: A Novel Efficient Magnetically Recoverable Heterogeneous Catalyst in the Ultrasound-Assisted Synthesis of Coumarin Derivatives,” Polycyclic Aromatic Compounds (2022): 1–16. doi: 10.1080/10406638.2022.2032768
  • S. Soleimani-Amiri, Z. Hossaini, and Z. Azizi, “Synthesis and Investigation of Biological Activity of New Oxazinoazepines: Application of Fe3O4/CuO/ZnO@MWCNT Magnetic Nanocomposite in Reduction of 4-Nitrophenol in Water,” Polycyclic Aromatic Compounds (2022): 1–22. doi: 10.1080/10406638.2022.2058969
  • S. Abdolmohammadi, and Z. Hossaini, “Fe(3)O(4) MNPs as a Green Catalyst for Syntheses of Functionalized [1,3]-Oxazole and 1H-Pyrrolo-[1,3]-Oxazole Derivatives and Evaluation of Their Antioxidant Activity,” Molecular Diversity 23, no. 4 (2019): 885–96.
  • F. Laffafchi, M. Tajbakhsh, Y. Sarrafi, B. Maleki, and M. Ghani, “Cu-Modified Magnetic Creatine as an Efficient Catalyst for Regioselective Preparation of 1,2,3-Triazoles Derivatives,” Polycyclic Aromatic Compounds (2022): 1–17. doi: 10.1080/10406638.2022.2070224
  • B. Maleki, R. Nejat, and Z. Vahdani, “Three-Dimensional Graphene–Magnetic Organometallic Nanohybrid as High‐Performance Visible Light Photocatalyst for the C-C Coupling Reactions,” Polycyclic Aromatic Compounds 42, no. 6 (2022): 3638–50.
  • H. R. Saadati-Moshtaghin, B. Maleki, R. Tayebee, S. Kahrobaei, and F. Abbasinohoji, “6-methylguanamine-Supported CoFe2O4: An Efficient Catalyst for One-Pot Three-Component Synthesis of Isoxazol-5(4H)-One Derivatives,” Polycyclic Aromatic Compounds 42, no. 3 (2022): 885–96.
  • E. Rezaei-Seresht, M. Bakhshi-Noroozi, and B. Maleki, “Piperazine-Grafted Magnetic Reduced Graphene Oxide (Fe3O4@rGO-NH) as a Reusable Heterogeneous Catalyst for Gewald Three-Component Reaction,” Polycyclic Aromatic Compounds 41, no. 9 (2021): 1944–52.
  • B. Maleki, H. Atharifar, O. Reiser, and R. Sabbaghzadeh, “Glutathione-Coated Magnetic Nanoparticles for One-Pot Synthesis of 1,4-Dihydropyridine Derivatives,” Polycyclic Aromatic Compounds 41, no. 4 (2021): 721–34.
  • B. Maleki, H. Natheghi, R. Tayebee, H. Alinezhad, A. Amiri, S. A. Hossieni, and S. M. M. Nouri, “Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and Its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 633–43.
  • B. Li, R. Tayebee, E. Esmaeili, M. S. Namaghi, and B. Maleki, “Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes with Air by Magnetic WO3ZnO/Fe3O4. In Situ Photochemical Synthesis of 2-Substituted Benzimidazoles,” RSC Advances 10, no. 67 (2020): 40725–38.
  • A. Mohammadi, H. Keshvari, R. Sandaroos, B. Maleki, H. Rouhi, H. Moradi, Z. Sepehr, and S. Damavandi, “A Highly Efficient and Reusable Heterogeneous Catalyst for the One-Pot Synthesis of Tetrasubstituted Imidazoles,” Applied Catalysis A: General 429-430 (2012): 73–8.
  • S. S. Karbasaki, G. Bagherzade, B. Maleki, and M. Ghani, “Magnetic Fe3O4@SiO2 Core–Shell Nanoparticles Functionalized with Sulfamic Acid Polyamidoamine (PAMAM) Dendrimer for the Multicomponent Synthesis of Polyhydroquinolines and Dihydro-1H-Indeno[1,2-b] Pyridines,” Organic Preparations and Procedures International 53, no. 5 (2021): 498–508.
  • B. Maleki, F. Taheri, R. Tayebee, and F. Adibian, “Dendrimer-Functionalized Magnetic Graphene Oxide for Knoevenagel Condensation,” Organic Preparations and Procedures International 53, no. 3 (2021): 284–90.
  • M. Kurdtabar, H. Nezam, G. Rezanejade Bardajee, M. Dezfulian, and H. Salimi, “Biocompatible Magnetic Hydrogel Nanocomposite Based on Carboxymethylcellulose: Synthesis, Cell Culture Property and Drug Delivery,” Polymer Science, Series B 60, no. 2 (2018): 231–42.
  • M. Kurdtabar, and G. R. Bardajee, “Drug Release and Swelling Behavior of Magnetic Iron Oxide Nanocomposite Hydrogels Based on Poly (Acrylic Acid) Grafted onto Sodium Alginate,” Polymer Bulletin 77, no. 6 (2020): 3001–15.
  • M. Kurdtabar, S. Saif Heris, and M. Dezfulian, “Characterization of a Multi-Responsive Magnetic Graphene Oxide Nanocomposite Hydrogel and Its Application for DOX Delivery,” Chinese Journal of Polymer Science 39, no. 12 (2021): 1597–608.
  • B. Maleki, G. E. Kahoo, and R. Tayebee, “One-Pot Synthesis of Polysubstituted Imidazoles Catalyzed by an Ionic Liquid,” Organic Preparations and Procedures International 47, no. 6 (2015): 461–72.
  • H. M. Alkahtani, A. Y. Abbas, S. J. B. Wang, and mc Letters, “Synthesis and Biological Evaluation of Benzo [d] Imidazole Derivatives as Potential anti-Cancer Agents,” Bioorganic & Medicinal Chemistry Letters 22, no. 3 (2012): 1317–21.
  • R. Mishra, and S. J. M. C. R. Ganguly, “Imidazole as an anti-Epileptic: An Overview,” Medicinal Chemistry Research 21, no. 12 (2012): 3929–39.
  • N. Nasehi, B. Mirza, and SJJotCCS. Soleimani‐Amiri, “Fe3O4@ C@ prNHSO3H: A Novel Magnetically Recoverable Heterogeneous Catalyst in Green Synthesis of Diverse Triazoles,” Journal of the Chinese Chemical Society 68, no. 11 (2021): 2071–84.
  • H. Ghavidel, B. Mirza, S. Soleimani‐Amiri, and MJJotCCS. Manafi, “New Insight into Experimental and Theoretical Mechanistic Study on a Green Synthesis of Functionalized 4 H‐Chromenes Using Magnetic Nanoparticle Catalyst,” Journal of the Chinese Chemical Society 67, no. 10 (2020): 1856–76.
  • F. Gharibzadeh, E. Vessally, L. Edjlali, M. Es Haghi, and R. Mohammadi, “ A DFT Study on Sumanene, Corannulene and Nanosheet as the Anodes in Li − Ion Batteries,” Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 39 (2020): 51–62.
  • M. Afshar, R. Ranjineh Khojasteh, R. Ahmadi, and M. Nakhaei Moghaddam, “In Silico Adsorption of Lomustin Anticancer Drug on the Surface of Boron Nitride Nanotube,” Chemical Review and Letters 4 (2021): 178–84.
  • F. Mohammad Alipour, M. Babazadeh, E. Vessally, A. Hosseinian, and P. Delir Kheirollahi Nezhad, “A Computational Study on the Some Small Graphene-Like Nanostructures as the Anodes in Na − Ion Batteries,” Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 40 (2021): 691–703.
  • B. Hashemzadeh, L. Edjlali, P. Delir Kheirollahi Nezhad, and E. Vessally, “A DFT Studies on a Potential Anode Compound for Li-Ion Batteries: Hexa-Cata-Hexabenzocoronene Nanographen,” Chemical Review and Letters 4 (2021): 232–8.
  • M. Bakavoli, F. Moeinpour, A. Davoodnia, and A. Morsali, “1,3-Dipolar Cycloaddition of N-[4-Nitrophenyl]-C-[2-Furyl] Nitrilimine with Some Dipolarophiles: A Combined Experimental and Theoretical Study,” Journal of Molecular Structure 969, no. 1-3 (2010): 139–44.
  • S. Emamian, T. Lu, and F. Moeinpour, “Can the High Reactivity of Azomethine Betaines in [3 + 2] Cycloaddition Reactions Be Explained Using Singlet-Diradical Character Descriptors? What Molecular Mechanism is Actually Involved in These Cycloadditions?,” RSC Advances 5, no. 76 (2015): 62248–59.
  • A. Vörös, Z. Mucsi, Z. Baán, G. Timári, I. Hermecz, P. Mizsey, and Z. Finta, “An Experimental and Theoretical Study of Reaction Mechanisms between Nitriles and Hydroxylamine,” Organic & Biomolecular Chemistry 12, no. 40 (2014): 8036–47.
  • A. Farhadi, J. Noei, R. H. Aliyari, M. Albakhtiyari, and MAJRoCI. Takassi, “Experimental and Theoretical Study on a One-Pot, Three-Component Route to 3, 4-Dihydropyrimidin-2 (1H)-Ones/Thiones TiCl3OTf-[Bmim] Cl,” Research on Chemical Intermediates 42, no. 2 (2016): 1401–9.
  • R. Liu, Y. Tie, X. Zhao, J. Zhu, J. Zou, and TJJoOC. Liu, “Mechanistic Insight into the Ruthenium-Catalyzed Cycloaddition of Enynes with Alkynes: A Theoretical Study,” Journal of Organometallic Chemistry 875 (2018): 46–51.
  • M. Manachou, C. Morell, H. Chermette, and S. J. C. P. L. Boughdiri, “Theoretical Study of the Mechanism and Regioselectivity in the Formation of Pyrazolo [1, 5-a]-[1, 3, 5]-Triazines and Pyrazolo [1, 5-a]-[1, 3, 5] Triazinones: A DFT Study,” Chemical Physics Letters 727 (2019): 95–104.
  • J. Safari, and Z. Zarnegar, “A Highly Efficient Magnetic Solid Acid Catalyst for Synthesis of 2,4,5-Trisubstituted Imidazoles under Ultrasound Irradiation,” Ultrasonics Sonochemistry 20, no. 2 (2013): 740–6.
  • J. Safari, S. Naseh, Z. Zarnegar, and Z. Akbari, “Applications of Microwave Technology to Rapid Synthesis of Substituted Imidazoles on Silica-Supported SbCl3 as an Efficient Heterogeneous Catalyst,” Journal of Taibah University for Science 8, no. 4 (2014): 323–30.
  • E. Eidi, M. Z. Kassaee, and Z. Nasresfahani, “Synthesis of 2,4,5-Trisubstituted Imidazoles over Reusable CoFe2O4 Nanoparticles: An Efficient and Green Sonochemical Process,” Applied Organometallic Chemistry 30, no. 7 (2016): 561–5.
  • E. Zandi-Mehri, L. Taghavi, F. Moeinpour, I. Khosravi, and S. Ghasemi, “Designing of Hydroxyl Terminated Triazine-Based Dendritic Polymer/Halloysite Nanotube as an Efficient Nano-Adsorbent for the Rapid Removal of Pb(II) from Aqueous Media,” Journal of Molecular Liquids 360 (2022): 119407.
  • S. Samai, G. C. Nandi, P. Singh, and M. S. Singh, “l-Proline: An Efficient Catalyst for the One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles,” Tetrahedron 65, no. 49 (2009): 10155–61.
  • J. Safari, S. D. Khalili, and S. H. Banitaba, “A Novel and an Efficient Catalyst for One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles by Using Microwave Irradiation under Solvent-Free Conditions,” Journal of Chemical Sciences 122, no. 3 (2010): 437–41.
  • K. H. Asressu, C.-K. Chan, and C.-C. Wang, “TMSOTf-Catalyzed Synthesis of Trisubstituted Imidazoles Using Hexamethyldisilazane as a Nitrogen Source under Neat and Microwave Irradiation Conditions,” RSC Advances 11, no. 45 (2021): 28061–71.
  • N. Hosseini Mohtasham, and M. Gholizadeh, “Magnetic Horsetail Plant Ash (Fe3O4@HA): a Novel, Natural and Highly Efficient Heterogeneous Nanocatalyst for the Green Synthesis of 2,4,5-Trisubstituted Imidazoles,” Research on Chemical Intermediates 47, no. 6 (2021): 2507–25.
  • Z. Varzi, M. S. Esmaeili, R. Taheri-Ledari, and A. Maleki, “Facile Synthesis of Imidazoles by an Efficient and Eco-Friendly Heterogeneous Catalytic System Constructed of Fe3O4 and Cu2O Nanoparticles, and Guarana as a Natural Basis,” Inorganic Chemistry Communications 125 (2021): 108465.
  • D. Parthiban, and R. Karunakaran, “Benzethonium Chloride Catalyzed One Pot Synthesis of 2,4,5-Trisubstituted Imidazoles and 1,2,4,5-Tetrasubstituted Imidazoles in Aqueous Ethanol as a Green Solvent,” Oriental Journal of Chemistry 34, no. 6 (2018): 3004–15.
  • “Gaussian 09,” in: G.W.T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, (Ed.), Inc., Wallingford CT, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.