159
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Efficient Synthesis of Densely Functionalized Pyrido[2,3-d]Pyrimidines via Three-component One-pot Domino Knoevenagel aza-Diels Alder Reaction and Induces Apoptosis in Human Cancer Cell Lines via Inhibiting Aurora A and B Kinases

ORCID Icon, , , , &
Pages 7912-7929 | Received 08 Aug 2022, Accepted 27 Oct 2022, Published online: 11 Nov 2022

References

  • J. R. Pollard and M. Mortimore, “Discovery and Development of Aurora Kinase Inhibitors as Anticancer Agents,” Journal of Medicinal Chemistry 52, no. 9 (2009): 2629–51.
  • G. Vader and S. M. A. Lens, “The Aurora Kinase Family in Cell Division and Cancer,” Biochimica et Biophysica Acta 1786, no. 1 (2008): 60–72.
  • S. Anand, S. Penrhyn-Lowe, and A. R. Venkitaraman, “Aurora-a Amplification Overrides the Mitotic Spindle Assembly Checkpoint, Inducing Resistance to Taxol,” Cancer Cell 3, no. 1 (2003): 51–62.
  • A. Moore and L. Wordeman, “The Mechanism, Function and Regulation of Depolymerizing Kinesins during Mitosis,” Trends in Cell Biology 14, no. 10 (2004): 537–46.
  • Heidi L. Gold, Jordan Wengrod, Eleazar Vega-Saenz de Miera, Ding Wang, Nathaniel Fleming, Lisa Sikkema, Tomas Kirchhoff, Tsivia Hochman, Judith D. Goldberg, Iman Osman, et al., “PP6C Hotspot Mutations in Melanoma Display Sensitivity to Aurora Kinase Inhibition,” Molecular Cancer Research : MCR 12, no. 3 (2014): 433–9.
  • Elizabeth A. Harrington, David Bebbington, Jeff Moore, Richele K. Rasmussen, Abi O. Ajose-Adeogun, Tomoko Nakayama, Joanne A. Graham, Cecile Demur, Thierry Hercend, Anita Diu-Hercend, et al., “VX-680, a Potent and Selective Small-Molecule Inhibitor of the Aurora Kinases, Suppresses Tumor Growth in Vivo,” Nature Medicine 10, no. 3 (2004): 262–7.
  • Daniele Fancelli, Daniela Berta, Simona Bindi, Alexander Cameron, Paolo Cappella, Patrizia Carpinelli, Cornel Catana, Barbara Forte, Patrizia Giordano, Maria Laura Giorgini, et al., “Potent and Selective Aurora Inhibitors Identified by the Expansion of a Novel Scaffold for Protein Kinase Inhibition,” Journal of Medicinal Chemistry 48, no. 8 (2005): 3080–4.
  • Steven Howard, Valerio Berdini, John A. Boulstridge, Maria G. Carr, David M. Cross, Jayne Curry, Lindsay A. Devine, Theresa R. Early, Lynsey Fazal, Adrian L. Gill, et al., “Fragment-based Discovery of the Pyrazol-4-yl Urea (AT9283), a Multitargeted Kinase Inhibitor with Potent Aurora Kinase Activity,” Journal of Medicinal Chemistry 52, no. 2 (2009): 379–88.
  • Todd B. Sells, Ryan Chau, Jeffrey A. Ecsedy, Rachel E. Gershman, Kara Hoar, Jessica Huck, David A. Janowick, Vivek J. Kadambi, Patrick J. LeRoy, Matthew Stirling, et al., “MLN8054 and Alisertib (MLN8237): Discovery of Selective Oral Aurora a Inhibitors,” ACS Medicinal Chemistry Letters 6, no. 6 (2015): 630–4.
  • Shudong Wang, Carol A. Midgley, Frederic Scaërou, Joanna B. Grabarek, Gary Griffiths, Wayne Jackson, George Kontopidis, Steven J. McClue, Campbell McInnes, Christopher Meades, et al., “Discovery of N -Phenyl-4-(Thiazol-5-yl)Pyrimidin-2-Amine Aurora Kinase Inhibitors,” Journal of Medicinal Chemistry 53, no. 11 (2010): 4367–78.
  • Leslie W. Tari, Isaac D. Hoffman, Daniel C. Bensen, Michael J. Hunter, Jay Nix, Kirk J. Nelson, Duncan E. McRee, and Ronald V. Swanson, “Structural Basis for the Inhibition of Aurora a Kinase by a Novel Class of High Affinity Disubstituted Pyrimidine Inhibitors,” Bioorganic & Medicinal Chemistry Letters 17, no. 3 (2007): 688–91.
  • L. Jing, Y. Tang, M. Goto, K. H. Lee, and Z. Xiao, “SAR Study on N 2, N 4 -Disubstituted Pyrimidine-2,4-Diamines as Effective CDK2/CDK9 Inhibitors and Antiproliferative Agents,” RSC Advances 8, no. 22 (2018): 11871–85.
  • Shadia A. Galal, Muhammad Khattab, Samia A. Shouman, Raghda Ramadan, Omaima M. Kandil, Omnia M. Kandil, Ashraf Tabll, Yasmine S. El Abd, Reem El-Shenawy, Yasmin M. Attia, et al., “Novel Checkpoint Kinase 2 (Chk2) Inhibitors; Design, Synthesis and Biological Evaluation of Pyrimidine-Benzimidazole Conjugates,” European Journal of Medicinal Chemistry 146 (2018): 687–708.
  • Thibault Saurat, Frédéric Buron, Nuno Rodrigues, Marie-Ludivine de Tauzia, Lionel Colliandre, Stéphane Bourg, Pascal Bonnet, Gérald Guillaumet, Mohamed Akssira, Anne Corlu, et al., “Design, Synthesis, and Biological Activity of Pyridopyrimidine Scaffolds as Novel PI3K/mTOR Dual Inhibitors,” Journal of Medicinal Chemistry 57, no. 3 (2014): 613–31.
  • Lucía Cordeu, Elena Cubedo, Eva Bandrés, Amaia Rebollo, Xabi Sáenz, Hector Chozas, Ma Victoria Domínguez, Mikel Echeverría, Beatriz Mendivil, Carmen Sanmartin, et al., “Biological Profile of New Apoptotic Agents Based on 2,4-Pyrido[2,3-d]Pyrimidine Derivatives,” Bioorganic & Medicinal Chemistry 15, no. 4 (2007): 1659–69.
  • M. Font, A. Gonzalez, J. A. Palop, and C. Sanmartin, “New Insights into the Structural Requirements for Pro-Apoptotic Agents Based on 2,4-Diaminoquinazoline, 2,4-Diaminopyrido[2,3-d]Pyrimidine and 2,4-Diaminopyrimidine Derivatives,” European Journal of Medicinal Chemistry 46, no. 9 (2011): 3887–99.
  • Carmen Sanmartín, María Victoria Domínguez, Lucía Cordeu, Elena Cubedo, Jesús García-Foncillas, María Font, and Juan Antonio Palop, “Synthesis and Biological Evaluation of 2,4,6-Functionalized Derivatives of Pyrido[2,3-d]Pyrimidines as Cytotoxic Agents and Apoptosis Inducers,” Archiv Der Pharmazie 341, no. 1 (2008): 28–41.
  • J. F. Dorsey, R. Jove, A. J. Kraker, and J. Wu, “The Pyrido[2,3-d]Pyrimidine Derivative PD180970 Inhibits p210Bcr-Abl Tyrosine Kinase and Induces Apoptosis of K562 Leukemic Cells,” Cancer Res 60, no. 12 (2000): 3127–31.
  • J. Quiroga, M. Alvarado, B. Insuasty, M. Nogueras, A. Sanchez, and J. Cobo, “Synthesis of 6-Cyanopyrido- [2,3-d]Pyrimidinones in the Reaction of 6-Amino-4-py- Rimidinones with Arylidene Derivatives of Malonodini-Trile,” Journal of Heterocyclic Chemistry 35, no. 6 (1998): 1309–11.
  • M. N. Nasr, and M. M. Gineinah, “Pyrido[2,3-d]py- Rimidines and Pyrimido[5′,4′:5,6]Pyrido [2,3-d]Pyrimi- Dines as New Antiviral Agents: Synthesis and Biological Activity,” Journal of Heterocyclic Chemistry 33, no. 50 (2002): 118.
  • X.-S. Wang, Z.-S. Zeng, D.-Q. Shi, X.-Y. Wei, and Z.-M. Zong, “KF-Alumina Catalyzed One-Pot Synthesis of Pyrido[2,3-d]Pyrimidine Derivatives,” Synthetic Communications 34, no. 23 (2004): 4331–8.
  • X.-S. Wang, Z.-S. Zeng, D.-Q. Shi, S.-J. Tu, X.-Y. Wei, and Z.-M. Zong, “Three-Component, One-Pot Synthesis of Pyrido[2,3-d]Pyrimidine Derivatives Catalyzed by KF-Alumina,” Synthetic Communications 35, no. 14 (2005): 1921–7.
  • S. Youssif and F. Z. Agili, “ChemInform Abstract: OnePot Synthesis of Fused 2-Thiouracils: Pyrimidopyrimidines, Pyridopyrimidines and Imidazolopyrimidines,” Journal of Preparative Organic Chemistry 39, no. 43 (2008).
  • D. Shi, S. Ji, L. Niu, J. Shi, and X. Wang, “One-Pot Synthesis of Pyrido[2,3-d]Pyrimidines via Efficient Three- Component Reaction in Aqueous Media,” Journal of Heterocyclic Chemistry 44, no. 5 (2007): 1083–90.
  • D.-Q. Shi, Y. Zhou, and H. Liua, “An Efficient Synthesis of Pyrido[2,3-d]Pyrimidine Derivatives in Ionic Liquid,” Journal of Heterocyclic Chemistry 47, no. 1 (2010): 131–5.
  • J. Wang, Y. Sun, M.-H. Jiang, T.-Y. Hu, Y.-J. Zhao, X. Li, G. Wang, K. Hao, and L. Zhen, “Iminium Ion and N-Hydroxyimide as the Surrogate Components in DEAD-Promoted Oxidative Ugi Variant,” The Journal of Organic Chemistry 83, no. 21 (2018): 13121–31.
  • F. Drouet, G. Masson, and J. Zhu, “Ugi Four-Component Reaction of Alcohols: Stoichiometric and Catalyticoxidation/MCR Sequences,” Organic Letters 15, no. 11 (2013): 2854–7.
  • X.-B. Chen, S.-L. Xiong, Z.-X. Xie, Y.-C. Wang, and W. Liu, “Three-Component One-Pot Synthesis of Highly Functionalized Bis-Indole Derivatives,” ACS Omega 4, no. 7 (2019): 11832–7.
  • X. Bugaut, T. Constantieux, Y. Coquerel, J. Rodriguez, J. Zhu, Q. Wang, and M.-X. Wang, Multicomponent Reactions in Organic Synthesis (Weinheim: Wiley-VCH, 2014), 109.
  • A. Domling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical Reviews 106 (2006): 17–89.
  • D. M. D’Souza, and T. J. J. Muller, “Multi-Component Syntheses of Heterocycles by Transition-Metal Catalysis,” Chemical Society Reviews 36 (2007): 1095.
  • R. Scheffelaar, M. Paravidino, A. Znabet, R. F. Schmitz, F. J. J. de Kanter, M. Lutz, A. L. Spek, C. F. Guerra, F. M. Bickelhaupt, M. B. Groen, et al., “Scope and Limitations of an Efficient Four-Component Reaction for Dihydropyridin-2-Ones,” The Journal of Organic Chemistry 75, no. 5 (2010): 1723–32.
  • S. L. Dax, J. J. McNally, and M. A. Youngman, “Multicomponent Methodologies in Solid-Phase Organic Synthesis,” Current Medicinal Chemistry 6, no. 3 (1999): 255–70.
  • B. Willy, and T. J. Muller, “Regioselective Three-Component Synthesis of Highly Fluorescent 1,3,5-Trisubstituted Pyrazoles,” European Journal of Organic Chemistry 2008, no. 24 (2008): 4157–68.
  • M. M. Heravi, B. Baghernejad, H. A. Oskooie, and R. Hekmatshoar, “A Novel and Facile and Facile Synthesis of 2-(Cyclohexylamino)-6,7-Dihydro-3-Aryl-1H-Indole-4(5H)-Ones via One Pot Multicomponent Reaction,” Tetrahedron Letters 49, no. 42 (2008): 6101–3.
  • N. M. Evdokimov, A. S. Kireev, A. A. Yakovenko, M. Y. Antipin, I. V. Magedov, and A. Kornienko, “One-Step Synthesis of Heterocyclic Privileged Medicinal Scaffolds by a Multicomponent Reaction of Malononitrile with Aldehydes and Thiols,” The Journal of Organic Chemistry 72, no. 9 (2007): 3443–53.
  • Sorayya Yaghoubi Kalurazi, Kurosh Rad-Moghadam, and Shahram Moradi, “Efficient Catalytic Application of a Binary Ionic Liquid Mixture in the Synthesis of Novel Spiro[4H-Pyridine-Oxindoles],” New Journal of Chemistry 41, no. 18 (2017): 10291–8.
  • R. M. N. Kalla, J. Lim, J. Bae, and I. Kim, “Sulfated Choline Ionic Liquid-Catalyzed Acetamide Synthesis by Grindstone Method,” Tetrahedron Letters 58, no. 16 (2017): 1595–9.
  • J. S. Wilkes, “A Short History of Ionic Liquids from Molten Salts to Neoteric Solvents,” Green Chemistry 4, no. 2 (2002): 73–80.
  • H. Xu, L. Pan, X. Fang, B. Liu, W. Zhang, M. Lu, Y. Xu, T. Ding, and H. Chang, “Knoevenagel Condensation Catalyzed by Novel Nmm-Based Ionic Liquids in Water,” Tetrahedron Letters 58, no. 24 (2017): 2360–5.
  • M. Bagherzadeh and S. Ghazali-Esfahani, “Efficient Recyclable Catalytic System for Deoxygenation of Sulfoxides: Catalysis of Ionic Liquid-Molybdenum Complexes in Ionic Liquid Solution,” New Journal of Chemistry 36, no. 4 (2012): 971–6.
  • Marija Petkovic, Kenneth R. Seddon, Luís Paulo N. Rebelo, and Cristina Silva Pereira, “Ionic Liquids: A Pathway to Environmental Acceptability,” Chemical Society Reviews 40, no. 3 (2011): 1383–403.
  • Manisha R. Bhosle, Moseen A. Shaikh, Dhananjay Nipate, Lalit D. Khillare, Giribala M. Bondle, and Jaiprakash N. Sangshetti, “ChCl:2ZnCl2 Catalyzed Efficient Synthesis of New Sulfonyl Decahydroacridine-1,8-Diones via One-Pot Multicomponent Reactions to Discover Potent Antimicrobial Agents,” Polycyclic Aromatic Compounds 40, no. 4 (2020): 1175–86.
  • M. R. Bhosle, S. A. Joshi, and G. M. Bondle, “An Efficient Contemporary Multicomponent Synthesis for the Facile Access to Coumarin-Fused New Thiazolyl Chromeno[4,3-b]Quinolones in Aqueous Micellar Medium,” Journal of Heterocyclic Chemistry 57, no. 1 (2020): 456–68.
  • M. R. Bhosle, S. A. Joshi, G. M. Bondle, and J. N. Sangshetti, “Supramolecular Biomimetic Catalysis by β-Cyclodextrin for the Synthesis of New Antimicrobial Chromeno[4,3-b]Quinolin-Isonicotinamides in Water,” Research on Chemical Intermediates 46, no. 1 (2020): 737–53.
  • Manisha R. Bhosle, Pooja Andil, Diksha Wahul, Giribala M. Bondle, Aniket Sarkate, and Shailee V. Tiwari, “Straightforward Multicomponent Synthesis of Pyrano[2,3-d]Pyrimidine-2,4,7-Triones in β-Cyclodextrin Cavity and Evaluation of Their Anticancer Activity,” Journal of the Iranian Chemical Society 16, no. 7 (2019): 1553–61.
  • M. Anouti, M. C. Caravanier, C. L. Floch, and D. Lemordant, “Alkylammonium-Based Potic Ionic Liquids. II Ionic Transport and Heat Transfer Properties: Fragility and Iconicity Rule,” The Journal of Physical Chemistry B 112, no. 31 (2008): 9412–6.
  • V. S. Dofe, A. P. Sarkate, R. Azad, and C. H. Gill, “Novel Quinoline-Based Oxadiazole Derivatives Induce G2/M Arrest and Apoptosis in Human Breast Cancer MCF-7 Cell Line,” Research on Chemical Intermediates 21 (2017): 484.
  • J. P. Hallett and T. Welton, “Room- Temperature Ionic Liquids: Solvents for Synthesis and Catalysis,” Chemical Reviews 111, no. 5 (2011): 3508–76.
  • S. Santner, J. Heine, and S. Dehnen, “Synthesis of Crystalline Chalcogenides in Ionic Liquids,” Angewandte Chemie 55, no. 3 (2016): 876–93.
  • R. Jain, N. Jadon, and K. Singh, “New Generation Electrode Materials for Sensitive Detection,” Journal of the Electrochemical Society 163, no. 3 (2016): H159–H170.
  • P. C. Marr and A. C. Marr, “Ionic Liquid Gel Materials: Applications in Green and Sustainable Chemistry,” Green Chemistry 18, no. 1 (2016): 105–28.
  • Andrew P. Abbott, Robert C. Harris, Karl S. Ryder, Carmine D'Agostino, Lynn F. Gladden, and Mick D. Mantle, “Glycerol Eutectics as Sustainable Solvent Systems,” Green Chemistry 13, no. 1 (2011): 82–90.
  • M. Francisco, A. van den Bruinhorst, and M. C. Kroon, “Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents,” Angewandte Chemie 52, no. 11 (2013): 3074–85.
  • S. Singh, M. Saquib, M. Singh, J. Tiwari, F. Tufail, J. Singh, and J. Singh, “A Catalyst Free, Multicomponent-Tandem, Facile Synthesis of Pyrido[2,3-d]Pyrimidines Using Glycerol as a Recyclable Promoting Medium,” New Journal of Chemistry 40, no. 1 (2016): 63–7.
  • S. Tu, J. Zhang, R. Jia, B. Jiang, Y. Zhang, and H. Jiang, “An Efficient Route for the Synthesis of a New Class of Pyrido[2,3-d]Pyrimidine Derivatives,” Organic & Biomolecular Chemistry 5, no. 9 (2007): 1450–3.
  • S. Samai, G. C. Nandi, S. Chowdhury, and M. S. Singh, “L-Proline Catalyzed Synthesis of Densely Functionalized Pyrido[2,3-d]Pyrimidines via Three-Component One-Pot Domino Knoevenagel aza-DielseAlder Reaction,” Tetrahedron 67, no. 33 (2011): 5935–41.
  • Mohammed A. Kashem, Richard M. Nelson, Jeffrey D. Yingling, Steven S. Pullen, Anthony S. Prokopowicz, Jessi Wildeson Jones, John P. Wolak, George R. Rogers, Maurice M. Morelock, Roger J. Snow, et al., “Three Mechanistically Distinct Kinase Assays Compared: Measurement of Intrinsic ATPase Activity Identified the Most Comprehensive Set of ITK Inhibitors,” Journal of Biomolecular Screening 12, no. 1 (2007): 70–83.
  • R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, and D. T. Mainz, “Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein–Ligand Complexes,” Journal of Medicinal Chemistry 49, no. 21 (2006): 6177–96.
  • S. V. Tiwari, J. Seijas, M. P. Vazquez-Tato, A. P. Sarkate, D. K. Lokwani, and A. G. Nikalje, “Ultrasound Mediated One-Pot, Three Component Synthesis, Docking and ADME Prediction of Novel 5-Amino-2-(4-Chlorophenyl)-7-Substitutedphenyl-8,8α-Dihydro-7H-[1,3,4]Thiadiazolo[3,2-α]Pyrimidine-6-Carbonitrile Derivatives as Anticancer Agents,” Molecules 21, no. 8 (2016): 894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.