150
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green Synthesis of Novel [1,3,4]Thiadiazolo[3,2-a]Pyrimidines via Three-Component Reaction of 5-Amino-1,3,4-Thiadiazole-2-Thiol, Aromatic Aldehydes, and Meldrum’s Acid

&
Pages 7343-7354 | Received 25 May 2022, Accepted 02 Oct 2022, Published online: 29 Nov 2022

References

  • M. Lelyukh, S. Adamchuk, S. Harkov, I. Chaban, L. Shelepeten, and T. Chaban, “Synthetic Approaches, Chemical Modification and Biological Activity of Non-Condensed 1, 3, 4-Thiadiazole Derivatives: A Review,” Pharmacia 65 (2018): 72–88.
  • R. A. Coburn, and R. A. Glennon, “Mesoionic Purinone Analogs IV: Synthesis and in Vitro Antibacterial Properties of Mesoionic Thiazolo [3, 2‐a] Pyrimidin‐5, 7‐Diones and Mesoionic 1, 3, 4‐Thiadiazolo [3, 2‐a] Pyrimidin‐5, 7‐Diones,” Journal of Pharmaceutical Sciences 62, no. 11 (1973): 1785–9 doi:10.1002/jps.2600621110
  • A. Ahmada, and S. Tiwari, “A One Pot, Efficient and Eco-Friendly Synthesis of 1, 3, 4-Thiadiazolo [3, 2-a] Pyrimidine Scaffold via Aza–Michael Addition and Intramolecular Cyclo-Elimination Reactions in Poly Ethylene Glycol (PEG),” Indian Journal of Chemistry-Section B (IJC-B) 59 (2021): 724–9.
  • U. K. Bhadraiah, V. Basavanna, D. M. Gurudatt, R. P. Shivalingappa, N. S. Lingegowda, and S. Ningaiah, “Bicyclic [1, 3, 4] Thiadiazolo [3, 2-α] Pyrimidine Analogues: Novel One-Pot Three-Component Synthesis, Antimicrobial, and Antioxidant Evaluation,” Biointerface Research in Applied Chemistry 11 (2021): 12925–36.
  • F. A. Ragab, H. I. Heiba, M. G. El-Gazzar, S. M. Abou-Seri, W. A. El-Sabbagh, and R. M. El-Hazek, “Synthesis of Novel Thiadiazole Derivatives as Selective COX-2 Inhibitors,” MedChemComm 7, no. 12 (2016): 2309–27.
  • N. Suzuki, T. Miwa, S. Aibara, H. Kanno, H. Takamori, M. Tsubokawa, Y. Ryokawa, W. Tsukada, and S. Isoda, “Synthesis and Antiallergy Activity of [1, 3, 4] Thiadiazolo [3, 2-a]-1, 2, 3-Triazolo [4, 5-d] Pyrimidin-9 (3H)-One Derivatives,” Chemical & Pharmaceutical Bulletin 40, no. 2 (1992): 357–63.
  • H. Singh, L. D. S. Yadav, K. N. Shukla, and R. Dwivedi, “Ring Transformation of Michael Adducts of 4-Benzylidene-5-Oxazolones and 2-Amino-1, 3, 4-Thiadiazoles to Antifungal 6, 7-Dihydro-5H-Thiadiazolo [3, 2-a] Pyrimidin-5-Ones,” Journal of Agricultural and Food Chemistry 38, no. 10 (1990): 1962–4.
  • N. S. El-Sayed, E. R. El-Bendary, S. M. El-Ashry, and M. M. El-Kerdawy, “Synthesis and Antitumor Activity of New Sulfonamide Derivatives of Thiadiazolo [3, 2-a] Pyrimidines,” European Journal of Medicinal Chemistry 46, no. 9 (2011): 3714–20.
  • W. S. Hamama, M. A. Gouda, M. H. Badr, and H. H. Zoorob, “Synthesis of Some New Fused and Binary 1, 3, 4‐Thiadiazoles as Potential Antitumor and Antioxidant Agents,” Journal of Heterocyclic Chemistry 50, no. 4 (2013): 787–94.
  • B. H. Lee, M. F. Clothier, F. E. Dutton, G. A. Conder, and S. S. Johnson, “Anthelmintic β-Hydroxyketoamides (BKAs),” Bioorganic & Medicinal Chemistry Letters 8, no. 23 (1998): 3317–20.
  • R. A. Coburn, R. A. Glennon, and Z. F. Chmielewicz, “Mesoionic Purinone Analogs 7. in Vitro Antibacterial Activity of Mesoionic 1, 3, 4-Thiadiazolo [3, 2,-a] Pyrimidine-5, 7-Diones,” Journal of Medicinal Chemistry 17, no. 9 (1974): 1025–7.
  • B. W. Clare, and C. T. Supuran, “Carbonic Anhydrase Inhibitors. Part 86. A QSAR Studyon Some Sulfonamide Drugs Which Lower Intra-Ocular Pressure, Using the ACE Non-Linear Statistical Method,” European Journal of Medicinal Chemistry 35, no. 9 (2000): 859–65.
  • K. R. Sathisha, S. A. Khanum, J. N. Chandra, F. Ayisha, S. Balaji, G. K. Marathe, S. Gopal, and K. S. Rangappa, “Synthesis and Xanthine Oxidase Inhibitory Activity of 7-Methyl-2-(Phenoxymethyl)-5H-[1, 3, 4] Thiadiazolo [3, 2-a] Pyrimidin-5-One Derivatives,” Bioorganic & Medicinal Chemistry 19, no. 1 (2011): 211–20.
  • L. Gummidi, N. Kerru, P. Awolade, A. Raza, A. K. Sharma, and P. Singh, “Synthesis of Indole-Tethered [1, 3, 4] Thiadiazolo and [1, 3, 4] Oxadiazolo [3, 2-a] Pyrimidin-5-One Hybrids as anti-Pancreatic Cancer Agents,” Bioorganic & Medicinal Chemistry Letters 30, no. 22 (2020): 127544. ‏
  • S. Gaonkar, M. G. Sunagar, N. Deshapande, N. S. Belavagi, S. D. Joshi, S. R. Dixit, and I. A. M. Khazi, “Synthesis and in Vitro Anticancer Activity of 6-Chloro-7-Methyl-5 H-[1, 3, 4] Thiadiazolo [3, 2-a] Pyrimidin-5-One Derivatives: molecular Docking and Interaction with Bovine Serum Albumin,” Journal of Taibah University for Science 12, no. 4 (2018): 382–92.
  • S. V. Tiwari, J. A. Seijas, M. P. Vazquez-Tato, A. P. Sarkate, D. K. Lokwani, and A. P. G. Nikalje, “Ultrasound Mediated One-Pot, Three Component Synthesis, Docking and ADME Prediction of Novel 5-Amino-2-(4-Chlorophenyl)-7-Substituted Phenyl-8, 8a-Dihydro-7H-(1, 3, 4) Thiadiazolo (3, 2-α) Pyrimidine-6-Carbonitrile Derivatives as Anticancer Agents,” Molecules 21, no. 8 (2016): 894.
  • S. R. Atta-Allah, A. M. AboulMagd, and P. S. Farag, “Design, Microwave Assisted Synthesis, and Molecular Modeling Study of Some New 1, 3, 4-Thiadiazole Derivatives as Potent Anticancer Agents and Potential VEGFR-2 Inhibitors,” Bioorganic Chemistry 112 (2021): 104923.
  • M. F. Ismail, H. M. Madkour, M. S. Salem, A. M. Mohamed, and A. F. Aly, “Synthesis and Insecticidal Activity of New 1, 3, 4-Thiadiazole and 1, 3, 4-Thiadiazolo [3, 2-a] Pyrimidine Derivatives under Solvent-Free Conditions,” Synthetic Communications 51, no. 17 (2021): 2644–60.
  • S. Safarov, M. A. Kukaniev, E. Karpuk, and H. Meier, “Preparation of 5‐Methyl‐2‐Sulfanyl‐7h‐1, 3, 4‐Thiadiazolo [3, 2‐a]‐Pyrimidin‐7‐Ones,” Journal of Heterocyclic Chemistry 44, no. 1 (2007): 269–71.
  • H. R. Dong, Z. L. Gao, R. S. Li, Y. M. Hu, H. S. Dong, and Z. X. Xie, “One-Pot Synthesis of 5 H-1, 3, 4-Thiadiazolo [3, 2-a] Pyrimidin-5-One Derivatives,” RSC Adv. 4, no. 99 (2014): 55827–31.
  • L. Silpa, J. Petrignet, and M. Abarbri, “Direct Access to Fluorinated Thiadiazolo [3, 2-a] Pyrimidin-7-One Systems,” Synlett 25, no. 13 (2014): 1827–30.
  • H. Dong, and Y. Zhao, “Highly Regioselective Synthesis of 7-Oxo-7H-[1, 3, 4] Thiadiazolo [3, 2-a] Pyrimidine-5-Carboxylate Derivatives under Mild Conditions,” Tetrahedron Letters 60, no. 21 (2019): 1399–403.
  • Rodica Olar, Mihaela Badea, Cătălin Maxim, Alexandru Mihai Grumezescu, Coralia Bleotu, Luminiţa Măruţescu, and Mariana Carmen Chifiriuc, “Anti-Biofilm Fe3O4@ C18-[1, 3, 4] Thiadiazolo [3, 2-a] Pyrimidin-4-Ium-2-Thiolate Derivative Core-Shell Nanocoatings,” Materials 13, no. 20 (2020): 4640.
  • K. Takenaka, and T. Tsuji, “Synthesis of [1, 3, 4] Thiadiazolo [3, 2‐a] Pyrimidines in the Presence of Formic Acid,” Journal of Heterocyclic Chemistry 33, no. 4 (1996): 1367–70.
  • R. Moradivalikboni, S. T. Asadzadeh, M. Baghernejad, Z. Heidarnezhad, and H. Alinezhad, “Reaction 2-Benzyl 5-Oxo 5-H 6-Ethyl Carboxylate 7-Phenyl-1, 3, 4-Thiadiazolo-[3, 2-a]-Pyrimidine with Amin Derivatives and Study of Biological Properties,” Biological Forum-An International Journal 7 (2015): 152–8. ‏
  • R. Moradivalikboni, Z. Heidarnezhad, Y. Hozhiboevand, and R. Rahmanov, “Preparation of 2-R 5-oxo5-H6-N, N-Diethylcarboxamide 7-Phenyl-[1, 3, 4] Thiadiazolo-[3, 2-a] Pyrimidine and Study of Biological Properties,” Chemical Science 3 (2014): 582–5.
  • B. C. Dutta, K. K. Das, and B. N. Goswami, “Cycloaddition Reaction: Synthesis of 5-Substituted 1, 3, 4-Thiadiazolo [3, 2-a] Pyrimidin-6-One,” Journal of Chemical Research 1, no. 1 (1999): 36–7.
  • S. Sahi, and S. Paul, “Synthesis and Biological Evaluation of Quinolines, Thiazolo [3, 2-a] Pyrimidines, Thiadiazolo [3, 2-a] Pyrimidines and Triazolo [3, 4-b][1, 3, 4] Thiadiazepines as Antimicrobial Agents,” Medicinal Chemistry Research 25, no. 5 (2016): 951–69.
  • N. Kerru, L. Gummidi, S. N. Maddila, S. V. Bhaskaruni, S. Maddila, and S. B. Jonnalagadda, “Green Synthesis and Characterisation of Novel [1, 3, 4] Thiadiazolo/Benzo [4, 5] Thiazolo [3, 2-a] Pyrimidines via Multicomponent Reaction Using Vanadium Oxide Loaded on Fluorapatite as a Robust and Sustainable Catalyst,” RSC Advances 10, no. 34 (2020): 19803–10.
  • N. S. El-Gohary, and M. I. Shaaban, “Synthesis, Antimicrobial, Antiquorum-Sensing, Antitumor and Cytotoxic Activities of New Series of Fused [1, 3, 4] Thiadiazoles,” European Journal of Medicinal Chemistry 63 (2013): 185–95.
  • F. Russo, A. Santagati, and M. Santagati, “Synthesis of 1, 3, 4‐Thiadiazolo [3, 2‐α] Pyrimidin‐5‐One and Isomeric 7‐One Derivatives,” Journal of Heterocyclic Chemistry 22, no. 2 (1985): 297–9.
  • S. Hosseini, A. A. Esmaeili, A. Khojastehnezhad, and B. Notash, “An Efficient Synthesis of Novel Spiro [Indole-3, 8′-Pyrano [2, 3-d][1, 3, 4] Thiadiazolo [3, 2-a] Pyrimidine Derivatives via Organobase-Catalyzed Three-Component Reaction of Malononitrile, Isatin and Heterocyclic-1, 3-Diones,” Journal of Sulfur Chemistry 42, no. 6 (2021): 628–44.
  • F. Alizadeh-Bami, H. Mehrabi, and R. Ranjbar-Karimi, “One-Pot Three-Component Reaction of Arylglyoxals with Acetylthiourea and Meldrum’s Acid or Barbituric Acid for Synthesis of New 2-Acetamido-4-Arylthiazol-5-yl Derivatives,” Journal of Sulfur Chemistry 40, no. 5 (2019): 469–78.
  • H. Mehrabi, F. Alizadeh-Bami, and R. Ranjbar-Karimi, “An Efficient Synthesis of Pentasubstituted Pyrroles: one-Pot Four-Component Reaction of Arylamine, Acetylenedicarboxylate, Arylglyoxal, and Symmetrical 1, 3-Dicarbonyl Compounds,” Journal of the Iranian Chemical Society 15, no. 9 (2018): 1961–7.
  • H. Mehrabi, M. Hajipour, F. Rezazadeh‐Jabalbarezi, and F. Alizadeh‐Bami, “Synthesis of 1, 2, 4, 5‐Tetrasubstituted Imidazoles and 2, 4, 5, 6‐Tetrasubstituted Pyrimidines: three‐Component, the One‐Pot Reaction of Arylamidines, Malononitrile, and Arylglyoxals or Aryl Aldehydes,” Journal of Heterocyclic Chemistry 57 (2020): 3361–8.
  • H. Mehrabi, F. Dastouri, S. Asadi, F. Alizadeh-Bami, and R. Ranjbar-Karimi, “One-Pot, Regioselective Synthesis of Functionalized Indole Derivatives: A Three-Component Domino Reaction of Arylamine, Arylglyoxal, and 4-Hydroxycoumarin or 4-Hydroxy-6-Methyl-2-Pyrone,” Arkivoc 2020, no. 6 (2020): 114–25.
  • H. Mehrabi, and F. Najafian-Ashrafi, “Iodine-Catalyzed Synthesis of Highly Functionalized 1, 4-Dihydropyridines from 2-Aminobenzothiazole, Aryl Aldehydes and Meldrum’s Acid via Diels-Alder [4 + 2] Cycloaddition Reaction,” Polycyclic Aromatic Compounds 42, no. 10 (2022): 6883–90. ‏
  • A. Faraji, T. Oghabi-Bakhshaiesh, Z. Hasanvand, R. Motahari, E. Nazeri, M. A. Boshagh, L. Firoozpour, H. Mehrabi, A. Khalaj, R. Esmaeili, and A. Foroumadi, “Design, “Synthesis and Evaluation of Novel Thienopyrimidine-Based Agents Bearing Diaryl Urea Functionality as Potential Inhibitors of Angiogenesis,” European Journal of Medicinal Chemistry 209 (2021): 112942.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.