458
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advances in the Synthesis of Quinoxalines. A Mini Review

, , , , &
Pages 634-670 | Received 07 Jun 2022, Accepted 05 Jan 2023, Published online: 17 Jan 2023

References

  • Kleemann, J. Engel, B. Kutscher, and D. Reichert, Pharmaceutical Substances: Synthesis, Patents, Applications, 5th ed. (Stuttgart: Thieme, 2008).
  • E. Vicente, L. M. Lima, E. Bongard, S. Charnaud, R. Villar, B. Solano, A. Burguete, S. Perez-Silanes, I. Aldana, L. Vivas, et al, “Synthesis and Structure-Activity Relationship of 3-Phenylquinoxaline1,4-Di-N-Oxide Derivatives as Antimalarial Agents,” European Journal of Medicinal Chemistry 43, no. 9 (2008): 1903–10.
  • (a) C. O. Knowles, “Chemistry and Toxicology of Quinoxaline, Organotin, Organofluorine, and Formamidineacaricides,” Environmental Health Perspectives 14 (1976): 93–102. (b) T. P. Selby, L. R. Denes, J. L. Kilama, and B. K. Smith, “Aryl-Substituted Quinoxalines and Related Heteroarenes as Novel Herbicides Prepared via Palladium-Catalyzed Cross-Coupling Methods,” ACS Symposium Series 584 (1995): 171–85. (c) G. Sakata, K. Makino, and Y. Kurasawa, “Recent Progress in the Quinoline Chemistry. Synthesis and Biological Activity,” Heterocycles 27 (1988): 2481–515. doi:10.1289/ehp.761493
  • (a) I. Saito and T. Matsuura, “Chemical Studies on Riboflavin and Related Compounds. I. Oxidation of Quinoxaline-2,3-Diols as a Possible Model for the Biological Decomposition of Riboflavin,” Biochemistry 6, no. 11 (1967): 3602–8. (b) B. Y. Yan, Y. G. Xia, Q. H. Wang, D. Q. Dou, and H. X. Kuang, “Two New Amide Alkaloids from the Flower of Datura metel L. Chemistry and Mechanism of Action,” Environ 74 (1974): 625–52. (c) J. Azuaje, A. E. Maatougui, X. Garcia-Mera, and E. Sotelo, “Ugi-Based Approaches to Quinoxaline Libraries,” ACS Combinatorial Science 16 (2014): 403–11. (d) M. Sato, T. Nakazawa, Y. Tsunematsu, K. Hotta, and K. Watanabe, “Echinomycin Biosynthesis,” Current Opinion in Chemical Biology 17 (2013): 537–45.
  • (a) M. E. Welsch, S. A. Snyder, and B. R. Strockwell, “Privileged Scaffolds for Library Design and Drug Discovery,” Current Opinion in Chemical Biology 14 (2010): 347–61. (b) L. Constantino, and D. Barolocco, “Privileged Structures as Leads in Medicinal Chemistry,” Current Medicinal Chemistry 13 (2006): 65–85.
  • (a) A. K. Patra, S. Dhar, M. Nethaji, and A. R. Chakravarty, “Metal Assisted Red Light-Induced DNA Cleavage by Ternary L-Methionine Copper(II) Complexes of Planar Heterocyclic Bases,” Dalton Transactions 39 (2005): 896–902. (b) N. D. Sonawane and D. W. Rangnekar, “Synthesis and Reactions of 2-Amino-6-(3-Methyl-5-Oxo-1-Phenyl-2-Pyrazolin-4-yl)-4-Phenylpyridine-3-Carbonitrile,” Journal of Heterocyclic Chemistry 39 (2002): 303–8.
  • (a) A. E. A. Porter, in Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky and C. W. Rees (Oxford: Pergamon, 1984), 157–97. (b) G. H. Woo, J. K. Snyder, Z. K. Wan, “Sixmembered Ring Systems: Diazines and Benzo Derivatives,” Progress in Heterocyclic Chemistry 14 (2002): 279–309. (c) V. A. Mamedov and N. A. Zhukova, “Progress in Quinoxaline Synthesis,” Progress in Heterocyclic Chemistry 24 (2012): 55–88. (d) V. A. Mamedov and N. A. Zhukova, “Progress in Quinoxaline Synthesis,” Progress in Heterocyclic Chemistry 25 (2013): 1–45.
  • (a) R. E. Dolle, B. Le Bourdonnec, A. J. Goodman, G. A. Morales, J. M. Salvino, and W. Zhang, “Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2006,” Journal of Combinatorial Chemistry 9, no. 6 (2007): 855–902. (b) R. E. Dolle, B. Le Bourdonnec, A. J. Goodman, G. A. Morales, C. J. Thomas, and W. Zhang, “Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2007,” Journal of Combinatorial Chemistry 10 (2008): 753–802. (c) R. E. Dolle, B. Le Bourdonnec, A. J. Goodman, G. A. Morales, C. J. Thomas, and W. Zhang, “Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2008,” Journal of Combinatorial Chemistry 11 (2009): 739–90. (d) R. E. Dolle, B. Le Bourdonnec, K. Worm, G. A. Morales, C. J. Thomas, and W. Zhang, “Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2009,” Journal of Combinatorial Chemistry 12 (2010): 765–806.
  • D. J. Brown, “Quinoxalines,” In The Chemistry of Heterocyclic Compounds, edited by E. C. Taylor, P. Wipf (Hoboken, NJ: John Wiley & Sons, 2004), 1–510.
  • O. Hinsberg, “Ueberchinoxaline,” Berichte Der Deutschen Chemischen Gesellschaft 17 (1884): 318–23.
  • D. F. Saifina and V. A. Mamedov, “New and Modified Classical Methods for the Synthesis of Quinoxalines,” Russian Chemical Reviews 79 (2010): 351–70.
  • (a) M. J. Haddadin and C. H. Issidorides, “Application of Benzofurazan Oxide to the Synthesis of Heteroaromatic N-Oxides,” Heterocycles 4 (1976): 767–816. (b) M. J. Haddadin and C. H. Issidorides, “Enamines with Isobenzofuroxan: A Novel Synthesis of Quinoxaline-Di-N-Oxides,” Tetrahedron Letters 6 (1965): 3253–6. (c) C. H. Issidorides and M. J. Haddadin, “Benzofurazan Oxide. Reactions with Enolate Anions,” The Journal of Organic Chemistry 31 (1966): 4067–8.
  • M. N. Noolvi, H. M. Patel, V. Bhardwaj, and A. Chauhan, “Synthesis and In Vitro Antitumor Activity of Substituted Quinazoline and Quinoxaline Derivatives: Search for Anticancer Agent,” European Journal of Medicinal Chemistry 46, no. 6 (2011): 2327–46. doi:10.1016/j.ejmech.2011.03.015
  • A. Dell, D. H. Williams, H. R. Morris, G. A. Smith, J. Feeney, and G. C. K. Roberts, “Structure Revision of the Antibiotic Echinomycin,” Journal of the American Chemical Society 97, no. 9 (1975): 2497–502.
  • D. Obrien, M. Weaver, D. Lidzey, and D. Bradley, “Use of Poly (Phenyl Quinoxaline) as an Electron Transport Material in Polymer Light-Emitting Diodes,” Applied Physics Letters 69 (1996): 881–3.
  • K. R. J. Thomas, M. Velusamy, J. T. Lin, C. H. Chuen, and Y. T. Tao, “Chromophore-Labeledquinoxaline Derivatives as Efficient Electroluminescent Materials,” Chemistry of Materials 17 (2005): 1860–6.
  • S. Dailey, W. J. Feast, R. J. Peace, I. C. Sage, S. Till, and E. L. Wood, “Synthesis and Device Characterisation of Side-Chain Polymer Electron Transport Materials for Organic Semiconductor Applications,” Journal of Materials Chemistry 11 (2001): 2238–43.
  • M. Zhang, Z. C. Dai, S. S. Qian, J. J. Liu, Y. Xiao, A. M. Lu, H. L. Zhu, J. X. Wang, and Y. H. Ye, “Design, Synthesis, Antifungal, and Antioxidant Activities of (E)-6-((2-Phenylhydrazono)Methyl)Quinoxaline Derivatives,” Journal of Agricultural and Food Chemistry 62, no. 40 (2014): 9637–43.
  • Y. B. Wang, L. Shi, X. Zhang, L. R. Fu, W. Hu, W. Zhang, X. Zhu, X. Hao, and M. P. Song, “NaOH-Mediated Direct Synthesis of Quinoxalines from o-Nitroanilines and Alcohols via a Hydrogen-Transfer Strategy,” The Journal of Organic Chemistry 86, no. 1 (2021): 947–58. doi:10.1021/acs.joc.0c02453
  • C. C. Tran, S. Kawaguchi, F. Sato, A. Nomoto, and A. Ogawa, “Photoinduced Cyclizations of o-Diisocyanoarenes with Organic Diselenides and Thiols That Afford Chalcogenated Quinoxalines,” The Journal of Organic Chemistry 85, no. 11 (2020): 7258–66.
  • J. Wu, H. Zhang, X. Ding, X. Tan, J. Chen, W. He, H. Deng, L. Song, H. C. Shen, and W. Cao, “Potassium Iodide-Promoted One-Pot Synthesis of Fluoroalkylated Quinoxalines via a Tandem Michael Addition/Azidation/Cycloamination Approach,” The Journal of Organic Chemistry 83, no. 16 (2018): 9422–9.
  • Y. Liu, X. Chen, F. Zeng, K. Sun, L. Fan C.Qu, Z. An, R. Li, C. Jing, S. Wei, L. Qu, et al, “Phosphorus Radical-Initiated Cascade Reaction to Access 2-Phosphoryl-Substituted,” The Journal of Organic Chemistry 83, no. 19 (2018): 11727–35.
  • C. Xie, Z. Zhang, D. Li, J. Gong, X. Han, X. Liu, and C. Ma, “Dimethyl Sulfoxide Involved One-Pot Synthesis of Quinoxaline Derivatives,” The Journal of Organic Chemistry 82, no. 7 (2017): 3491–9.
  • X. Lu, Q. Feng, T. Lan, G. Zhou, and Z. Wang, “Molecular Engineering of Quinoxaline-Based Organic Sensitizers for Highly Efficient and Stable Dye-Sensitized Solar Cells,” Chemistry of Materials 24, no. 16 (2012): 3179–87.
  • X. Han, T. Lei, X. Yang, L. Zhao, B. Chen, C. Tung, and L. Wu, “Aerobic Oxidation of β -Dicarbonyls into Vicinal Tricarbonyls by Cu(II) Salts for One-Pot Synthesis of Quinoxalines,” Tetrahedron Letters 58 (2017): 1770–4.
  • S. Chun, J. Ahn, P. Ramachandra Reddy, S. B. Lee, D. Oh, and S. Hong, “Direct Synthesis of Pyrrolo[1,2-α]Quinoxalines via Iron-Catalyzed Transfer Hydrogenation between 1-(2-Nitrophenyl)Pyrroles and Alcohols,” The Journal of Organic Chemistry 85, no. 23 (2020): 15314–24.
  • H. Ma, D. Li, and W. Yu, “Synthesis of Quinoxaline Derivatives via Tandem Oxidative. Azidation/Cyclization Reaction of N-Arylenamines,” Organic Letters 18, no. 4 (2016): 868–71.
  • J. Ahn, S. B. Lee, I. Song, S. Chun, D. Oh, and S. Hong, “Synthesis of 4-Aryl Pyrrolo[1,2-α]Quinoxalines via Iron-Catalyzed Oxidative Coupling from an Unactivated Methyl Arene,” The Journal of Organic Chemistry 86, no. 11 (2021): 7390–402.
  • H. Chen, Y. Chen, C. Liu, Y. Chien, S. Chou, and P. Chou, “ Prominent Short-Circuit Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of 8.0%,” Chemistry of Materials 24, no. 24 (2012): 4766–72.
  • H. Xu, and L. Fan, “Synthesis and Antifungal Activities of Novel 5,6-Dihydro-Indolo[1,2-a]Quinoxaline Derivatives,” European Journal of Medicinal Chemistry 46, no. 5 (2011): 1919–25.
  • N. Primas, P. Suzanne, P. Verhaeghe, S. Hutter, C. Kieffer, M. Laget, A. Cohen, J. Broggi, J. Lancelot, A. Lesnard, et al, “Synthesis and In Vitro Evaluation of 4-Trichloromethylpyrrolo[1,2-a] Quinoxalines as New Antiplasmodial Agents,” European Journal of Medicinal Chemistry 83 (2014): 26–35.
  • J. Li, J. Zhang, H. Yang, Z. Gao, and G. Jiang, “A Green Aerobic Oxidative Synthesis of Pyrrolo[1,2-a]Quinoxalines from Simple Alcohols without Metals and Additives,” The Journal of Organic Chemistry 82, no. 1 (2017): 765–9.
  • J. Qi, H. Dong, J. Huang, S. Zhang, L. Niu, Y. Zhang, and J. Wang, “Synthesis and Biological Evaluation of N-Substituted 3-Oxo-1,2,3,4-Tetrahydro-Quinoxaline-6-Carboxylic Acid Derivatives as Tubulin Polymerization Inhibitors,” European Journal of Medicinal Chemistry 143 (2018): 8–20.
  • Y. Yuan, Z. Wang, R. Yang, T. Qian, and Q. Zhou, “Naphthyl Quinoxaline Thymidine Conjugate is a Potent Anticancer Agent Post UVA Activation and Elicits Marked Inhibition of Tumor Growth through Vaccination,” European Journal of Medicinal Chemistry 171 (2019): 255–64.
  • D. Sarma, B. Majumdar, B. Deori, S. Jain, and T. K. Sarma, “Photoinduced Enhanced Decomposition of TBHP: A Convenient and Greener Pathway for Aqueous Domino Synthesis of Quinazolinones and Quinoxalines,” ACS Omega 6, no. 18 (2021): 11902–10.
  • S. D. Pardeshi, B. N. Patil, P. Patil, and A. C. Chaskar, “A Highly Divergent Pictet-Spengler Approach for Pyrrolo[1,2-a]Quinoxalines from Aryl Amine Using 1,2-Dinitrobenzene as an Oxidant,” Tetrahedron Letters 60 (2019): 151250.
  • B. Saha, B. Mitra, D. Brahmin, B. Sinha, and P. Ghosh, “2-Iodo Benzoic Acid: An Unconventional Precursor for the One Pot Multi-Component Synthesis of Quinoxaline Using Organo Cu (II) Catalyst,” Tetrahedron Letters 59 (2018): 3657–63.
  • J. M. Park, C. Y. Jung, J. H. Cho, D. H. Kim, Y. Wang, and J. Y. Jaung, “Synthesis of New di-Anchoring Organic Sensitizer Based on Quinoxaline Acceptor for Dye-Sensitized Solar Cells,” Tetrahedron Letters 59 (2018): 3322–5.
  • C. F. Gers, J. Nordmann, C. Kumru, W. Frank, and T. J. J. Muller, “Solvatochromic Fluorescent 2‑Substituted 3‑Ethynyl Quinoxalines: Four-Component Synthesis,” The Journal of Organic Chemistry 79, no. 8 (2014): 3296–310.
  • J. Guillon, M. Le Borgne, C. Rimbault, S. Moreau, S. Savrimoutou, N. Pinaud, S. Baratin, M. Marchivie, S. Roche, A. Bollacke, et al, "Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a]quinoxaline derivatives as inhibitors of the human protein kinase CK2," European Journal of Medicinal Chemistry 65C (2013): 205–22.
  • B. Oyallon, M. Brachet-Botineau, C. Loge, P. Bonnet, M. Souab, T. Robert, S. Ruchaud, S. Bach, P. Berthelot, F. Gouilleux, et al, “Structure-Based Design of Novel Quinoxaline-2-Carboxylic Acids and Analogues as Pim-1 Inhibitors,” European Journal of Medicinal Chemistry 154 (2018): 101–9.
  • Q. Liu, K. Lu, H. Zhu, S. Kong, J. Yuan, G. Zhang, N. Chen, C. Gu, C. Pan, D. Mo, et al, “Identification of 3-(Benzazol-2-yl)Quinoxaline Derivatives as Potent Anticancer Compounds: Privileged Structure-Based Design, Synthesis, and Bioactive Evaluation In Vitro and In Vivo,” European Journal of Medicinal Chemistry 165 (2019): 293–308. doi:10.1016/j.ejmech.2019.01.004
  • C. Patinote, C. Deleuze-Masquefa, K. Hadj Kaddour, L. Vincent, R. Larive, Z. Zghaib, J. Guichou, M. Assaf, P. Cuq, and P. Bonnet, “Imidazo[1,2-a]Quinoxalines for Melanoma Treatment with Original Mechanism of Action,” European Journal of Medicinal Chemistry 212 (2021): 113031.
  • Zhongrui Chen, Maxime Bert, Simon Pascal, Gabriel Canard, and Olivier Siri, “Versatile Transamination in Quinonediimine Chemistry: Towards a Novel Class of Water Soluble UV/Violet Chromophores,” Tetrahedron Letters 60, no. 38 (2019): 151024. doi:10.1016/j.tetlet.2019.151024
  • A. Gupta, M. S. Deshmuk, and N. Jain, “Iodine-Catalyzed C–N Bond Formation: Synthesis of 3-Aminoquinoxalinones under Ambient Conditions,” The Journal of Organic Chemistry 82, no. 9 (2017): 4784–92. doi:10.1021/acs.joc.7b00464
  • X. Sun, W. Wang, Y. Li, J. Ma, and S. Yu, “Halogen-Bond-Promoted Double Radical Isocyanide Insertion under Visible-Light Irradiation: Synthesis of 2-Fluoroalkylated Quinoxalines,” Organic Letters 18, no. 18 (2016): 4638–41.
  • S. Shee, K. Ganguli, K. Jana, and S. Kundu, “Cobalt Complex Catalyzed Atom-Economical Synthesis of Quinoxaline, Quinoline and 2-Alkylaminoquinoline Derivatives,” Chemical Communications 54, no. 50 (2018): 6883–6.
  • A. Mondal, M. K. Sahoo, M. Subaramanian, and E. Balaraman, “Manganese(I)-Catalyzed Sustainable Synthesis of Quinoxaline and Quinazoline Derivatives with the Liberation of Dihydrogen,” The Journal of Organic Chemistry 85, no. 11 (2020): 7181–91.
  • S. Shee, D. Panja, and S. Kundu, “Nickel-Catalyzed Direct Synthesis of Quinoxalines from 2-Nitroanilines and Vicinal Diols: Identifying Nature of the Active Catalyst,” The Journal of Organic Chemistry 85, no. 4 (2020): 2775–84.
  • M. Imanishi, M. Sonoda, H. Miyazato, K. Sugimoto, M. Akagawa, and S. Tanimori, “Sequential Synthesis, Olfactory Properties, and Biological Activity of Quinoxaline Derivatives,” ACS Omega 2, no. 5 (2017): 1875–85. doi:10.1021/acsomega.7b00124
  • J. Guillon, E. Mouray, S. Moreau, C. Mullie, I. Forfar, V. Desplat, S. Belisle-Fabre, N. Pinaud, F. Ravanello, A. Le-Naour, et al, “New Ferrocenic Pyrrolo[1,2-a]Quinoxaline Derivatives: synthesis, and In Vitro Antimalarial activity-Part II,” European Journal of Medicinal Chemistry 46, no. 6 (2011): 2310–26. doi:10.1016/j.ejmech.2011.03.014
  • M. Hajri, M. Esteve, O. Khoumeri, R. Abderrahim, T. Terme, M. Montana, and P. Vanelle, “Synthesis and Evaluation of In Vitro Antiproliferative Activity of New Ethyl 3-(Arylethynyl)Quinoxaline-2-Carboxylate and Pyrido[4,3-b]Quinoxalin-1(2H)-One Derivatives,” European Journal of Medicinal Chemistry 124 (2016): 959–66.
  • M. S. F. Franco, M. H. Paula, P. C. Glowacka, F. Fumagalli, G. C. Clososki, and F. S. Emery, “Palladium-Catalyzed C–H Alkenylation of Quinoxaline N-Oxide Enabled by a Mono-N-Protected Amino Acid,” Tetrahedron Letters 59, no. 26 (2018): 2562–6. doi:10.1016/j.tetlet.2018.05.054
  • K. Danoun, Y. Essamlali, O. Amadine, H. Mahi, and M. Zahouily, “Eco-Friendly Approach to Access of Quinoxaline Derivatives Using Nanostructured Pyrophosphate Na2PdP2O7 as a New, Efficient and Reusable Heterogeneous Catalyst,” BMC Chemistry 14, no. 1 (2020): 6. doi:10.1186/s13065-020-0662-z
  • Chenna Krishna Reddy. Reddivari, Subba Rao Devineni, Bakthavatchala Reddy Nemallapudi, Gundala Sravya, Balakrishna Avula, Nayabrasool Shaik, Vishnu Nayak Badavath, Grigory V. Zyryanov, Rami Reddy Yellala Venkata, and Naga Raju Chamarthi, “Design, Synthesis, Biological Evaluation and Molecular Docking Studies of 1,4-Disubstituted 1,2,3-Triazoles: PEG-400:H2O Mediated Click Reaction of Fluorescent Organic Probes under Ultrasonic Irradiation,” Polycyclic Aromatic Compounds 42, no. 7 (2022): 3953–74. doi:10.1080/10406638.2021.1878246
  • Bakthavatchala Reddy Nemallapudi, Grigory V. Zyryanov, Balakrishna Avula, Mallikarjuna Reddy Guda, Suresh Reddy Cirandur, Chintha Venkataramaiah, Wudayagiri Rajendra, and Sravya Gundala, “Meglumine as a Green, Efficient and Reusable Catalyst for Synthesis and Molecular Docking Studies of Bis(Indolyl)Methanes as Antioxidant Agents,” Bioorganic Chemistry 87 (2019): 465–73. doi:10.1016/j.bioorg.2019.03.005
  • F. Li, X. Tang, Y. Xu, C. Wang, Z. Wang, Z. Li, and L. Wang, “A Dual-Protein Cascade Reaction for the Regioselective Synthesis of Quinoxalines,” Organic Letters 22, no. 10 (2020): 3900–4.
  • C. Lee, W. Wu, P. S. Dangate, L. Shen, W. Chung, and C. Sun, “Skeletally Diverse Synthesis of Innovative [2,1-c]-1,4-Oxazepine and [1,4]-Quinoxaline Systems,” ACS Combinatorial Science 17, no. 10 (2015): 623–30.
  • A. Rashidizadeh, H. Ghafuri, H. R. E. Zand, and N. Goodarzi, “Graphitic Carbon Nitride Nanosheets Covalently Functionalized with Biocompatible Vitamin B1: Synthesis, Characterization, and Its Superior Performance for Synthesis of Quinoxalines,” ACS Omega 4, no. 7 (2019): 12544–54.
  • Shaik Shahinshavali, Kazi Amirul Hossain, Abbaraju Venkata Durga Nagendra Kumar, Alugubelli Gopi Reddy, Deepti Kolli, Ali Nakhi, Mandava Venkata Basaveswara Rao, and Manojit Pal, “Ultrasound Assisted Synthesis of 3-Alkynyl Substituted 2-Chloroquinoxaline Derivatives: Their In Silico Assessment as Potential Ligands for N-Protein of SARS-CoV-2,” Tetrahedron Letters 61, no. 40 (2020): 152336.
  • E. Vijaya Ragavan and J. H. Hansen, "A Green, Scalable, and Catalyst-Free One-Minute Synthesis of Quinoxalines," SynOpen 5 (2021): 43–8.
  • X. K. He, J. Lu, A. J. Zhang, Q. Q. Zhang, G. Y. Xu, and J. Xuan, “BI-OAc-Accelerated C3-H Alkylation of Quinoxalin-2(1H)-Ones under Visible-Light Irradiation,” Organic Letters 22, no. 15 (2020): 5984–9. doi:10.1021/acs.orglett.0c02080
  • L. Liao, M. Song, J. Feng, M. Tan, F. Liu, Z. Qiu, S. Zhang, and B. Li, “Green Synthesis of Indeno[1,2-b]Quinoxalines Using β-Cyclodextrin as Catalyst,” Molecules 27, no. 2 (2022): 580. doi:10.3390/molecules27020580
  • A. Laventure, C. R. Harding, C. Edward, Z. Li, J. Wang, Y. Zou, and G. C. Welch, “Screening Quinoxaline-Type Donor Polymers for Roll-to-Roll Processing Compatible Organic Photovoltaics,” ACS Applied Polymer Materials 1, no. 8 (2019): 2168–76. doi:10.1021/acsapm.9b00433
  • S. A. Galal, A. S. Abdelsamie, S. M. Soliman, J. Mortier, G. Wolber, M. M. Ali, H. Tokuda, N. Suzuki, A. Lida, R. A. Ramadan, et al, “Design, Synthesis and Structureeactivity Relationship of Novel Quinoxaline Derivatives as Cancer Chemopreventive Agent by Inhibition of Tyrosine Kinase Receptor,” European Journal of Medicinal Chemistry 69 (2013): 115–24.
  • A. L. Bagdasarian, H. H. Nguyen, T. A. Palazzo, J. C. Fettinger, M. J. Haddadin, and M. J. Kurth, “One-Pot Synthesis of Benzo[4,5]Imidazo[2,1-a]Isoquinolines and Isoquinolino[3,4-b]Quinoxalines via Tandem Cyclization Strategies,” The Journal of Organic Chemistry 81, no. 9 (2016): 3924–8.
  • A. Carta, G. Sanna, I. Briguglio, S. Madeddu, G. Vitale, S. Piras, P. Corona, A. T. Peana, E. Laurini, F. Maurizio, S. Pricl, et al, “Quinoxaline Derivatives as New Inhibitors of Coxsackievirus B5,” European Journal of Medicinal Chemistry 145 (2018): 559–69.
  • M. K. Ibrahim, M. S. Taghour, A. M. Metwaly, A. Belal, A. B. M. Mehany, M. A. Elhendawy, M. M. Radwan, A. M. Yassin, N. M. El-Deeb, E. E. Hafez, et al, “Design, Synthesis, Molecular Modeling and Anti-Proliferative Evaluation of Novel Quinoxaline Derivatives as Potential DNA Intercalators and Topoisomerase II Inhibitors,” European Journal of Medicinal Chemistry 155 (2018): 117–34.
  • L. Bonilla-Ramirez, A. Rios, M. Quiliano, G. Ramirez-Calderon, I. Beltran-Hortelano, J. François Franetich, L. Corcuera, M. Bordessoulles, A. Vettorazzi, A. Lopez de Cerain, et al, “Novel Antimalarial Chloroquine- and Primaquine-Quinoxaline 1,4-Di-N-Oxide Hybrids: Design, Synthesis, Plasmodium Life Cycle Stage Profile, and Preliminary Toxicity Studies,” European Journal of Medicinal Chemistry 158 (2018): 68–81. doi:10.1016/j.ejmech.2018.08.063
  • Q. Guan, L. Cong, Q. Wang, C. Yu, K. Bao, K. Zhou, L. Wu, and W. Zhang, “Activated Carbon/Brønsted Acid-Promoted Aerobic Benzylic Oxidation under “On-Water” Condition: Green and Efficient Synthesis of 3-Benzoylquinoxalinones as Potent Tubulin Inhibitors,” European Journal of Medicinal Chemistry 186 (2020): 111894.
  • V. A. Kuehl, P. H. H. Duong, D. Sadrieva, S. A. Amin, Y. She, K. D. Li-Oakey, J. L. Yarger, B. A. Parkinson, and J. O. Hoberg, “Synthesis, Postsynthetic Modifications, and Applications of the First Quinoxaline-Based Covalent Organic Framework,” ACS Applied Materials & Interfaces 13, no. 31 (2021): 37494–9. doi:10.1021/acsami.1c08854
  • L. Fabian, M. T. Porro, N. Gomez, M. Salvatori, G. Turk, D. Estrin, and A. Moglioni, “Design, Synthesis and Biological Evaluation of Quinoxaline Compounds as Anti-HIV Agents Targeting Reverse Transcriptase Enzyme,” European Journal of Medicinal Chemistry 188 (2020): 111987.
  • S. Satish, S. Singh, M. Jayapal Reddy, Y. A. Sonawane, J. V. Napoleon, S. Rana, J. I. Contreras, C. Rajesh, E. L. Ezell, S. Kizhake, et al, “Structure Activity Relationship (SAR) Study Identifies a Quinoxaline Urea Analog That Modulates IKKb Phosphorylation for Pancreatic Cancer Therapy,” European Journal of Medicinal Chemistry 222 (2021): 113579.
  • H. Zhang, Q. Lu, J. Zhang, W. Qu, S. Xie, L. Huang, Z. Yuan, and Y. Pan, “Discovery of Novel Nitrogenous Heterocyclic-Containing Quinoxaline-1,4-Di-N-Oxides as Potent Activator of Autophagy in M.tb-Infected Macrophages,” European Journal of Medicinal Chemistry 223 (2021): 113657.
  • K. Saravana Mani, B. Murugesapandian, Kaminsky Werner, and P. Rajendran Subramaniam, “Enantioselective Approach towards the Synthesis of Spiro-Indeno [1,2-b] Quinoxaline Pyrrolothiazoles as Antioxidant and Antiproliferative,” Tetrahedron Letters 59, no. 30 (2018): 2921–9. doi:10.1016/j.tetlet.2018.06.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.