90
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural, Spectroscopic, and C-H…O Hydrogen Bonding Interaction on Structure (Monomer and Dimer) Vibrational Spectroscopic, Fukui, NCI, AIM, and RDG Analysis Molecular Docking and Molecular Dynamic Simulation of Biological Active Pencycuron

, , &
Pages 8494-8543 | Received 07 Jun 2022, Accepted 15 Nov 2022, Published online: 18 Dec 2022

References

  • K. Nagy, C. Zheng, and C. Bolognesi, “Interlaboratory Evaluation of the Genotoxic Properties of Pencycuron, a Commonly Used Phenylurea Fungicide,” Science of the Total Environment 647 (2019): 1052–7.
  • cU. Isao, and A. Yasuo, “Metabolism of the Phenylurea Fungicide, Pencycuron, in Sensitive and Tolerant Strains of Rhizoctonia solan, science of the total environment,” 30 (2013): 363–5.
  • A. A. Balakit, S. Q. Makki, Y. Sert, F. Ucun, M. B. Alshammari, P. Thordarson and G. A. El-Hiti, “Synthesis, Spectrophotometric and DFT Studies of New Triazole Schiff Bases as Selective Naked-Eye Sensors for Acetate Anion,” Supramolecular Chemistry 32 (2020): 519–26. doi: 10.1080/10610278.2020.1808217
  • H. Gökce, F. Sen, Y. Sert, B. F. Abdel-Wahab, B. Kariuki and G. A. El-Hiti, “Quantum Computational Investigation of (E)-1-(4-Methoxyphenyl)-5-methyl-N′-(3-Phenoxybenzylidene)-1H-1,2,3-Triazole-4-Carbohydrazide,” Molecules 27, no. 7 (2022): 2193.
  • A. A. Abdulridha, M. A. Albo Hay Allah, S. Q. Makki, Y. Sert, H. Edan Salman, and A. A. Balakit, “Corrosion Inhibition of Carbon Steel in 1 M H2SO4 Using New Azo Schiff Compound: Electrochemical, Gravimetric, Adsorption, Surface and DFT Studies,” Journal of Molecular Liquids 315 (2020): 113690.
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92. doi: 10.1002/jcc.v33.510.1002/jcc.22885.
  • A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98, no. 7 (1993): 5648–52.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, Gaussian 09, Revision C.02 (Wallingford CT: Gaussian Inc., 2010).
  • E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1 (Madison, WI: TCI, Universityof Wisconsin, 1998).
  • T. Sundius, “Scaling of ab Initio Force Fields by MOLVIB,” Vibrational Spectroscopy 29, no. 1–2 (2002): 89–95. doi: 10.1016/S0924-2031(01)00189-8.
  • T. Sundius, “Molvib - a Flexible Program for Force Field Calculations,” Journal of Molecular Structure 218 (1990): 321–6. doi: 10.1016/0022-2860(90)80287-T.
  • P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Vargha, “Combination of Theoretical ab Initio and Experimental Information to Obtain Reliable Harmonic Force Constants,” Journal of the American Chemical Society 105, no. 24 (1983): 7037–47. doi: 10.1021/ja00362a005.
  • T. A. Keith, and J. M. Millam, (Eds.), GaussView, Version 6.1, Roy Dennington (Shawnee Mission, KS: Semichem Inc., 2016).
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics 14, no. 1 (1996): 33–8. doi: 10.1016/0263-7855(96)00018-5.
  • M. Shahlaei, B. Rahimi, M. R. Ashrafi-Kooshk, K. Sadrjavadi, and R. Khodarahmi, “Probing of Possible Olanzapine Binding Site on Human Serum Albumin: Combination of Spectroscopic Methods and Molecular Dynamics Simulation,” Journal of Luminescense 158 (2015): 91–8. doi: 10.1016/j.jlumin.2014.09.027.
  • E. Bravanjalin Subi, D. Arul Dhas, S. Balachandran, and I. Hubert Joe, “Crystal Growth, Structural, Vibrational, Effects of Hydrogen Bonding (C-H.O and C-H.N),” Polycyclic Aromatic Compounds (2022): 1–55. doi: 10.1080/10406638.2022.2052116.
  • W. R. P. Scott, P. H. Hünenberger, I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, A. E. Torda, T. Huber, P. Krüger, and W. F. van Gunsteren, “The GROMOS Biomolecular Simulation Program Package,” The Journal of Physical Chemistry A 103, no. 19 (1999): 3596–607. doi: 10.1021/jp984217f.
  • G. P S. Mol, D. Aruldhas, I. Hubert Joe, S. Balachandran, A. R. Anuf, and J. George, “Spectroscopic Investigation, Fungicidal Activity and Molecular Dynamics Simulation on Benzimidazol-2-yl Carbamate Derivatives,” Journal of Molecular Structure 1176 (2019): 226–37.
  • G. P. Sheeja Mol, D. Aruldhas, I. Hubert Joe, and S. Balachandran, “Experimental and Theoretical Spectroscopic Analysis, Chemical Reactivity and Fungicidal Activity Study on Benalaxyl along with Quantum Chemical Computation on Metalaxyl, and Furalaxyl,” Chemical Data Collections 17–18 (2018): 370–93.
  • G. Kang, J. Kim, E. Kwon, and T. H. Kim, “Crystal Structure of Pencycuron,” Acta Crystallographica 71 (2015): o532. doi: 10.1107/S2056989015012414.
  • S. Prasanth, M. V. Varughese, N. Joseph, P. Mathew, T. K. Manojkumar, and C. Sudarsanakumar, “Crystal structure, FT-IR, FT-Raman 1 H NMR and Computational Study of Ethyl 2-{[(Z)3-(4-Chlorophenyl)-3-Hydroxy-2-Propene-1-Thione] Amino} Acetate,” Journal of Molecular Structure 1081 (2015): 366–74. doi: 10.1016/j.molstruc.2014.10.0370022-2860.
  • N. Issaoui, H. Ghalla, S. Muthu, H.T. Flakus, and B. Oujia, “Molecular Structure, Vibrational Spectra, AIM, HOMO–LUMO, NBO, UV, First Order Hyperpolarizability, Analysis of 3-Thiophenecarboxylic Acid Monomer and Dimer by Hartree–Fock and Density Functional Theory,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136PC (2014): 1227–42. doi: 10.1016/j.saa.2014.10.008.
  • L. Vrielynck, C. Lapouge, S. Marquis, J. Kister, and N. Dupuy, “Theoretical and Experimental Vibrational Study of Phenylurea: Structure, Solvent Effect and Inclusion Process with the -Cyclodextrin in the Solid State,” Spectrochimica Acta Part A 60 (2004): 2553–9. doi: 10.1016/j.saa.2003.12.035
  • S. Gunasekaran, U. Ponnambalam, S. Muthu, and S. Ponnusamy, Vibrational analysis of pyrazinamide Asian Journal of Chemistry. 16 (2004): 1513.
  • J. Fulara, M. J. Nowak, L. Lapinski, A. Leś, and L. Adamowicz, “Spectrochim,” Spectrochimica Acta Part A: Molecular Spectroscopy 47, no. 5 (1991): 595–613.
  • Theoretical investigation on vibrational spectroscopic and nonlinear optical activity of 1-(4-chloro phenyl)-3-(4-dimethylamino phenyl) prop-2-en-1-one T. Chithambarathanu, V. Umayourbaghan, and V. Krishnakumar, Indian Journal of Pure and Applied Physics 41 (2003): 844.
  • Spectroscopic Investigation on fluoronocil, S. Gunasekaran, R. K. Natarajan, and K. Santhosam, Asian Journal of Chemistr. 15 (2003): 1347.
  • N. P. G. Roeges, A Guide to the Complete Interpretation of IR Spectra of Organic Compounds (New York, NY: Wiley, 1994).
  • E. F. Mooney, “The Infrared Spectra of Chlorobenzene and Bromobenzene Derivatives—III. Toluenes,” Spectrochimica Acta 20, no. 9 (1964): 1343–48.
  • G. Varsanyi, Vibrational Spectra of Benzene Derivatives (Newyork, NY: Academic Press, 1969).
  • F. R. Dollish, W. G. Fateley, and F. F. Bentely, Characteristic Raman Frequencies of Organic Structures (New York, NY: Wiley, 1997).
  • G. Varsanyi, Vibrational Spectra of Benzene Derivatives (New York, NY: Academic Press, 1969).
  • B. Smith, Infrared Spectral Interpretation A Systematic Approach (Washington, DC: CRC Press, 1999).
  • G. Socrates, Infrared Characteristic Group Frequencies (New York, NY: John Wiley and Sons, 1981).
  • M. Dinesh, P. Maadeswaran, M. S. Ho, B. Babu and S. Chandrasekar, “Growth Vibrational, Optical, Mechanical and DFT Investigations of an Organic Nonlinear Optical Material-Phenylurea,” Zeitschrift für Physikalische Chemie 233(2019): 1–24. doi: 10.1515/zpch-2018-1230.
  • H. Ozisik, S. Saglam, and S. H. Bayari, “Molecular Structure and Vibrational Spectra of 4-, 5-, 6-Chloroindole,” Structural Chemistry 19, no. 1 (2008): 41–50.
  • C.Cynitha Wise Bell, D. Aruldhas, S. Balachandran, I. Hubert Joe, and V. H. Vijay Masand, “Structural, Spectroscopic and O-H…O Hydrogen Bonding Interaction on Monomer and Dimer Form of Hydroxy Phenoxy Acetic and Derivatives by Experimental and Computational Techniques,” Journal of Molecular Structure 1204 (2020): 127471. doi: 10.1016/j.molstruc.2019.127471.
  • S. Bayarı, S. Saglam, and H. F. Ustundag, “Experimental and Theoretical Studies of the Vibrational Spectrum of 5-Hydroxytryptamine,” Journal of Molecular Structure: Theochem 726, no. 1–3 (2005): 225–232.
  • S. H. Bayari, B. Seymen, H. Ozisik, and S. Saglam, “Theoretical Study on Gas-Phase Conformations and Vibrational Assignment of Methylphenidate,” Journal of Molecular Structure: Theochem 893, no. 1–3 (2009): 17–25.
  • T. R. Sertbakan, S. Sağlam, E. Kasap, and Z. Kantarcı, “Infrared Spectroscopic Studies of the Hofmann-Daon-Type Clathrates: M(1,8-Diaminooctane)Ni(CN)4·G (M = Co, Ni or Cd; G = 1,2-Dichlorobenzene or1,4-Dichlorobenzene),” Journal of Molecular Structure 482–483 (1999): 75–79.
  • I. Bandyopadhyaya, K. H. Ohb, S. Leec, S. J. Chod, and S. B. Kima, “Rotational Isomerism about Acyl–Oxygen Bond in Two Envelope Conformations and Vibrational Spectral Analysis of Cyclopentyl Acetate— a Combined Theoretical and Experimental Study,” Journal of Molecular Structure (Theochem) 680 (2004): 211–17.
  • T. J. Beaula, P. Muthuraja, M. Dhandapani, and V. B. Jothy, “Effect of Charge Transfer with Spectral Analysis on the Antibacterial Compound 4-(Dimethyl Amino) Pyridine: 3,5-Dinitrobenzoic Acid: Experimental and Theoretical Perspective,” Journal of Molecular Structure 1171 (2018): 511–26. doi: 10.1016/j.molstruc.2018.06.026.
  • S. R. Layana, S. R. Saritha, L. Anitha, M. Sithambaresan, M. R. Sudarsanakumar, and S. Suma, “Synthesis, Spectral Characterization and Structural Studies of a Novel O, N, O Donor Semicarbazone and Its Binuclear Copper Complex with Hydrogen Bond Stabilized Lattice,” Journal of Molecular Structure 1157 (2018): 579–86.
  • D. Shoba, S. Periandi, S. Boomadevi, S. Ramalingam, and E. Fereyduni. “FT-IR, FT-Raman, UV, NMR Spectra, Molecular Structure, ESP, NBO and HOMO–LUMO Investigation of 2-Methylpyridine 1-Oxide: A Combined Experimental and DFT Study,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118 (2014): 438–47. doi: 10.1016/j.saa.2013.09.023.
  • A. Cavalli, X. Salvatella, C. M. Dobson, and M. Vendruscolo, “Vendruscolo, Protein Structure Determination from NMR Chemical Shifts,” Proceedings of the National Academy of Sciences 104, no. 23 (2007): 9615–20. doi: 10.1073/pnas.0610313104.
  • G.P. Sheeja Mol, D. Aruldhas, I. Hubert Joe, S. Balachandran, A. Ronaldo Anuf, and J. George “Structural Activity (Monomer and Dimer), Spectroscopic Analysis, Chemical Reactivity, Fungicidal Activity and Molecular Dynamics Simulation of Phenyl Benzamide Fungicides: A Combined Experimental and Theoretical Approach,” Journal of Molecular Structure 1193 (2019): 24–44. doi: 10.1016/j.molstruc.2019.05.022.
  • L. Pavia, and V. Kriz, Introduction to Spectroscopy, Donald L. Pavia, Gary M. Lampman, George S. Kriz, and James R. Vyvyan4th ed (Washington, DC, 2009).
  • N. K. Fluoria, and S. Fuloria, Spectroscopy Fundamentals and Data Interpretation (New Delhi, 2013).
  • R. S. Mulliken, “Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I,” The Journal of Chemical Physics 23, no. 10 (1955): 1833–40.
  • R. G. Parr, and W. Yang, Functional Theory of Atoms Molecules (New York, NY: Oxford University Press, 1980).
  • G. P. Sheeja Mol, D. D. Arul Dhas, I. H. Joe, and S. Balachandran, “Normal Coordinate Analysis and Fungicidal Activity Study on Anilazine and Its Related Compound Using Spectroscopic Techniques,” Chemical Physics Letters 654 (2016): 125–34.
  • G. Kirishnamalinea, J. Daisy Magdalinea, T. Chithambarathanub, D. Aruldhas, and A. Ronaldo Anuf, “Theoretical Investigation of Structure, Anticancer Activity and Molecular Docking of Thiourea Derivatives,” Journal of Molecular Structure 1225 (2021): 129118. doi: 10.1016/j.molstruc.2020.129118.
  • G. Saleh, C. Gatti, and L. L. Presti, “Non-Covalent Interaction via the Reduced Density Gradient: Independent Atom Model vs Experimental Multipolar Electron Densities,” Computational and Theoretical Chemistry 998 (2012): 148–63. doi: 10.1016/j.comptc.2012.07.014.
  • E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang, “Revealing Noncovalent Interactions,” Journal of the American Chemical Society 132, no. 18 (2010): 6498–506. doi: 10.1021/ja100936w.
  • E. Barim, and F. Akman, “Synthesis, Characterization and Spectroscopic Investigation of N-(2-Acetylbenzofuran-3-yl)Acrylamide Monomer: Molecular Structure, HOMO- LUMO Study, TD-DFT and MEP Analysis,” Journal of Molecular Structure 1195 (2019): 506–13. doi: 10.1016/j.molstruc.2019.06.015.
  • P. Manjusha, J. C. Prasana, S. Muthu, and B. F. Rizwana, “Spectroscopic Elucidation (FT-IR, FT-Raman and UV-Visible) with NBO,NLO, ELF, LOL, Drug Likeness and Molecular Docking Analysis on 1-(2- Ethylsulfonylethyl)-2-Methyl-5-Nitro-Imidazole: An Antiprotozoal Agent,” Computational Biology and Chemistry 88 (2020): 107330. doi: 10.1016/j.compbiolchem.2020.107330.
  • Y. S. Mary, Y. S. Mary, K. S. Resmi, and R. Thomas, “DFT and Molecular Docking Investigations of Oxicam Derivatives,” Heliyon 5, no. 7 (2019): e02175.
  • R. Thomas, Y. S. Mary, K. S. Resmi, B. Narayana, S. B. K. Sarojini, S. Armaković, S. J. Armaković, G. Vijayakumar, C. Van Alsenoy, and B. J. Mohan, “Synthesis and Spectroscopic Study of Two New Pyrazole Derivatives with Detailed Computational Evaluation of Their Reactivity and Pharmaceutical Potential,” Journal of Molecular Structure 1181 (2019): 599–612.
  • R. G. Pearson, “Absolute Electronegativity and Hardness Correlated with Molecular Orbital Theory,” Proceedings of the National Academy of Sciences of the United States of America 83, no. 22 (1986): 8440–1. doi: 10.1073/pnas.83.22.8440.
  • M. A. Spackman, and D. Jayatilaka, “Hirshfeld Surface Analysis,” CrystEngComm 11, no. 1 (2009): 19–32. doi: 10.1039/B818330A
  • “Hirshfeld Surface Analysis, Interaction Energy Calculation and Spectroscopical Study of 3-Chloro-3-Methyl-r(2),c(6)-Bis(p-Tolyl)Piperidin-4-One Using DFT Approaches R,” Journal of Molecular Structure 1248 (2022): 131483 C.
  • J. J. McKinnon, M. A. Spackman, and A. S. Mitchell, “Novel Tools for Visualizing and Exploring Intermolecular Interactions in Molecular Crystals,” Acta Crystallographica. Section B, Structural Science 60, no. Pt 6 (2004): 627–68. doi: 10.1107/S0108768104020300.
  • X.D. Divya Dexlina, J. D. Deephlin Tarika, S. Madhan Kumar, A. Mariappand, and T. Joselin Beaula, “Synthesis and DFT Computations on Structural, Electronic and Vibrational Spectra, RDG Analysis and Molecular Docking of Novel anti COVID-19 Molecule 3, 5 Dimethyl Pyrazolium 3, 5 Dichloro Salicylate,” Journal of Molecular Structure 1246 (2021): 131165. doi: 10.1016/j.molstruc.2021.131165.
  • (a) S. D. Kanmazalp, M. Macit, and N. Dege, “Hirshfeld Surface, Crystal Structure and Spectroscopic Characterization of (E)-4-(Diethylamino)-2-((4-Phenoxyphenylimino)Methyl)Phenol with DFT Studies,” Journal of Molecular Structure. 1179 (2019): 181e191–91. (b) W. Yang, and R. G. Parr, “Hardness,Softness and Fukui Function in the Electronic Theory of Metals and Catalysis Proc,” Proceedings of the National Academy of Sciences of the United States of America 82, no. 20 (1985): 6723–6. doi: 10.1073/pnas.82.20.6723.
  • C. Morell, A. Grand, and A. Toro-Labbe, “New Dual Descriptor for Chemistry Reactivity,” The Journal of Physical Chemistry A 109, no. 1 (2005): 205–12. doi: 10.1021/jp046577a.
  • S. K. Lee, G. S. Chang, I. H. Lee, J. E. Chung, K. Y. Sung, and K. T. No, “The PreADME: PC-Based Program for Batch Prediction of ADME Properties,” Blackwell Publishing, Massachusetts, USA.EuroQSAR, 9 (Istanbul, Turkey, 2004), 5–10.
  • S. K. Lee, I. H. Lee, H. J. Kim, G. S. Chang, J. E. Chung, and K. T. No, “The PreADME Approach: Web-Based Program for Rapid Prediction of Physico-Chemical,” Drug Absorption and Drug-Like Properties, EuroQSAR Designing Drugs and Crop Protectants: Processes, Problems and Solutions,Blackwell Publishing, Massachusetts, USA. (2003), 418–420.
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Druglikeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7, no. 1 (2017): 42717.
  • T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang, and L. Lai, “Computation of octanol - Water Partition Coefficients by Guiding an Additive Model with Knowledge,” Journal of Chemical Information and Modeling 47, no. 6 (2007): 2140–8.
  • J. S. Delaney, “ESOL: estimating Aqueous Solubility Directly from Molecular Structure,” Journal of Chemical Information and Computer Sciences 44, no. 3 (2004): 1000–5.
  • J. Ali, P. Camilleri, M. B. Brown, A. J. Hutt, and S. B. Kirton, “Revisiting the General Solubility Equation: In Silico Prediction of Aqueous Solubility Incorporating the Effect of Topographical Polar Surface Area,” Journal of Chemical Information and Modeling 52, no. 2 (2012): 420–8.
  • P. Manjushaa, Johanan Christian Prasana, S. Muthu, B. FathimaRizwana, Spectroscopic elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, drug likeness and molecular docking analysis on 1-(2- ethylsulfonylethyl)-2-methyl-5-nitro-imidazole: An antiprotozoal agent, Comput. Bio.Chemistry, 88 (2020) 107330, https://doi.org/10.1016/j.compbiolchem.2020.107330.
  • C. Sz Kovacevi, L. R. Jevric, S. O. Podunavac-Kuzmanovic, and E. S. Loncar, “Prediction of in-Silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives, Iran,” Journal of Pharmacy Research 13 (2014): 899–908.
  • X. Ma, C. Chen, and J. Yang, “Predictive Model of Blood-Brain Barrier Penetration of Organic Compounds,” Acta Pharmacologica Sinica 26, no. 4 (2005): 500–12.
  • Y. H. Zhao, J. Le, M. H. Abraham, A. Hersey, P. J. Eddershaw, C. N. Luscombe, D. Butina, G. Beck, B. Sherborne, I. Cooper, et al, “Evaluation of Human Intestinal Absorption Data and Subsequent Derivation of a Quantitative Structure-Activity Relationship (QSAR) with the Abraham Descriptors,” Journal of Pharmaceutical Sciences 90, no. 6 (2001): 749–84.
  • S. Yee, “In Vitro Permeability across Caco-2 Cells (Colonic) Can Predict in Vivo (Small Intestinal) Absorption in Man-Fact or Myth,” Pharmaceutical Research 14, no. 6 (1997): 763–66.
  • S. Mishra, and R. Dahima, “In-Vitro ADME Studies of TUG-891, a GPR-120 Inhibitor Using Swiss ADME Predictor,” Journal of Drug Delivery and Therapeutics 9 (2019): 366–69.
  • M. L. Amin, “P-Glycoprotein Inhibition for Optimal Drug Delivery,” Drug Target Insights 7 (2013): 27–34.
  • U. Kragh-Hansen, “Molecular Aspects of Ligand Binding to Serum Albumin,” Pharmacological Reviews 33 (1981): 1753.
  • K. S. Resmi, K. Haruna, Y. S. Mary, C. Y. Panicker, T. A. Saleh, A. A. Al-Saadi, and C. Van Alsenoy, “Conformational, NBO, NLO, HOMO-LUMO, NMR, Electronic Spectral Study and Molecular Docking Study of N,N-Dimethyl 3-(10H-Phenothiazin-10-yl)-1-Propanamine,” „ Journal of Molecular Structure 1122 (2016): 268–79.
  • S. E. Feller, Y. Zhang, R. W. Pator, and B. R. Brooks, “Constant Pressure Molecular Dynamic Simulation: The Langevin Piston Method,” The Journal of Chemical Physics 103 (1995): 463–21.
  • N. Suma, D. Aruldhas, I. Hubert Joe, S. Balachandran, A. Ronaldo Anuf, Arun Sasi, and Jesby George, “Vibrational Spectra, Hydrogen Bonding Analysis and Herbicidal Activity Study of Mefenacet: A DFT Approach,” Journal of Molecular Structure 1201 (2020): 127203. doi: 10.1016/j.molstruc.2019.127203.
  • L. Yan, C. Yan, K. Qian, H. Su, S. A. Kofsky-Wofford, W. C. Lee, X. Zhao, M. C. Ho, I. Ivanov, and Y. G. Zheng, “Diamide Compounds for Selective Inhibition of Protein Arginine Methyl Transference 1,” Journal of Medicinal Chemistry 57, no. 6 (2014): 2611–22. doi: 10.1021/jm401884z.
  • D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, “Gromacs: Fast, Flexible, and Free,” Journal of Computational Chemistry 26, no. 16 (2005): 1701–18.
  • A. W. Schuttelkopf, and D. M. Van Aalten, “Prodrg: A Tool for High-Throughput Crystallography of Protein-Ligand Complexes,” Acta Crystallographica. Section D, Biological Crystallography 60, no. Pt 8 (2004): 1355–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.