176
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

New Quinoline Analogues: As Potential Diabetics Inhibitors and Molecular Docking Study

ORCID Icon, , ORCID Icon, , , ORCID Icon & show all
Pages 67-89 | Received 12 May 2022, Accepted 09 Jan 2023, Published online: 30 Jan 2023

References

  • P.K. Chauhan, P. Sharma, N. Srivastava, and R. Kumar, “Dudhe, Plants Having Potential Antidiabetic Activity: A Review,” Der Pharmacia Lettre 2, no. 3 (2010): 369–87.
  • W.L. Li, H.C. Zheng, J. Bukuru, and N. De Kimpe, “Natural medicines Used in the Traditional Chinese Medical System for Therapy of Diabetes Mellitus,” Journal of Ethnopharmacology 92, no. 1 (2004): 1–21.
  • N. Zaharudin, D. Staerk, and L.O. Dragsted, “Inhibition of a-Glucosidase Activity by Selected Edible Seaweeds and Fucoxanthin,” Food Chemistry 270 (2019): 481–6.
  • M. Asgher, M.J. Asad, S.U. Rahman, and R.L. Legge, “A thermostable α-Amylase from a Moderately Thermophilic Bacillus subtilis Strain for Starch Processing,” Journal of Food Engineering. 79, no. 3 (2007): 950–5.
  • T.P.K. Sundarram, “Murthy, a-Amylase Production and Applications: A Review,” Journal of Applied and Environmental Microbiology 2, no. 4 (2014): 166–75.
  • M. Taha, M. Tariq Javid, S. Imran, M. Selvaraj, S. Chigurupati, H. Ullah, F. Rahim, F. Khan, J. Islam Mohammad, and K. Mohammed Khan, “Synthesis and Study of the α-Amylase Inhibitory Potential of Thiadiazole Quinoline Derivatives,” Bioorganic chemistry 74 (2017): 179–86.
  • M.D. Gunawan-Puteri, E. Kato, and J. Kawabata “a-Amylase Inhibitors from an Indonesian Medicinal Herb, Phyllanthus Urinaria,” Journal of the Science of Food and Agriculture 92, no. 3 (2012): 606–9.
  • N. Jong-Anurakkun, M.R. Bhandari, and J. Kawabata, “a-Glucosidase Inhibitors from Devil Tree (Alstonia Scholaris),” Food Chemistry 103, no. 4 (2007): 1319–23.
  • U. Salar, K.M. Khan, S. Chigurupati, M. Taha, A. Wadood, S. Vijayabalan, and S. Perveen, “New hybrid Hydrazinyl Thiazole Substituted Chromones: As Potential α-Amylase Inhibitors and Radical (DPPH & ABTS) Scavengers,” Scientific Reports 7, no. 1 (2017): 16980.
  • G.S. Meneilly, E.A. Ryan, J. Radziuk, D.C. Lau, J.F. Yale, J. Morais, J.L. Chiasson, R. Rabasa-Lhoret, P. Maheux, D. Tessier, et al, “Effect of Acarbose on Insulin Sensitivity in Elderly Patients with Diabetes,” Diabetes Care 23, no. 8 (2000): 1162–7.
  • M.F. El Shehry, M.M. Ghorab, S.Y. Abbas, E.A. Fayed, S.A. Shedid, and Y.A. Ammar, “Quinoline derivatives Bearing Pyrazole Moiety: synthesis and Biological Evaluation Aspossible Antibacterial and Antifungal Agents,” European Journal of Medicinal Chemistry 143 (2018): 1463–73.
  • Y.-Q. Hu, G. Chuan, Z. Shu, L. Xu, Z. Xu, Z. Xu, L-S. Feng, X. Wu, and F. Zhao, “Quinoline hybrids and Their Antiplasmodial and Antimalarial Activities,” European journal of Medicinal Chemistry 139 (2017): 22–47.
  • E.A. Alodeani, M. Arshad, and M.A. Izhari, “Antileishmanial activity and Computational Studies of Some Hydrazone Derivatives Possessing Quinoline Nucleus,” European Journal of Pharmaceutical and Medical Research 2, no. 7 (2015): 324–8.
  • Z.F. Xie, K.Y. Chai, H.R. Piao, K.C. Kwak, and Z.S. Quan, “Synthesis and Anticonvulsant Activity of 7-Alkoxyl-4,5-Dihydro-[1,2,4]Triazolo[4,3-a]Quinolines,” Bioorganic & Medicinal Chemistry Letters 15, no. 21 (2005): 4803–5.
  • G. Barbosa-Lima, A.M. Moraes, A.D. Araújo, E.T. da Silva, C.S. de Freitas, Y.R. Vieira, A. Marttorelli, J.C. Neto, P.T. Bozza, M.V. de Souza, et al., “2,8-bis(Trifluoromethyl)Quinoline Analogs Show Improved anti-Zika Virus Activity, Compared to Mefloquine,” European Journal of Medicinal Chemistry 127 (2017): 334–40.
  • S.C. Karad, V.B. Purohit, P. Thakor, V.R. Thakkar, and D.K. Raval, “Novel morpholinoquinoline Nucleus Clubbed with Pyrazoline Analogues: synthesis, Antibacterial, Antitubercular and Antimalarial Activities,” European journal of Medicinal Chemistry 112 (2016): 270–9.
  • K.B. Kim, M.S. Change, Y.K. Chung, S.K. Sohn, S.G. Kim, and W.S. Choi, “Biochemical and Pharmacological Characteristics of 3-Butyryl-8- Methoxy-4-[(2-Thiophenyl)Amino] Quinoline, a New Proton-Pump Inhibitor, in Rabbit Gastric Microsomes and in Rats,” Journal of Pharmacy and Pharmacology 50 (1998): 521–9.
  • P.V. Joshi, A.A. Sayed, A. RaviKumar, V.G. Puranik, and S.S. Zinjarde, “4-Phenyl quinoline Derivatives as Potential Serotonin Receptor Ligands with Antiproliferative Activity,” European journal of Medicinal Chemistry 136 (2017): 246–58.
  • K.V. Sashidhara, S.R. Avula, V. Mishra, G.R. Palnati, L.R. Singh, N. Singh, Y.S. Chhonker, P.Swami, R.S. Bhatta, and G. Palit, “Identification of Quinoline-Chalcone Hybrids as Potential Antiulcer Agents,” European journal of Medicinal Chemistry 89 (2015): 638–53.
  • D. Edmont, R. Rocher, C. Plisson, and J. Chenault, “Synthesis and Evaluation of Quinoline Carboxyguanidines as Antidiabetic Agents,” Bioorganic & Medicinal Chemistry Letters 10, no. 16 (2000): 1831–4.
  • Y.L. Chen, I.L. Chen, and C.M. Lua, “Synthesis and anti-Inflammatory Evaluation of 4- Anilinofuro[2,3-b]Quinoline and 4-Phenoxyfuro[2,3-b]Quinoline Derivatives. Part 3,” Bioorganic and Medicinal Chemistry 15 (2004): 387–92.
  • H. Zhang, J. Collins, R. Nyamwihura, S. Ware, M. Kaiser, and I.V. Ogungbe, “Discovery of a Quinoline-Based Phenyl Sulfone Derivative as an Antitrypanosomal Agent,” Bioorganic & Medicinal Chemistry Letters 28, no. 9 (2018): 1647–51.
  • R.S. Keri, and S.A. Patil, “Quinoline: A Promising Antitubercular Target,” Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy] 68, no. 8 (2014): 1161–75.
  • L. Savegnago, A.I. Vieira, N. Seus, B.S. Goldani, M.R. Castro, E.J. Lenardão, and D. Alves, “Synthesis and Antioxidant Properties of Novel Quinoline-Chalcogenium Analogues,” Tetrahedron Letters 54 (2013): 40–4.
  • H. Kumar, V. Devaraji, R. Joshi, M. Jadhao, P. Ahirkar, R. Prasath, P. Bhavana, and S.K. Ghosh, “Antihypertensive activity of a Quinoline Appended Chalcone Derivative and Its Site Specific Binding Interaction with a Relevant Target Carrier Protein,” RSC Advances 5, no. 80 (2015): 65496–513.
  • N. Siddiqui, P. Ahuja, S. Malik, and S.K. Arya, “Design of Benzothiazole‐1, 3, 4‐Thiadiazole Conjugates: Synthesis and Anticonvulsant Evaluation,” Archiv Der Pharmazie-Chemistry in Life Science 346 (2013): 819–31.
  • R.H. Vekariya and H.D. Patel, “Recent advances in the Synthesis of Coumarin Derivatives via Knoevenagel Condensation: A Review,” Synthetic Communications 44 (2014): 2756–88.
  • S.R. Pattn, B.S. Kittur, B.S. Sastry, S.G. Jadav, D.K. Thakur, S.A. Madamwar, and H.V. Shinde, "Synthesis and evaluation of some novel 1,3,4- thiadiazoles for antidiabetic activity," Indian Journal of Chemistry 50 (2011): 615–8.
  • P. Li, L. Shi, X. Yang, L. Yang, X.W. Chen, F. Wu, Q.C. Shi, W.M. Xu, M. He, D.Y. Hu, et al, “Design, Synthesis, and Antibacterial Activity against Rice Bacterial Leaf Blight and Leaf Streak of 2, 5-Substituted-1, 3, 4-Oxadiazole/Thiadiazole Sulfone Derivative,” Bioorganic & Medicinal Chemistry Letters 24, no. 7 (2014): 1677–80.
  • D.V. Dekhane, S.S. Pawar, S. Gupta, M.S. Shingare, C.R. Patil, and S.N. Thore, “Synthesis and anti-Inflammatory Activity of Some New 4, 5-Dihydro-1, 5-Diaryl-1H-Pyrazole-3-Substituted-Heteroazole Derivatives,” Bioorganic & Medicinal Chemistry Letters 21, no. 21 (2011): 6527–32.
  • F. Liu, X.Q. Luo, B.A. Song, P.S. Bhadury, S. Yang, L.H. Jin, W. Xue, and D.Y. Hu, “Synthesis and Antifungal Activity of Novel Sulfoxide Derivatives Containing Trimethoxyphenyl Substituted 1, 3, 4-Thiadiazole and 1, 3, 4-Oxadiazole Moiety,” Bioorganic & Medicinal Chemistry 16, no. 7 (2008): 3632–40.
  • M. Yusuf, R.A. Khan, and B. Ahmed, “Syntheses and anti-Depressant Activity of 5-Amino-1, 3, 4-Thiadiazole-2-Thiol Imines and Thiobenzyl Derivatives,” Bioorganic & Medicinal Chemistry 16, no. 17 (2008): 8029–34.
  • D. Cressier, C. Prouillac, P. Hernandez, C. Amourette, M. Diserbo, C. Lion, and G. Rima, “Synthesis, Antioxidant Properties and Radioprotective Effects of New Benzothiazoles and Thiadiazoles,” Bioorganic & Medicinal Chemistry 17, no. 14 (2009): 5275–84.
  • M.H. Moshafi, M. Sorkhi, S. Emami, M. Nakhjiri, A. Yahya-Meymandi, A.S. Negahbani, F. Siavoshi, M. Omrani, E. Alipour, M. Vosooghi, et al., “5‐Nitroimidazole‐Based 1, 3, 4‐Thiadiazoles: Heterocyclic Analogs of Metronidazole as anti‐helicobacter pylori Agents,” Archiv Der Pharmazie Chemistry in Life Sciences 11 (2011): 178–83.
  • I. Khan, S. Ali, S. Hameed, N.H. Rama, M.T. Hussain, A. Wadood, R. Uddin, Z. Ul-Haq, A. Khan, S. Ali, et al., “Synthesis, Antioxidant Activities and Urease Inhibition of Some New 1, 2, 4-Triazole and 1, 3, 4-Thiadiazole Derivatives,” European journal of Medicinal Chemistry 45, no. 11 (2010): 5200–7.
  • M. Fan, W. Yang, Z. Peng, Y. He, and G. Wang, “Chromone-Based Benzohydrazide Derivatives as Potential α-Glucosidase Inhibitor: Synthesis, Biological Evaluation and Molecular Docking Study,” Bioorganic Chemistry. 131 (2023): 106276.
  • M. Fan, X. Zhong, Y. Huang, Z. Peng, and G. Wang, “Synthesis, Biological Evaluation and Molecular Docking Studies of Chromone Derivatives as Potential α-Glucosidase Inhibitors,” Journal of Molecular Structure. 1274 (2023): 134575.
  • M. Fan, Q. Feng, M. He, W. Yang, Z. Peng, Y. Huang, and G. Wang, “Synthesis, α-Glucosidase Inhibition and Molecular Docking Studies of Natural Product 2-(2-Phenyethyl) Chromone Analogues,” Arabian Journal of Chemistry 15, no. 11 (2022): 104301.
  • G. Wang, Z. Peng, J. Wang, X. Li, and J. Li, “Synthesis, in Vitro Evaluation and Molecular Docking Studies of Novel Triazine-Triazole Derivatives as Potential α-Glucosidase Inhibitors,” European journal of Medicinal Chemistry 125 (2017): 423–9.
  • F. Rahim, K. Zaman, H. Ullah, M. Taha, A. Wadood, M.T. Javed, W. Rehman, M. Ashraf, R. Uddin, I. Uddin, et al, “Synthesis of 4-Thiazolidinone Analogs as Potent in Vitro anti-Urease Agents,” Bioorganic chemistry 63 (2015): 123–31.
  • M.T. Javid, F. Rahim, M. Taha, H.U. Rehman, M. Nawaz, A. Wadood, S. Imran, I. Uddin, A. Mosaddik, and K.M. Khan, “Synthesis, in Vitro α-Glucosidase Inhibitory Potential and Molecular Docking Study of Thiadiazole Analogs,” Bioorganic chemistry 78 (2018): 201–9.
  • M. Taha, F. Rahim, S. Imran, N.H. Ismail, H. Ullah, M. Selvaraj, M.T. Javid, U. Salar, M. Ali, and K.M. Khan, “Synthesis, α-Glucosidase Inhibitory Activity and in Silico Study of Tris-Indole Hybrid Scaffold with Oxadiazole Ring: As Potential Leads for the Management of type-II Diabetes Mellitus,” Bioorganic chemistry 74 (2017): 30–40.
  • M. Taha, S. Imran, N.H. Ismail, M. Selvaraj, F. Rahim, S. Chigurupati, H. Ullah, F. Khan, U. Salar, M.T. Javid, et al., “Biology-Oriented Drug Synthesis (BIODS) of 2-(2-Methyl-5-Nitro-1H-Imidazol-1-yl) Ethyl Aryl Ether Derivatives, in Vitro α-Amylase Inhibitory Activity and in Silico Studies,” Bioorganic chemistry 74 (2017): 1–9.
  • M. Taha, N. H. Ismail, S. Imran, A. Wadood, F. Rahim, M. Ali, and A. U. Rehman, “Novel quinoline Derivatives as Potent in Vitro α-Glucosidase Inhibitors: In Silico Studies and SAR Predictions,” MedChemComm 6 (2015): 1826–36.
  • D.F.V. Lewis, I. Yuko, and G. Lake Brian, “Quantitative structure-Activity Relationships (QSARs) for Inhibitors and Substrates of CYP2B Enzymes: importance of Analogue Lipophilicity in Explanation of Potency Differences,” Journal of Enzyme Inhibition and Medicinal Chemistry. 25, no. 5 (2010): 679–84.
  • M. Taha, S. Sultan, S. Imran, F. Rahim, K. Zaman, A. Wadood, A. Rehman, N. Uddin, and K. M. Khan, “Synthesis of Quinoline Derivatives as diabetic-II Inhibitors and Molecular Docking Studies,” Bioorganic & Medicinal Chemistry 27, no. 18 (2019): 4081–8.
  • T.A. Halgren, “Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94,” Journal of Computational Chemistry 17, no. 5‐6 (1996): 490–519.
  • A. Barakat, S.M. Soliman, A.M. Al-Majid, G. Lotfy, H.A. Ghabbour, H.K. Fun, S. Yousuf, M.I. Choudhary, and A. Wadood, “Synthesis and Structure Investigation of Novel Pyrimidine-2, 4, 6-Trione Derivatives of Highly Potential Biological Activity as anti-Diabetic Agent,” Journal of Molecular Structure. 1098 (2015): 365–76.
  • T. Noreen, M. Taha, S. Imran, S. Chigurupati, F. Rahim, M. Selvaraj, N.H. Ismail, J.I. Mohammad, H. Ullah, M.T. Javid, et al., “Synthesis of Alpha Amylase Inhibitors Based on Privileged Indole Scaffold,” Bioorganic chemistry 72 (2017): 248–55.
  • S. Imran, M. Taha, N.H. Ismail, S.M. Kashif, F. Rahim, W. Jamil, H. Wahab, and K.M. Khan, “Synthesis, in Vitro and Docking Studies of New Flavone Ethers as α‐Glucosidase Inhibitors,” Chemical Biology & Drug Design 87, no. 3 (2016): 361–73.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson, “AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–91.
  • M. Salahuddin, S.S. Jalalpure, and N.B. Gadge, “Antidiabetic activity of Aqueous Bark Extract Cassia Glauca in Streptozotocin-Induced Diabetic Rats,” Canadian Journal of Physiology and. Pharmacology 88 (2010): 153–60.
  • M. Taha, S. Imran, M. Salahuddin, N. Iqbal, F. Rahim, N. Uddin, A. Shehzad, R. Khalid Farooq, M. Alomari, and K. Mohammed Khan, “Evaluation and Docking of Indole Sulfonamide as a Potent Inhibitor of α Glucosidase Enzyme in Streptozotocin –Induced Diabetic Albino Wistar Rats,” Bioorganic chemistry 110 (2021): 104808.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.