86
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Highly Efficient Microwave-Assisted Synthesis of 2-Arylimidazo[1,2-a]Pyridine-3-Carbaldehydes in PEG-400

, &
Pages 8885-8893 | Received 08 Aug 2022, Accepted 28 Nov 2022, Published online: 30 Dec 2022

Reference

  • J. Wan, C. J. Zheng, M. K. Fung, X. K. Liu, C. S. Lee, and X. H. Zhang, “Multifunctional Electron-Transporting Indolizine Derivatives for Highly Efficient Blue Fluorescence, Orange Phosphorescence Host and Two-Color Based White OLEDs,” Journal of Materials Chemistry 22, no. 10 (2012): 4502–10. doi:10.1039/c2jm14904d
  • A. John, M. M. Shaikh, and P. Ghosh, “Palladium Complexes of Abnormal N-Heterocyclic Carbenes as Precatalysts for the Much Preferred Cu-Free and Amine-Free Sonogashira Coupling in Air in a Mixed-Aqueous Medium,” Dalton Transactions 47, no. 47 (2009): 10581–91. doi:10.1039/b913068c
  • C. Enguehard-Gueiffier, and A. Gueiffier, “Recent Progress in the Pharmacology of Imidazo [1, 2-a] Pyridines,” Mini Reviews in Medicinal Chemistry 7, no. 9 (2007): 888–99. doi:10.2174/138955707781662645
  • J. J. Byrnes, D. J. Greenblatt, and L. G. Miller, “Benzodiazepine Receptor Binding of Nonbenzodiazepines in Vivo: alpidem, Zolpidem and Zopiclone,” Brain Research Bulletin 29, no. 6 (1992): 905–8. doi:10.1016/0361–9230(92)90164-S
  • K. Mizushige, T. Ueda, K. Yukiiri, and H. Suzuki, “Olprinone: A Phosphodiesterase III Inhibitor with Positive Inotropic and Vasodilator Effects,” Cardiovascular Drug Reviews 20, no. 3 (2002): 163–74. doi:10.1111/j.1527–3466.2002.tb00085.x
  • H. Depoortere, B. Zivkovic, K. G. Lloyd, D. J. Sanger, G. Perrault, S. Z. Langer, and G. Bartholini, “Zolpidem, a Novel Nonbenzodiazepine Hypnotic. I. Neuropharmacological and Behavioral Effects,” The Journal of Pharmacology and Experimental Therapeutics 237, no. 2 (1986): 649–58.
  • Q. Cai, M. C. Liu, B. M. Mao, X. Xie, F. C. Jia, Y. P. Zhu, and A. X. Wu, “Direct One-Pot Synthesis of Zolimidine Pharmaceutical Drug and Imidazo [1, 2-a] Pyridine Derivatives via I2/CuO-Promoted Tandem Strategy,” Chinese Chemical Letters 26, no. 7 (2015): 881–4. doi:10.1016/j.cclet.2014.12.016
  • Takeshi Yuasa, Masaki Nogawa, Shinya Kimura, Asumi Yokota, Kiyoshi Sato, Hidekazu Segawa, Junya Kuroda, and Taira Maekawa, “A Third-Generation Bisphosphonate, Minodronic Acid (YM529), Augments the Interferon α/β-Mediated Inhibition of Renal Cell Cancer Cell Growth Both in Vitro and in Vivo,” Clinical Cancer Research 11, no. 2 (2005): 853–9. doi:10.1158/1078–0432.853.11.2
  • George M. Buckley, Thomas A. Ceska, Joanne L. Fraser, Lewis Gowers, Colin R. Groom, Alicia Perez Higueruelo, Kerry Jenkins, Stephen R. Mack, Trevor Morgan, David M. Parry, et al, “IRAK-4 Inhibitors. Part II: A Structure-Based Assessment of Imidazo [1, 2-a] Pyridine Binding,” Bioorganic & Medicinal Chemistry Letters 18, no. 11 (2008): 3291–5. doi:10.1016/j.bmcl.2008.04.039
  • H. Lee, S. J. Kim, K. H. Jung, M. K. Son, H. H. Yan, S. Hong, and S. S. Hong, “A Novel Imidazopyridine PI3K Inhibitor with Anticancer Activity in Non-Small Cell Lung Cancer Cells,” Oncology Reports 30, no. 2 (2013): 863–9. doi:10.3892/or.2013.2499
  • B. Frett, N. McConnell, C. C. Smith, Y. Wang, N. P. Shah, and H. Y. Li, “Computer Aided Drug Discovery of Highly Ligand Efficient, Low Molecular Weight Imidazopyridine Analogs as FLT3 Inhibitors,” European Journal of Medicinal Chemistry 94 (2015): 123–31. doi:10.1016/j.ejmech.2015.02.052
  • B. Frett, M. Moccia, F. Carlomagno, M. Santoro, and H. Y. Li, “Identification of Two Novel RET Kinase Inhibitors through MCR-Based Drug Discovery: design, Synthesis and Evaluation,” European Journal of Medicinal Chemistry 86 (2014): 714–23. doi:10.1016/j.ejmech.2014.09.023
  • Chafiq Hamdouchi, Boyu Zhong, Jose Mendoza, Elizabeth Collins, Carlos Jaramillo, Jose Eugenio De Diego, Daniel Robertson, Charles D. Spencer, Bryan D. Anderson, Scott A. Watkins, et al, “Structure-Based Design of a New Class of Highly Selective Aminoimidazo [1,2-a] Pyridine-Based Inhibitors of Cyclin Dependent Kinases,” Bioorganic & Medicinal Chemistry Letters 15, no. 7 (2005): 1943–7., doi:10.1016/j.bmcl.2005.01.052
  • S. ShameemáSultana, and N. RamakrishnaáReddy, “Osmium Tetroxide in Poly (Ethylene Glycol)(PEG): a Recyclable Reaction Medium for Rapid Asymmetric Dihydroxylation under Sharpless Conditions,” Chemical Communications 14 (2003): 1716–7.
  • S. Chandrasekhar, C. Narsihmulu, S. S. Sultana, and N. R. Reddy, “Poly (Ethylene Glycol)(PEG) as a Reusable Solvent Medium for Organic Synthesis. Application in the Heck Reaction,” Organic Letters 4, no. 25 (2002): 4399–401. (2002) doi:10.1021/ol0266976
  • J. Chen, S. K. Spear, J. G. Huddleston, and R. D. Rogers, “Polyethylene Glycol and Solutions of Polyethylene Glycol as Green Reaction Media,” Green Chemistry 7, no. 2 (2005): 64–82. doi:10.1039/b413546f
  • Z. Guo, M. Li, H. D. Willauer, J. G. Huddleston, G. C. April, and R. D. Rogers, “Evaluation of Polymer-Based Aqueous Biphasic Systems as Improvement for the Hardwood Alkaline Pulping Process,” Industrial & Engineering Chemistry Research 41, no. 10 (2002): 2535–42. doi:10.1021/ie0104058
  • J. Chen, S. K. Spear, J. G. Huddleston, J. D. Holbrey, and R. D. Rogers, “Application of Polyethylene Glycol-Based Aqueous Biphasic Reactive Extraction to the Catalytic Oxidation of Cyclic Olefins,” Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 807, no. 1 (2004): 145–9. doi:10.1016/j.jchromb.2004.01.047
  • M. Winger, A. H. De Vries, and W. F. Van Gunsteren, “Force-Field Dependence of the Conformational Properties of α, ω-Dimethoxypolyethylene Glycol,” Molecular Physics 107, no. 13 (2009): 1313–21. doi:10.1080/00268970902794826
  • C. H. Wang, and H. Alper, “Phase-Transfer-Catalyzed Conversion of Alkynes to Lactones Induced by Manganese Carbonyl Complexes,” The Journal of Organic Chemistry 51, no. 2 (1986): 273–5. doi:10.1021/jo00352a037
  • A. de la Hoz, A. Díaz‐Ortis, A. Moreno, and F. Langa, “Cycloadditions under Microwave Irradiation Conditions: Methods and Applications,” European Journal of Organic Chemistry 2000, no. 22 (2000): 3659–73. doi:10.1002/1099–0690(200011)2000:22<3659::AID-EJOC3659>3.0.CO;2–0
  • Kristjan S. Gudmundsson, Sharon D. Boggs, John G. Catalano, Angilique Svolto, Andrew Spaltenstein, Michael Thomson, Pat Wheelan, and Stephen Jenkinson, “Imidazopyridine-5, 6, 7, 8-Tetrahydro-8-Quinolinamine Derivatives with Potent Activity against HIV-1,” Bioorganic & Medicinal Chemistry Letters 19, no. 22 (2009): 6399–403. doi:10.1016/j.bmcl.2009.09.056
  • Garrett C. Moraski, Lowell D. Markley, Jeffrey Cramer, Philip A. Hipskind, Helena Boshoff, Mai Bailey, Torey Alling, Juliane Ollinger, Tanya Parish, and Marvin J. Miller, “Advancement of Imidazo [1, 2-a] Pyridines with Improved Pharmacokinetics and nM Activity vs. Mycobacterium tuberculosis,” ACS Medicinal Chemistry Letters 4, no. 7 (2013): 675–9. doi:10.1021/ml400088y
  • Y. Cheng, G. C. Moraski, J. Cramer, M. J. Miller, and J. S. Schorey, “Bactericidal Activity of an Imidazo [1, 2-a] Pyridine Using a Mouse M. tuberculosis Infection Model,” PLoS One 9, no. 1 (2014): e87483. doi:10.1371/journal.pone.0087483
  • J. E. Starrett, Jr, T. A. Montzka, A. R. Crosswell, and R. L. Cavanagh, “Synthesis and Biological Activity of 3-Substituted Imidazo [1, 2-a] Pyridines as Antiulcer Agents,” Journal of Medicinal Chemistry 32, no. 9 (1989): 2204–10. ” doi:10.1021/jm00129a028
  • L. Kielesiński, M. Tasior, and D. T. Gryko, “Polycyclic Imidazo [1, 2-a] Pyridine Analogs–Synthesis via Oxidative Intramolecular C–H Amination and Optical Properties,” Organic Chemistry Frontiers 2, no. 1 (2015): 21–8. doi:10.1039/C4QO00248B
  • Yu-Jing Guo, Shuai Lu, Lu-Lu Tian, En-Ling Huang, Xin-Qi Hao, Xinju Zhu, Tian Shao, and Mao-Ping Song, “Iodine-Mediated Difunctionalization of Imidazopyridines with Sodium Sulfinates: synthesis of Sulfones and Sulfides,” The Journal of Organic Chemistry 83, no. 1 (2018): 338–49. doi:10.1021/acs.joc.7b02734
  • Hua Cao, Sai Lei, Naiying Li, Longbin Chen, Jingyun Liu, Huiyin Cai, Shuxian Qiu, and Jingwen Tan, “Cu-Catalyzed Selective C3-Formylation of Imidazo [1, 2-a] Pyridine C–H Bonds with DMSO Using Molecular Oxygen,” Chemical Communications (Cambridge, England) 51, no. 10 (2015): 1823–5. doi:10.1039/c4cc09134e
  • S. A. Shakoor, D. S. Agarwal, A. Kumar, and R. Sakhuja, “Copper Catalyzed Direct Aerobic Double-Oxidative Cross-Dehydrogenative Coupling of Imidazoheterocycles with Aryl Acetaldehydes: An Articulate Approach for Dicarbonylation at C-3 Position,” Tetrahedron 72, no. 5 (2016): 645–52. doi:10.1016/j.tet.2015.12.012
  • H. Cao, H. Zhan, Y. Lin, X. Lin, Z. Du, and H. Jiang, “Direct Arylation of Imidazo [1, 2-a] Pyridine at C-3 with Aryl Iodides, Bromides, and Triflates via Copper (I)-Catalyzed C–H Bond Functionalization,” Organic Letters 14, no. 7 (2012): 1688–91. doi:10.1021/ol300232a
  • S. Lei, G. Chen, Y. Mai, L. Chen, H. Cai, J. Tan, and H. Cao, “Regioselective Copper‐Catalyzed Oxidative Cross‐Coupling of Imidazo [1, 2‐a] Pyridines with Methyl Ketones: An Efficient Route for Synthesis of 1, 2‐Diketones,” Advanced Synthesis & Catalysis 358, no. 1 (2016): 67–73. doi:10.1002/adsc.201500803
  • C. Rao, S. Mai, and Q. Song, “Cu-Catalyzed Synthesis of 3-Formyl Imidazo [1, 2-a] Pyridines and Imidazo [1, 2-a] Pyrimidines by Employing Ethyl Tertiary Amines as Carbon Sources,” Organic Letters 19, no. 18 (2017): 4726–9. doi:10.1021/acs.orglett.7b02015
  • L. H. Zhai, L. H. Guo, and B. W. Sun, “Copper-Catalyzed Intramolecular Dehydrogenative Cyclization: direct Access to Sensitive Formyl-Substituted Imidazo [1, 2-a] Pyridines,” RSC Advances 5, no. 113 (2015): 93631–4. doi:10.1039/C5RA19085A
  • J. B. Bharate, S. Abbat, P. V. Bharatam, R. A. Vishwakarma, and S. B. Bharate, “CuBr Catalyzed Aerobic Oxidative Coupling of 2-Aminopyridines with Cinnamaldehydes: direct Access to 3-Formyl-2-Phenyl-Imidazo [,” Organic & Biomolecular Chemistry 13, no. 28 (2015): 7790–4. doi:10.1039/c5ob00776c
  • K. Reimer, and F. Tiemann, “Ueber Die Einwirkung Von Chloroform Auf Phenole Und Besonders Aromatische Oxysäuren in Alkalischer Lösung,” Berichte Der Deutschen Chemischen Gesellschaft 9, no. 2 (1876): 1268–78. doi:10.1002/cber.18760090270
  • M. L. Bennasar, E. Zulaica, D. Solé, and S. Alonso, “Facile Synthesis of Azocino [4, 3-b]Indoles by Ring-Closing Metathesis,” Tetrahedron 63, no. 4 (2007): 861–6. doi:10.1016/j.tet.2006.11.043
  • D. M. Ketcha, and G. W. Gribble, “A Convenient Synthesis of 3-Acylindoles via Friedel Crafts Acylation of 1-(Phenylsulfonyl) Indole. A New Route to Pyridocarbazole-5, 11-Quinones and Ellipticine,” The Journal of Organic Chemistry 50, no. 26 (1985): 5451–7. doi:10.1021/jo00350a001
  • N. Al-Lami, and K. J. Salom, “Pharmacological Studies on Some New 3-Cyclic Oxazepine-2-Aryl Imidazo (1, 2-a) Pyridine Derivatives,” Journal of Pharmaceutical Sciences and Research 11 (2019): 125–30.
  • D. S. Wagare, M. Farooqui, T. D. Keche, and A. Durrani, “Efficient and Green Microwave-Assisted One-Pot Synthesis of Azaindolizines in PEG-400 and Water,” Synthetic Communications 46, no. 21 (2016): 1741–6. doi:10.1080/00397911.2016.1223314
  • H. Y. Saeed, D. S. Wagare, M. Shaikh, and A. Durrani, “Microwave-Promoted One-Pot Synthesis of Imidazo [1, 2-a] Pyridines in Lemon Juice,” Current Microwave Chemistry 7, no. 3 (2020): 238–43. doi:10.2174/2213335607999201008144429
  • C. Zhang, C. Pang, Y. Mao, and Z. Tang, “Effect and Mechanism of Polyethylene Glycol (PEG) Used as a Phase Change Composite on Cement Paste,” Materials 15, no. 8 (2022): 2749. doi:10.3390/ma15082749
  • H. Zeng, Q. Tian, and H. Shao, “PEG 400 Promoted Nucleophilic Substitution Reaction of Halides into Organic Azides under Mild Conditions,” Green Chemistry Letters and Reviews 4, no. 3 (2011): 281–7. doi:10.1080/17518253.2011.571717

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.