280
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Size Exclusion Chromatography Protein Profile of Selenastrum capricornutum Culture Extracts Degrading Benzo(a)Pyrene

, &
Pages 9193-9209 | Received 10 Mar 2022, Accepted 13 Dec 2022, Published online: 23 Dec 2022

References

  • S. Zhang, Z. Hu, and H. Wang, “Metagenomic Analysis Exhibited the Co-Metabolism of Polycyclic Aromatic Hydrocarbons by Bacterial Community from Estuarine Sediment,” Environment International 129 (2019): 308–19. doi:10.1016/j.envint.2019.05.028
  • A. K. Haritash, and C. P. Kaushik, “Biodegradation Aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a Review,” Journal of Hazardous Materials 169, no. 1–3 (2009): 1–15. doi:10.1016/j.jhazmat.2009.03.137
  • S. Guntupalli, V. B. S. C. Thunuguntla, L. M. Chalasani, C. V. Rao, and J. S. Bondili, “Degradation and Metabolite Profiling of Benz (a) Anthracene, Dibenz (a, h) Anthracene and Indeno [1, 2, 3-cd] Pyrene by Aspergillus terricola,” Polycyclic Aromatic Compounds 39, no. 1 (2019): 84–92. doi:10.1080/10406638.2016.1262878
  • R. Li, J. Cai, J. Li, Z. Wang, P. Pei, J. Zhang, and P. Krebs, “Characterizing the Long-Term Occurrence of Polycyclic Aromatic Hydrocarbons and Their Driving Forces in Surface Waters,” Journal of Hazardous Materials 423 (2022): 127065. doi:10.1016/j.jhazmat.2021.127065
  • S. Srivastava, and M. Kumar, “Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Sustainable Approach,” in Sustainable Green Technologies for Environmental Management, edited by S. Shah, V. Venkatramanan and R. Prasad, 1st ed. (Singapore: Springer, 2019), 111–39. doi:10.1007/978-981-13-2772-8_6
  • W. Yang, Z. Cao, and Y. Lang, “Pollution Status of Polycyclic Aromatic Hydrocarbons (PAHs) in Northeastern China: A Review and Metanalysis,” Environmental Processes 8, no. 2 (2021): 429–54. doi:10.1007/s40710-020-00489-6
  • H. Chen, X. Diao, and H. Zhou, “Tissue-Specific Metabolic Responses of the Pearl Oyster Pinctada Martensii Exposed to Benzo[a]Pyrene,” Marine Pollution Bulletin 131, no. Pt A (2018): 17–21. doi:10.1016/j.marpolbul.2018.03.057
  • L. Z. Fanali, L. Franco-Belussi, C. R. Bonini-Domingos, and C. de Oliveira, “Effects of Benzo[a]Pyrene on the Blood and Liver of Physalaemus Cuvieri and Leptodactylus fuscus (Anura: Leptodactylidae),” Environmental Pollution 237 (2018): 93–102. doi:10.1016/j.envpol.2018.02.030
  • W. Qin, F. Q. Fan, Y. Zhu, Y. Wang, X. Liu, A. Ding, and J. Dou, “Comparative Proteomic Analysis and Characterization of Benzo (a) Pyrene Removal by Microbacterium sp. strain M. CSW3 under Denitrifying Conditions,” Bioprocess and Biosystems Engineering 40, no. 12 (2017): 1825–38. doi:10.1007/s00449-017-1836-5
  • P. Giovanella, G. A. L. Vieira, I. V. Ramos Otero, E. Pais Pellizzer, B. de Jesus Fontes, and L. D. Sette, “Metal and Organic Pollutants Bioremediation by Extremophile Microorganisms,” Journal of Hazardous Materials 382 (2020): 121024. doi:10.1016/j.jhazmat.2019.121024
  • S. R. Subashchandrabose, M. Megharaj, K. Venkateswarlu, and R. Naidu, “Interaction Effects of Polycyclic Aromatic Hydrocarbons and Heavy Metals on a Soil Microalga, Chlorococcum sp. MM11,” Environmental Science and Pollution Research International 22, no. 12 (2015): 8876–89. doi:10.1007/s11356-013-1679-9
  • R. C. Prince, “Bioremediation of Marine Oil Spills,” in Handbook of Hydrocarbon and Lipid Microbiology, edited by Terry McGenity, Jan Roelof van der Meer and Victor de Lorenzo, 1st ed. (Berlin, Germany: Springer-Verlag, 2010), 2617–30. doi:10.1007/978-3-540-77587-4
  • A. Nzila, “Biodegradation of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons under Anaerobic Conditions: Overview of Studies, Proposed Pathways, and Future Perspectives,” Environmental Pollution 239 (2018): 788–802. doi:10.1016/j.envpol.2018.04.074
  • J. S. Seo, Y. S. Keum, and Q. X. Li, “Bacterial Degradation of Aromatic Compounds,” International Journal of Environmental Research and Public Health 6, no. 1 (2009): 278–309. doi:10.3390/ijerph6010278
  • W. Wang, L. Wang, and Z. Shao, “Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. strain P1,” Applied and Environmental Microbiology 84, no. 21 (2018): 1–15. doi:10.1128/AEM.01261-18
  • A. Imam, S. Kumar, P. K. Kanaujia, and A. Ray, “Biological Machinery for Polycyclic Hydrocarbons Degradation: A Review,” Bioresource Technology 343 (2022): 126121. doi:10.1016/j.biortech.2021.126121
  • H. I. Abdel-Shafy, and M. S. M. Mansour, “A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation,” Egyptian Journal of Petroleum 25, no. 1 (2016): 107–23. doi:10.1016/j.ejpe.2015.03.011
  • A. Arun, and M. Eyini, “Comparative Studies on Lignin and Polycyclic Aromatic Hydrocarbons Degradation by Basidiomycetes Fungi,” Bioresource Technology 102, no. 17 (2011): 8063–70. doi:10.1016/j.biortech.2011.05.077
  • C. Teng, S. Wu, and G. Gong, “Bio-Removal of Phenanthrene, 9-Fluorenone and Anthracene-9, 10-Dione by Laccase from Aspergillus Niger in Waste Cooking Oils,” Food Control 105 (2019): 219–25. doi:10.1016/j.foodcont.2019.06.015
  • C. E. Cerniglia, “Biodegradation of Polycyclic Aromatic Hydrocarbons,” Current Opinion in Biotechnology 4, no. 3 (1993): 331–8. doi:10.1016/0958-1669(93)90104-5
  • R. A. Kanaly, and S. Harayama, “Advances in the Field of High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Biodegradation by Bacteria,” Microbial Biotechnology 3, no. 2 (2010): 136–64. doi:10.1111/J.1751-7915.2009.00130.X
  • E. Vandera, M. Samiotaki, M. Parapouli, G. Panayotou, and A. I. Koukkou, “Comparative Proteomic Analysis of Arthrobacter phenanthrenivorans Sphe3 on Phenanthrene, Phthalate and Glucose,” Journal of Proteomics 113, no. 15 (2015): 73–89. doi:10.1016/J.JPROT.2014.08.018
  • A. A. Khan, R. F. Wang, W. W. Cao, D. R. Doerge, D. Wennerstrom, and C. E. Cerniglia, “Molecular Cloning, Nucleotide Sequence, and Expression of Genes Encoding a Polycyclic Aromatic Ring Dioxygenase from Mycobacterium sp. Strain PYR-1,” Applied and Environmental Microbiology 67, no. 8 (2001): 3577–85. doi:10.1128/AEM.67.8.3577-3585.2001
  • S. E. Lee, J. S. Seo, Y. S. Keum, K. J. Lee, and Q. X. Li, “Fluoranthene Metabolism and Associated Proteins in Mycobacterium sp. JS14,” Proteomics 7, no. 12 (2007): 2059–69. doi:10.1002/PMIC.200600489
  • J. M. Navarro-Llorens, M. A. Patrauchan, G. R. Stewart, J. E. Davies, L. D. Eltis, and W. W. Mohn, “Phenylacetate Catabolism in Rhodococcus sp. strain RHA1: A Central Pathway for Degradation of Aromatic Compounds,” Journal of Bacteriology 187, no. 13 (2005): 4497–504. doi:10.1128/JB.187.13.4497-4504.2005
  • S. Krivobok, S. Kuony, C. Meyer, M. Louwagie, J. C. Willison, and Y. Jouanneau, “Identification of Pyrene-Induced Proteins in Mycobacterium sp. strain 6PY1: Evidence for Two Ring-Hydroxylating Dioxygenases,” Journal of Bacteriology 185, no. 13 (2003): 3828–41. doi:10.1128/JB.185.13.3828-3841.2003
  • B. Brezna, O. Kweon, R. L. Stingley, J. P. Freeman, A. A. Khan, B. Polek, R. C. Jones, and C. E. Cerniglia, “Molecular Characterization of Cytochrome P450 Genes in the Polycyclic Aromatic Hydrocarbon Degrading Mycobacterium vanbaalenii PYR-1,” Applied Microbiology and Biotechnology 71, no. 4 (2006): 522–32. doi:10.1007/s00253-005-0190-8
  • S. J. Kim, R. C. Jones, C. J. Cha, O. Kweon, R. D. Edmondson, and C. E. Cerniglia, “Identification of Proteins Induced by Polycyclic Aromatic Hydrocarbon in Mycobacterium vanbaalenii PYR-1 Using Two-Dimensional Polyacrylamide Gel Electrophoresis and de Novo Sequencing Methods,” Proteomics 4, no. 12 (2004): 3899–908. doi:10.1002/pmic.200400872
  • C. E. Cerniglia, G. L. White, and R. H. Heflich, “Fungal Metabolism and Detoxification of Polycyclic Aromatic Hydrocarbons,” Archives of Microbiology 143, no. 2 (1985): 105–10. doi:10.1007/BF00411031
  • J. F. Masfaraud, A. Pfohl-Leszkowic, C. Malaveille, G. Keith, and G. Monod, “7-ethylresorufin O-Deethylase Activity and Level of DNA-Adducts in Trout Treated with Benzo(a)Pyrene,” Marine Environmental Research 34, no. 1–4 (1992): 351–4. doi:10.1016/0141-1136(92)90133-7
  • H. Mehdi, A. Moslem, and C. Simone, “Biodegradation of Aromatic Compounds,” in Biodegradation and Bioremediation of Polluted Systems – New Advances and Technologies (London: Intech Open, 2015). 109–23. doi:10.5772/60894
  • P. Kumar Agrawal, R. Shrivastava, and Ji. Verma, “Bioremediation Approaches for Degradation and Detoxification of Polycyclic Aromatic Hydrocarbons,” in Emerging and Eco-Friendly Approaches for Waste Management (Berlin, Germany: Springer, 2018), 99–119. doi:10.1007/978-981-10-8669-4_6
  • M. Mohtashami, J. Fooladi, A. Haddad-Mashadrizeh, and M. Housaindokht, “Molecular Cloning, Expression, and Characterization of poxa1b Gene from Pleurotus ostreatus,” Molecular Biology Reports 46, no. 1 (2019): 981–90. doi:10.1007/S11033-018-4555-3
  • S. Ben Younes, and S. Sayadi, “Purification and Characterization of a Novel Trimeric and Thermotolerant Laccase Produced from the Ascomycete Scytalidium Thermophilum Strain,” Journal of Molecular Catalysis B: Enzymatic 73, no. 1–4 (2011): 35–42. doi:10.1016/j.molcatb.2011.07.014
  • S. R. Subashchandrabose, P. Logeshwaran, K. Venkateswarlu, R. Naidu, and M. Megharaj, “Pyrene Degradation by Chlorella sp.MM3 in Liquid Medium and Soil Slurry: Possible Role of Dihydrolipoamide Acetyltransferase in Pyrene Biodegradation,” Algal Research 23 (2017): 223–32. doi:10.1016/j.algal.2017.02.010
  • J. Luo, J. Deng, L. Cui, P. Chang, X. Dai, C. Yang, N. Li, Z. Ren, and X. Zhang, “The Potential Assessment of Green Alga Chlamydomonas reinhardtii CC-503 in the Biodegradation of Benz(a)Anthracene and the Related Mechanism Analysis,” Chemosphere 249 (2020): 126097–9. doi:10.1016/j.chemosphere.2020.126097
  • J. J. Olmos-Espejel, M. P. García de Llasera, and M. Velasco-Cruz, “Extraction and Analysis of Polycyclic Aromatic Hydrocarbons and Benzo[a]Pyrene Metabolites in Microalgae Cultures by off-Line/on-Line Methodology Based on Matrix Solid-Phase Dispersion, Solid-Phase Extraction, and High-Performance Liquid Chromatography,” Journal of Chromatography A 1262, no. 2 (2012): 138–47. doi:10.1016/j.chroma.2012.09.015
  • F. J. Hernández Blanco, and M. P. García de Llasera, “Monitoring Dihydrodiol Polyaromatic Hydrocarbon Metabolites Produced by the Freshwater Microalgae Selenastrum Capricornutum,” Chemosphere 158 (2016): 80–90. doi:10.1016/j.chemosphere.2016.05.065
  • D. Warshawsky, T. Cody, M. Radike, R. Reilman, B. Schumann, K. LaDow, and J. Schneider, “Biotransformation of Benzo[a]Pyrene and Other Polycyclic Aromatic Hydrocarbons and Heterocyclic Analogs by Several Green Algae and Other Algal Species under Gold and White Light,” Chemico-Biological Interactions 97, no. 2 (1995): 131–48. doi:10.1016/0009-2797(95)03610-X
  • L. Ke, L. Luo, P. Wang, T. Luan, and N. F. Y. Tam, “Effects of Metals on Biosorption and Biodegradation of Mixed Polycyclic Aromatic Hydrocarbons by a Freshwater Green Alga Selenastrum Capricornutum,” Bioresource Technology 101, no. 18 (2010): 6950–61. doi:10.1016/j.biortech.2010.04.011
  • M. A. Heitkamp, and C. E. Cerniglia, “Polycyclic Aromatic Hydrocarbon Degradation by a Mycobacterium sp. in Microcosms Containing Sediment and Water from a Pristine Ecosystem,” Applied and Environmental Microbiology 55, no. 8 (1989): 1968–73. doi:10.1128/aem.55.8.1968-1973.1989
  • Y. Wen, L. Chen, J. Li, D. Liu, and L. Chen, “Recent Advances in Solid-Phase Sorbents for Sample Preparation Prior to Chromatographic Analysis,” Trac Trends in Analytical Chemistry 59 (2014): 26–41. doi:10.1016/j.trac.2014.03.011
  • B. Hans-Ulrich, and K. Gawehn, “Determination of Concentration of Metabolites (End-Point Methods),” in Methods of Enzymatic Analysis, edited by Hans Ulrich Bergmeyer and Karlfried Gawehn, vol. 1, 2nd ed. (Weinheim: Academic Press, Inc, 1974), 103–21. doi:10.1016/B978-0-12-091304-6.X5001-0
  • K. S. Khoo, K. W. Chew, G. Y. Yew, S. Manickam, C. W. Ooi, and P. L. Show, “Integrated Ultrasound-Assisted Liquid Biphasic Flotation for Efficient Extraction of Astaxanthin from Haematococcus Pluvialis,” Ultrasonics Sonochemistry 67 (2020): 105052–9. doi:10.1016/j.ultsonch.2020.105052
  • Y. Li, N. Sun, X. Hu, Y. Li, and C. Deng, “Recent Advances in Nanoporous Materials as Sample Preparation Techniques for Peptidome Research,” Trends in Analytical Chemistry 120 (2019): 115658–13. doi:10.1016/j.trac.2019.115658
  • K. Brezinski, and B. Gorczyca, “An Overview of the Uses of High-Performance Size Exclusion Chromatography (HPSEC) in the Characterization of Natural Organic Matter (NOM) in Potable Water, and Ion-Exchange Applications,” Chemosphere 217 (2019): 122–39. doi:10.1016/j.chemosphere.2018.10.028
  • Daniel C. “Harries “Quality Assurance and Calibrations Methods (Standard Addition),” in Quantitative Chemical Analysis, 8th ed. (New York, NY: W.H. Freeman and Company, 2010), 106–8.
  • H. Cao, C. Wang, H. Liu, W. Jia, and H. Sun, “Enzyme Activities during Benzo[a]Pyrene Degradation by the Fungus Lasiodiplodia Theobromae Isolated from a Polluted Soil,” Scientific Reports 10, no. 1 (2020): 1–11. doi:10.1038/s41598-020-57692-6
  • C. Xu, W. Yang, L. Wei, Z. Huang, W. Wei, and A. Lin, “Enhanced Phytoremediation of PAHs-Contaminated Soil from an Industrial Relocation Site by Ochrobactrum sp,” Environmental Science and Pollution Research International 27, no. 9 (2020): 8991–9. doi:10.1007/s11356-019-05830-7
  • A. C. Fuentes, “Metodología Analítica Para la Determinación de Metabolitos del Benzo(a)Pireno Formados Por Enzimas Intra- y Extra- Celulares de Selenastrum capricornutum [Analytical Methodology for the Determination of Benzo(a)Pyrene Metabolites Formed by Intra- and Extra- Cellular Enzymes of Selenastrum capricornutum]” (Bche dissertation, Universidad Nacional Autónoma de México, 2019).
  • M. P. García de Llasera, A. C. Fuentes Pérez, G. Peralta Marín, and E. G. Beltrán Calva, “First Evidence of Extracellular Enzymatic Degradation of Benzo(a)Pyrene by the Phytoplankton Species Selenastrum Capricornutum and the Influence of Temperature,” Environmental Advances 8, no. 1–3 (2022): 100246–15. doi:10.1016/j.envadv.2022.100246
  • M. Méndez García, and M. P. García de Llasera, “A Review on the Enzymes and Metabolites Identified by Mass Spectrometry from Bacteria and Microalgae Involved in the Degradation of High Molecular Weight PAHs,” The Science of the Total Environment 797 (2021): 149035–25. doi:10.1016/j.scitotenv.2021.149035
  • A. Chemerys, E. Pelletier, C. Cruaud, F. Martin, F. Violet, and Y. Jouanneau, “Characterization of Novel Polycyclic Aromatic Hydrocarbon Dioxygenases from the Bacterial Metagenomic DNA of a Contaminated Soil,” Applied and Environmental Microbiology 80, no. 21 (2014): 6591–600. doi:10.1128/AEM.01883-14
  • A. Hunold, W. Escobedo-Hinojosa, E. Potoudis, D. Resende, T. Farr, P. O. Syrén, and B. Hauer, “Assembly of a Rieske Non-Heme Iron Oxygenase Multi-Component System from Phenylobacterium immobile E DSM 1986 Enables Pyrazon Cis-Dihydroxylation in E. coli,” Applied Microbiology and Biotechnology 105, no. 5 (2021): 2003–15. doi:10.1007/S00253-021-11129-W
  • C. E. Cerniglia, “Recent Advances in the Biodegradation of Polycyclic Aromatic Hydrocarbons by Mycobacterium Species,” in The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions, edited by Václav Sasek, John A. Glaser and Philippe Baveye, 1st ed. (Amsterdam, the Netherlands: Springer, 2003), 51–73. doi:10.1007/978-94-010-0131-1_4
  • A. Luo, Y. Wu, Y. Xu, J. Kan, J. Qiao, L. Liang, T. Huang, and Z. Hu, “Characterization of a Cytochrome P450 Mono-Oxygenase Capable of High Molecular Weight PAHs Oxidization from Rhodococcus sp. P14,” Process Biochemistry 51, no. 12 (2016): 2127–33. doi:10.1016/j.procbio.2016.07.024
  • S. R. Subashchandrabose, K. Venkateswarlu, R. Naidu, and M. Megharaj, “Biodegradation of High-Molecular Weight PAHs by Rhodococcus wratislaviensis Strain 9: Overexpression of Amidohydrolase Induced by Pyrene and BaP,” The Science of the Total Environment 651, no. Pt 1 (2019): 813–21. doi:10.1016/j.scitotenv.2018.09.192
  • Y. Jouanneau, C. Meyer, J. Jakoncic, V. Stojanoff, and J. Gaillard, “Characterization of a Naphthalene Dioxygenase Endowed with an Exceptionally Broad Substrate Specificity toward Polycyclic Aromatic Hydrocarbons,” Biochemistry 45, no. 40 (2006): 12380–91. doi:10.1021/bi0611311

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.