372
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent Progress for the Synthesis of β-Carboline Derivatives – an Update

, , , , , , , , , & show all
Pages 1366-1391 | Received 09 Sep 2022, Accepted 07 Feb 2023, Published online: 21 Feb 2023

References

  • A. Furusato, H. Kato, T. Nehira, K. Eguchi, T. Kawabata, Y. Fujiwara, F. Losung, R. E. P. Mangindaan, N. J. de Voogd, M. Takeya, et al, “Acanthomanzamines a − E with New Manzamine Frameworks from the Marine Sponge Acanthostrongylophora Ingens,” Organic Letters 16, no. 15 (2014): 3888–91. doi:10.1021/ol5015569
  • B. K. Paul, N. Ghosh, and S. Mukherjee, “Direct Insight into the Nonclassical Hydrophobic Effect in Bile Salt: β-Cyclodextrin Interaction: role of Hydrophobicity in Governing the Prototropism of a Blogical Photosensitizer,” RSC Advances 6, no. 12 (2016): 9984–93. doi:10.1039/C5RA27050B
  • R. Cao, W. Peng, Z. Wang, and A. Xu, “β-Carboline Alkaloids: Biochemical and Pharmacological Functions,” Current Medicinal Chemistry 14, no. 4 (2007): 479–500. doi:10.2174/092986707779940998
  • M. Moloudizargari, P. Mikaili, S. Aghajanshakeri, M. H. Asghari, and J. Shayegh, “Pharmacological and Therapeutic Effects of Peganum Harmala and Its Main Alkaloids,” Pharmacognosy Reviews 7, no. 14 (2013): 199–212. doi:10.4103/0973-7847.120524
  • K. Kumar, P. Wang, R. Sanchez, E. A. Swartz, A. F. Stewart, and R. J. DeVita, “Develpoment of Kinase-Selective, Harmine-Based DYRK1A Inhibitors That Induce Pnacreatic Human β–Cell Proliferation,” Journal of Medicinal Chemistry 61, no. 17 (2018): 7687–99. doi:10.1021/acs.jmedchem.8b00658
  • H. Song, Y. Liu, Y. Liu, L. Wang, and Q. Wang, “Synthesis and Antiviral and Fungicidal Activity Evaluation of β-Carboline, Dihydro-β-Carboline, Tetrahydro-β-Carboline Alkaloids, and Their Derivatives,” Journal of Agricultural and Food Chemistry 62, no. 5 (2014): 1010–8. doi:10.1021/jf404840x
  • G. Nenaah, “Antibacterial and Antifungal Activities of (Beta)-Carboline Alkaloids of Peganum Harmala (L) seeds and Their Combination Effects,” Fitoterapia 81, no. 7 (2010): 779–82. doi:10.1016/j.fitote.2010.04.004
  • M. M. Gonzalez, F. M. Cabrerizo, A. Baiker, R. Erra-Balsells, A. Osterman, H. Nitschko, and M. G. Vizoso-Pinto, “β-Carboline Derivatives as Novel Antivirals for Herpes Simplex Virus,” International Journal of Antimicrobial Agents 52, no. 4 (2018): 459–68. doi:10.1016/j.ijantimicag.2018.06.019
  • Susanna T. S. Chan, A. Norrie Pearce, Michael J. Page, Marcel Kaiser, and Brent R. Copp, “Antimalarial β-Carbolines from the New Zealand Ascidian Psuedodistoma Opacum,” Journal of Natural Products 74, no. 9 (2011): 1972–9. doi:10.1021/np200509g
  • K. J. Wesson, M. T. Hamann, and A. Keenamide, “A Bioactive Cyclic Peptide from the Marine Mollusk Pleurobranchus Forskalii,” Journal of Natural Products 59, no. 6 (1996): 629–31. doi:10.1021/np960153t
  • M. Mahmoudian, H. Jalilpour, and P. Salehian, “Toxicity of Peganum Harmala: Review and a Case Report,” Iran. J. Pharmacol. Ther 1 (2002): 1–4.
  • C. M. B. Leite Silva, F. P. Garcia, J. H. d S. Rodrigues, C. V. Nakamura, T. Ueda-Nakamura, E. Meyer, A. L. T. G. Ruiz, M. A. Foglio, J. E. de Carvalho, W. F. da Costa, et al, “Synthesis, Antitumor, Antitrypanosomal and Antileshmanial Activities of Benzo4,5.canthin-6-Ones Bearing the N’-(Substituted Benzylidene)-Carbohydrazide and N-Alkylcarboxamide Groups at C-2,” Chemical & Pharmaceutical Bulletin 60, no. 11 (2012): 1372–9. doi:10.1248/cpb.c12-00356
  • P. Ashok, S. Chander, T. K. Smith, R. Prakash Singh, P. N. Jha, and M. Sankaranarayanan, “Biological Evaluation and Structure Activity Relationship of 9-Methyl-1-Phenyl-9H-Pyrido[3,4-b]Indole Derivatives as anti-Leishmanial Agents,” Bioorganic Chemistry 84 (2019): 98–105. doi:10.1016/j.bioorg.2018.11.037
  • T. S. Kam, K. M. Sim, T. Koyano, and K. Komiyama, “Leishmanicidal Alkaloids from Kopsia Griffithii,” Phytochemistry 50, no. 1 (1999): 75–9. doi:10.1016/S0031-9422(98)00492-0
  • A. Penta, S. Chander, A. Tejería, L. García-Calvo, R. Balaña-Fouce, and S. Murugesan, “Synthesis and anti-Leshmanial Evaluation of 1-Phenyl-2,3,4,9-Tetrahydro-1H-β-Carboline Derivatives against Leshmania Infantum,” European Journal of Medicinal Chemistry 123 (2016): 814–21.
  • Q. Chen, C. Ji, Y. Song, H. Huang, J. Ma, X. Tian, and Ju Jianhua, “Discovery of McbB, an Enzyme Catalyzing the β-Carboline Skeleton Construction in the Marinacarboline Biosynthetic Pathway,” Angewandte Chemie International Edition 52, no. 38 (2013): 9980–4. doi:10.1002/anie.201303449
  • A. Penta, S. Chander, J. Balzarini, C. Pannecouque, and S. Murugesan, “Design, Synthesis of New β-Carboline Derivatives and Their Selective anti-HIV-2 Activity,” Bioorganic and Medicinal Chemistry Letters 25, no. 6 (2015): 1232–5.
  • X. Yu, W. Lin, J. Li, and M. Yang, “Synthesis and Evaluation of Novel β-Carboline Derivatives as Tat-TAR Interaction Inhibitors,” Bioorganic and Medicinal Chemistry Letters 14 (2004): 3127–30.
  • Y. H. Wang, J. G. Tang, R. –R. Wang, L. –M. Yang, Z. J. Dong, L. Du, X. Shen, J. K. Liu, and Y. T. Zheng, “Flazinamide, a Novel β-Carboline Compound with antti-HIV Actions,” Biochemical and Biophysical Research Communications 355, no. 4 (2007): 1091–5. doi:10.1016/j.bbrc.2007.02.081
  • W. Horton, A. Sood, S. Peerannawar, N. Kugyela, A. Kulkarni, R. Tulsan, C. D. Tran, J. Soule, H. LeVine, B. Torok, et al, “Synthesis and Application of β-Carbolines as Novel Multi-Functional anti-Alzheimer’s Disease Agents,” Bioorganic and Medicinal Chemistry Letters 27, no. 2 (2017): 232–6. doi:10.1016/j.bmcl.2016.11.067
  • J. Dai, W. Dan, U. Schneider, and J. Wang, “β-Carboline Alkaloid Monomers and Dimers: occurrence, Structural Diversity, and Biological Activities,” European Journal of Medicinal Chemistry 157 (2018): 622–56. doi:10.1016/j.ejmech.2018.08.027
  • A. P. Krinochkin, D. S. Kopchuk, N. V. Chepchugov, G. A. Kim, I. S. Kovalev, M. Rahman, G. V. Zyryanov, A. Majee, V. L. Rusinov, and O. N. Chupakhin, “An Efficient Synthetic Approach towards New 5,5’-Diaryl-2,2’-Bipyridine-Based Fluorophores,” Chinese Chemical Letters 28, no. 5 (2017): 1099–103. doi:10.1016/j.cclet.2016.12.043
  • E. N. Petersen, G. Paschelke, W. Kehr, M. Nielsen, and C. Braestrup, “Does the Reversal of the Anticonflict Effect of Phenobarbital by β-CCE and FG 7142 Indicate Benzodiazepine Receptor-Mediated Anxiogenic Properties?,” European Journal of Pharmacology 82, no. 3-4 (1982): 217–21. doi:10.1016/0014-2999(82)90517-9
  • S. A. Pogosyan, N. P. Grigoryan, and R. G. Paronikyan, “Synthesis and Anticonvulsant Activity of Dihydrochlorides of Indoline-3’-Spiro-1-(1,2,3,4-Tetrahydro)-β-Carboline Derivatives,” Pharmaceutical Chemistry Journal 41, no. 10 (2007): 527–8. doi:10.1007/s11094-008-0002-4
  • B. Sharma, S. Kaur, J. Legac, P. J. Rosenthal, and V. Kumar, “Synthesis, Antiplasmodial and Cytotoxic Evaluation of 1H-1,2,3-Triazole/Acyl Hydrazide Integrated Tetrahydro-β-Carboline-4-Aminoquinoline Conjugates,” Bioorganic and Medicinal Chemistry Letters 30, no. 2 (2020): 126810. doi:10.1016/j.bmcl.2019.126810
  • R. Brokamp, B. Bergmann, I. B. Müller, and S. Bienz, “Stereoselective Preparation of Pyridoxal 1,2,3,4-Tetrahydro-β-Carboline Derivatives and the Influence of Their Absolute and Relative Configuration on the Proliferation of the Malaria Parasite Plasmodium falciparum,” Bioorganic and Medicinal Chemistry 22, no. 6 (2014): 1832–7. doi:10.1016/j.bmc.2014.01.057
  • B. Sun, T. Morikawa, T. Matsuda, S. Tewtrakul, L. J. Wu, S. Harima, and M. Yoshikawa, “Structures of New β–Carboline-Type Alkaloids with Antiallergic Effects from Stellaria Dichotoma,” Journal of Natural Products 67, no. 9 (2004): 1464–9.
  • M. Gooyit, N. Tricoche, S. Javor, S. Lustigman, and K. D. Janda, “Exploiting the Polypharmacology of β-Carbolines to Disrupt O. volvulus Molting,” ACS Medicinal Chemistry Letters 6, no. 3 (2015): 339–43. doi:10.1021/ml500516r
  • S. Wu, Y. Fu, R. Yan, Y. Wu, X. Lei, and X. S. Ye, “Synthesis of Neamine-Carboline Conjugates for RNA Binding and Their Antibacterial Activities,” Tetrahedron 66, no. 19 (2010): 3433–40. doi:10.1016/j.tet.2010.03.034
  • Y. W. Park, and M. S. Nam, “Bioactive Peptides in Milk and Dairy Products: A Review,” Korean Journal for Food Science of Animal Resources 35, no. 6 (2015): 831–40. doi:10.5851/kosfa.2015.35.6.831
  • F. Montorsi, G. Brock, J. U. Stolzenburg, J. Mulhall, I. Moncada, H. R. H. Patel, D. Chevallier, K. Krajka, C. Henneges, R. Dickson, et al, “Effects of Tadalafil Treatment on Erectile Function Recovery following Bilateral Nervesparing Radical Prostatectomy: A Randomised Placebo-Controlled Study (REACTT),” European Urology 65, no. 3 (2014): 587–96. doi:10.1016/j.eururo.2013.09.051
  • C. Rundfeldt, and W. Loscher, “The Pharmacology of Imepitoin: The First Partial Benzodiazepine Receptor Agonist Developed for the Treatment of Epilepsy,” CNS Drugs 28, no. 1 (2014): 29–43. doi:10.1007/s40263-013-0129-z
  • K. I. Lee, M. J. Kim, H. Koh, J. I. Lee, S. Namkoong, W. K. Oh, and J. Park, “The Antihypertensive Drug Reserpine Induces Neuronal Cell Death through Inhibition of Autophagic Flux,” Biochemical and Biophysical Research Communications 462, no. 4 (2015): 402–8. doi:10.1016/j.bbrc.2015.04.145
  • K. Yao, M. Zhao, X. Zhang, Y. Wang, L. Li, M. Zheng, and S. Peng, “A Class of Oral N- (1S,3S)-1-Methyl-1,2,3,4-Tetrahydro-β-Carboline-3- Carbonyl.- N’ -(Amino-Acid-Acyl)Hydrazine: discovery, Synthesis, in Vitro anti-Platelet Aggregation/in Vivo Antithrombotic Evaluation and 3D QSAR Analysis,” European Journal of Medicinal Chemistry 46, no. 8 (2011): 3237–49. doi:10.1016/j.ejmech.2011.04.037
  • A. Badre, A. Boulanger, E. A. Mansour, B. Banaigs, G. Combaut, and C. Francisco, “Eudistomin U and Isoeudistomin U, New Alkaloids from the Carribean Ascidian Lissoclinum Fragile,” Journal of Natural Products 57, no. 4 (1994): 528–33. doi:10.1021/np50106a016
  • K. Rüben, A. Wurzlbauer, A. Walte, W. Sippl, F. Bracher, and W. Becker, “Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors,” Plos ONE 10, no. 7 (2015): e0132453–18. doi:10.1371/journal.pone.0132453
  • L. C. Tu, C. S. Chen, I. C. Hsiao, J. W. Chern, C. H. Lin, Y. C. Shen, and S. F. Yeh, “The β-Carboline Analog Mana-Hox Causes Mitotic Aberration by Interacting with DNA,” Chemistry & Biology 12, no. 12 (2005): 1317–24. doi:10.1016/j.chembiol.2005.09.014
  • S. Li, A. Wang, F. Gu, Z. Wang, C. Tian, Z. Qian, L. Tang, and Y. Gu, “Novel Harmine Derivatives for Tumor Targeted Therapy,” Oncotarget 6, no. 11 (2015): 8988–9001. doi:10.18632/oncotarget.3276
  • Z. Chen, R. Cao, B. Shi, W. Yi, L. Yu, H. Song, Z. Ren, and W. Peng, “Synthesis of Novel β-Carbolines with Efficient DNA Binding Capacity Cytotoxicity,” Bioorganic and Medicinal Chemistry Letters 20, no. 13 (2010): 3876–9. doi:10.1016/j.bmcl.2010.05.034
  • P. R. Bertelli, R. Biegelmeyer, E. Pacheco Rico, L. C. Klein-Junior, N. S. B. Toson, L. Minetto, S. L. A. Bordignon, A. L. Gasper, S. Moura, D. L. Oliveira, et al, “Toxicological Profile and Acetlycholinesterase Inhibitory Potential of Palicourea Deflexa, a Source of β-Carboline Alkaloids,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 201 (2017): 44–50.
  • H. Khan, S. Patel, and M. A. Kamal, “Pharmacological and Toxicological Profile of Harmane-β-Carboline Alkaloid: Friend or Foe,” Current Drug Metabolism 18, no. 9 (2017): 853–7. doi:10.2174/1389200218666170607100947
  • J. Reniers, S. Robert, R. Frederick, B. Masereel, S. Vincent, and J. Wouters, “Synthesis and Evaluation of β-Carboline Derivatives as Potential Monoamino Oxidase Inhibitors,” Bioorganic and Medicinal Chemistry. 19, no. 1 (2011): 134–44. doi:10.1016/j.bmc.2010.11.041
  • R. Chaniyara, S. Tala, C. W. Chen, X. Zang, R. Kakadiya, L. F. Lin, C. H. Chen, S. I. Chien, T. C. Chou, T. H. Tsai, et al, “Novel Antitumor Indolizino6,7-b.indoles with Multiple Modes of Action: DNA Cross-Linking and Topoisomerase I and II Inhibition,” Journal of Medicinal Chemistry 56, no. 4 (2013): 1544–63. doi:10.1021/jm301788a
  • A. M. Sobhani, S. A. Ebrahimi, and M. Mahmoudian, “An in Vitro Evaluation of Human DNA Topoisomerase I Inhibition by Peganum Harmala L. seeds Extract and Its β-Carboline Alkaloids,” Journal of Pharmaceutical Sciences 5, no. 1 (2002): 19–23.
  • Y. C. Shen, Y. T. Chang, C. L. Lin, C. C. Liaw, Y. H. Kuo, L. C. Tu, S. F. Yeh, and J. W. Chern, “Synthesis of 1-Substituted Carbazolyl-1,2,3,4-Tetrahydro- and Carbazolyl-3,4-Dihydro-β-Carboline Analogs as Potential Antitumor Agents,” Marine Drugs 9, no. 2 (2011): 256–77. doi:10.3390/md9020256
  • J. Ishida, H. K. Wang, K. F. Bastow, C. Q. Hu, and K. H. Lee, “Antitumor Agents 201. Cytotoxicity of Harmine and β-Carboline Analogs,” Bioorganic and Medicinal Chemistry Letters 9, no. 23 (1999): 3319–24. doi:10.1016/S0960-894X(99)00598-3
  • Y. C. Shen, C. Y. Chen, P. W. Hsieh, C. Y. Duh, Y. M. Lin, and C. L. Ko, “The Preparation and Evaluation of 1-Substituted 1,2,3,4-Tetrahydro- and 3,4-Dihydro-β-Carboline Derivatives as Potential Antitumor Agents,” Chemical and Pharmaceutical Bulletin 53, no. 1 (2005): 32–6. doi:10.1248/cpb.53.32
  • M. Sathish, B. Kavitha, V. L. Nayak, Y. Tangella, A. Ajitha, S. Nekkanti, A. Alarifi, N. Shankaraiah, N. Nagesh, and A. Kamal, “Synthesis of Podophyllotoxin Linked β-Carboline Congeners as Potential Anticancer Agents and DNA Topoisomerase II Inhibitors,” European Journal of Medicinal Chemistry 144 (2018): 557–71. doi:10.1016/j.ejmech.2017.12.055
  • Paul A. Barsanti, Weibo Wang, Zhi-Jie Ni, David Duhl, Nathan Brammeier, Eric Martin, Dirksen Bussiere, and Annette O. Walter, “The Discovery of Tetrahydro-β-Carbolines as Inhibitors of the Kinesin Eg5,” Bioorganic and Medicinal Chemistry Letters 20, no. 1 (2010): 157–60. doi:10.1016/j.bmcl.2009.11.012
  • J. I. Trujillo, M. J. Meyers, D. R. Anderson, S. Hegde, M. W. Mahoney, W. F. Vernier, I. P. Buchler, K. K. Wu, S. Yang, S. J. Hartmann, et al, “Novel Tetrahydro-β-Carboline-1-Carboxylic Acids as Inhibitors of Mitogen Activated Protein Kinase-Activated Protein Kinase 2 (MK-2),” Bioorganic & Medicinal Chemistry Letters 17, no. 16 (2007): 4657–63. doi:10.1016/j.bmcl.2007.05.070
  • Nagula Shankaraiah, Shalini Nekkanti, Karmarajsinh J. Chudasama, Kishna Ram Senwar, Pankaj Sharma, Manish Kumar Jeengar, V. G. M. Naidu, Vunnam Srinivasulu, Gannoju Srinivasulu, and Ahmed Kamal, “Design, Synthesis and Anticancer Evaluation of Tetrahydro-β-Carboline-Hydantoin Hybrids,” Bioorganic and Medicinal Chemistry Letters 24, no. 23 (2014): 5413–7. doi:10.1016/j.bmcl.2014.10.038
  • Y. Song, J. Wang, S. F. Teng, D. Kesuma, Y. Deng, J. Duan, J. H. Wang, R. Z. Qi, and M. M. Sim, “β–Carbolines as Specific Inhibitors of Cycline-Dependent Kinases,” Bioorganic and Medicinal Chemistry Letters 12, no. 7 (2002): 1129–32. doi:10.1016/S0960-894X(02)00094-X
  • A. Kamal, M. Sathish, V. L. Nayak, V. Srinivasulu, B. Kavitha, Y. Tangella, D. Thummuri, C. Bagul, N. Shankaraiah, and N. Nagesh, “Design and Synthesis of Dithiocarbamate Linked β–Carboline Derivatives: DNA Topoisomerase II Inhibition with DNA Binding and Apoptosis Inducing Ability,” Bioorganic and Medicinal Chemistry 23, no. 17 (2015): 5511–26. doi:10.1016/j.bmc.2015.07.037
  • J. A. Balfour, and M. M. T. Buckley, “Etodolac: A Reappraisal of Its Pharmacology and Therapeutic Use in Rheumatic Diseases and Pain States,” Drugs 42, no. 2 (1991): 274–99. doi:10.2165/00003495-199142020-00008
  • R. A. Kloner, M. Mitchell, and J. T. Emmick, “Cardiovascular Effects of Tadalafil,” The American Journal of Cardiology 92, no. 9 (2003): 37–46. doi:10.1016/S0002-9149(03)00074-2
  • J. Luxenberg, and L. Z. Feigenbaum, “The Use of Reserpine for Elderly Hypertensive Patients,” Journal of the American Geriatrics Society 31, no. 9 (1983): 556–9. doi:10.1111/j.1532-5415.1983.tb02201.x
  • J. Stöckigt, and M. H. Zenk, “Strictosidine (Isovincoside): the Key Intermediate in the Biosynthesis of Monoterpenoid Indole Alkaloids,” Journal of the Chemical Society, Chemical Communications 7, no. 18 (1977): 646–8. doi:10.1039/C39770000646
  • A. A. Leslie Gunatilaka, “Alkaloids from Sri Lankan Flora,” The Alkaloids: Chemistry and Biology, vol. 52 (London: Academic press Inc., 1999), 1–101.
  • M. H. Zenk, H. E. Shagi, H. Arens, J. Stockigt, E. W. Weiler, and B. Deus, “Formation of the Indole Alkaloids Serpentine and Ajmalicine in Cell Suspension Culture of Catharanthus Roseus,” in Plant Tissue Culture and Its Biotechnological Applications (Springer: Berlin, Heidelberg, 1977), 27–43.
  • G. Stork, D. Niu, A. Fujimoto, E. R. Koft, J. M. Balkovec, J. R. Tata, and G. R. Dake, “The First Stereoselective Total Synthesis of Quinine,” Journal of the American Chemical Society 123, no. 14 (2001): 3239–42. doi:10.1021/ja004325r
  • M. M. Heravi, V. Zadsirjan, and M. Malmir, “Application of the Asymmetric Pictet − Spengler Reaction in the Total Synthesis of Natural Products and Relevant Biologically Active Compounds,” Molecules 23, no. 4 (2018): 943–90. doi:10.3390/molecules23040943
  • L. Qi, H. Hou, F. Ling, and W. Zhong, “The Cinchona Alkaloid Squaramide Catalysed Asymmetric Pictet − Spengler Reaction and Related Theoretical Studies,” Organic & Biomolecular Chemistry 16, no. 4 (2018): 566–74. doi:10.1039/C7OB02606D
  • A. Pictet, and T. Spengler, “The Formation of Isoquinoline Derivatives by the Action of Methylal to Phenyl Ethylamine, Phenylalanine and Tyrosine,” Berichte Der Deutschen Chemischen Gesellschaft 44, no. 3 (1911): 2030–6. doi:10.1002/cber.19110440309
  • B. E. Love, “Synthesis of β–Carbolines. A Review,” Organic Preparations and Procedures International 28, no. 1 (1996): 1–64. doi:10.1080/00304949609355907
  • A. D. Patel, I. Panchal, I. Parmar, and B. Mishtry, “Synthesis of New Flavonoid and Chalcone Derivatives as Antimicrobial Agent by Green Chemistry Approach,” International Journal of Pharmacy and Pharmaceutical Sciences 8 (2017): 2725–30.
  • A. Spindler, K. Stefan, and M. Wiese, “Synthesis and Investigation of Tetrahydro-Bcarboline Derivatives as Inhibitors of the Breast Cancer Resistance Protein (ABCG2),” Journal of Medicinal Chemistry 59, no. 13 (2016): 6121–35. doi:10.1021/acs.jmedchem.6b00035
  • A. Penta, S. Chander, L. M. C. Chow, I. L. K. Wong, R. P. Singh, P. N. Jha, and M. Sankaranarayanan, “Synthesis and in-Vitro anti-Leishmanial Activity of (4- Arylpiperazin-1-yl)(1-(Thiophen-2-yl)-9H-Pyrido[3,4-b]Indol-3-yl)Methanone Derivatives,” Bioorganic Chemistry. 70 (2017): 100–6.
  • A. Penta, S. Chander, T. K. Smith, and M. Sankaranarayanan, “Design, Synthesis and Biological Evaluation of Piperazinyl-β-Carbolinederivatives as anti-Leishmanial Agents Penta,” European Journal of Medicinal Chemistry 150 (2018): 559–66.
  • Dharmender Singh, Nisha Devi, Vipin Kumar, Chandi C. Malakar, Saloni Mehra, Sunita Rattan, Ravindra K. Rawal, and Virender Singh, “Natural Product Inspired Design and Synthesis of β-Carboline and γ-Lactone Based Molecular Hybrids,” Organic & Biomolecular Chemistry 14, no. 34 (2016): 8154–66. doi:10.1039/C6OB01216G
  • V. Singh, S. Hutait, and S. Batra, “Baylis–Hillman Reaction of 1-Formyl-β-Carboline: One-Step Synthesis of the Canthin-6-One Framework by an Unprecedented Cascade Cyclization Reaction,” European Journal of Organic Chemistry 2009, no. 35 (2009): 6211–6. doi:10.1002/ejoc.200900962
  • V. Singh, and S. Batra, “1-Formyl-9H-β-Carboline: A Useful Scaffold for Synthesizing Substituted- and Fused β–Carbolines,” Current Organic Synthesis 9, no. 4 (2012): 513–28.
  • N. Devi, S. Kumar, S. K. Pandey, and V. Singh, “1(3)-Formyl-Carbolines: Potential Aldo-X Precursors for the Synthesis of β-Carboline-Based Molecular Architectures,” Asian Journal of Organic Chemistry 7, no. 1 (2018): 6–36. doi:10.1002/ajoc.201700477
  • S. Samundeeswari, M. V. Kulkarni, S. D. Joshi, S. R. Dixit, J. Srinivasan, and R. M. Ezhilarasi, “Synthesis and Human Anticancer Cell Line Studies on Coumarin-β;- Carboline Hybrids as Possible Antimitotic Agents,” ChemistrySelect 1, no. 15 (2016): 5019–24. doi:10.1002/slct.201601020
  • C. Li, X. Zhang, M. Zhao, Y. Wang, J. Wu, J. Liu, M. Zheng, and S. Peng, “A Class of Novel N-(1-Methyl-β-Carboline-3-Carbonyl)-N’-(Aminoacid-Acyl)-Hydrazines: Aromatization Leaded Design, Synthesis, in Vitro anti-Platelet Aggregation/in Vivo anti-Thrombotic Evaluation and 3D QSAR Analysis,” European Journal of Medicinal Chemistry 46, no. 11 (2011): 5598–608. doi:10.1016/j.ejmech.2011.09.027
  • B. Pohl, T. Luchterhandt, and F. Bracher, “Total Syntheses of the Chlorinated β-Carboline Alkaloids Bauerine A, B, and C,” Synthetic Communications 37, no. 8 (2007): 1273–80. doi:10.1080/00397910701226228
  • K. E. Judd, M. F. Mahon, and L. Caggiano, “Efficient Synthesis of Tetrahydro-β-Carbolin-1-One and Dihydroisoquinoli-1-One Derivatives as Versatile Intermediates,” Synthesis 2009, no. 16 (2009): 2809–17.
  • J. T. Brogan, S. L. Stoops, B. B. Crews, L. J. Marnett, and C. W. Lindsley, “Total Synthesis of (+)-7-Bromotrypargine and Unnatural Analogues: Biological Evaluation Uncovers Activity at CNS Targets of Therapeutic Relevance,” ACS Chemical Neuroscience 2, no. 11 (2011): 633–9. doi:10.1021/cn200075n
  • S. Saha, C. V. R. Reddy, and B. Patro, “Facile Two-Step Synthesis of Crispine a and Harmicine by Cyclopropylimine Rearrangement,” Tetrahedron Letters 52, no. 31 (2011): 4014–6. doi:10.1016/j.tetlet.2011.05.117
  • K. C. Nicolaou, U. Majumder, S. P. Roche, and D. Y. K. Chen, “Construction of the “Left-Domain” of Halophytine,” Angewandte Chemie International Edition 46, no. 25 (2007): 4715–8. doi:10.1002/anie.200701947
  • F. B. Panosyan, and I. W. J. Still, “An Efficient Route to 5-Iodo-1-Methylimidazole: synthesis of Xestomanzamine A,” Canadian Journal of Chemistry 79, no. 7 (2001): 1110–4. doi:10.1139/v01-092
  • M. Amat, F. Subrizi, V. Elias, N. Llor, E. Molins, and J. Bosch, “Cyclocondensation Reactions between 2-Acyl-3-Indoleacetic Acid Derivatives and Phenylglycinol: Enantioselective Synthesis of 1-Substituted Tetrahydro-β-Carboline Alkaloids,” European Journal of Organic Chemistry 2012, no. 9 (2012): 1835–42. doi:10.1002/ejoc.201101718
  • F. L. Spisa, F. Meneghetti, B. Pozzi, and G. C. Tron, “Synthesis of Heteroarylogous 1H—Indole-3-Carboxamidines via a Three-Component Interrupted Ugi Reaction,” Synthesis 47, no. 4 (2015): 489–96.
  • S. Eagon, and M. O. Anderson, “Microwave-Assisted Synthesis of Tetrahydro-β-Carbolines and β-Carbolines,” European Journal of Organic Chemistry 2014, no. 8 (2014): 1653–65. doi:10.1002/ejoc.201301580
  • N. Srinivasan, and A. Ganesan, “Highly Efficient Lewis Acid-Catalysed Pictet–Spengler Reactions Discovered by Parallel Screening,” Chemical Communications no. 7 (2003): 916–7. doi:10.1039/b212063a
  • L. Liu, Y. Y. Xu, Z. Q. Yang, J. N. Xiang, and G. Y. Xu, “Synthesis and Cytotoxic Activity of 3-Phenyl-4-Substituted-β-Carbolines,” Chinese Chemical Letters 23, no. 11 (2012): 1230–2. doi:10.1016/j.cclet.2012.09.010
  • N. Battini, A. K. Padala, N. Mupparapu, R. A. Vishwakarma, and Q. N. Ahmed, “Unexplored Reactivity of 2-Oxoaldehydes towards Pictet–Spengler Conditions: concise Approach to -Carboline Based Marine Natural Products,” RSC Advances 4, no. 50 (2014): 26258–63. doi:10.1039/c4ra01387e
  • S. U. Dighe, S. K. Samanta, S. Kolle, and S. Batra, “Iodine-Mediated Oxidative Pictet-Spengler Reaction Using Terminal Alkyne as the 2-Oxoaldehyde Surrogate for the Synthesis of 1-Aroyl-β-Carbolines and Fused-Nitrogen Heterocycles,” Tetrahedron 73, no. 17 (2017): 2455–67. doi:10.1016/j.tet.2017.03.031
  • Y. P. Zhu, M. C. Liu, Q. Cai, F. C. Jia, and A. X. Wu, “A Cascade Coupling Strategy for One-Pot Total Synthesis of –Carboline and Isoquinoline-Containing Natural Products and Derivatives,” Chemistry - A European Journal 19, no. 31 (2013): 10132–7. doi:10.1002/chem.201301734
  • H. Song, Y. Liu, and Q. Wang, “Cascade Electrophilic Iodocyclization: Efficient Preparation of 4-Iodomethyl Substituted Tetrahydro-β-Carbolines and Formal Synthesis of Oxopropaline G,” Organic Letters 15, no. 13 (2013): 3274–7. doi:10.1021/ol401303f
  • K. Huber, L. Brault, O. Fedorov, C. Gasser, P. Filippakopoulos, A. N. Bullock, D. Fabbro, J. Trappe, J. Schwaller, S. Knapp, and F. Bracher, “7,8-Dichloro-1-Oxo-Bcarbolines as a Versatile Scaffold for the Development of Potent and Selective Kinase Inhibitors with Unusual Binding Modes,” Journal of Medicinal Chemistry 55, no. 1 (2012): 403–13. doi:10.1021/jm201286z
  • Sarah E. O'Connor, and Justin J. Maresh, “Chemistry and Biology of Monoterpene Indole Alkaloid Biosynthesis,” Natural Product Reports 23, no. 4 (2006): 532–47. doi:10.1039/b512615k
  • A. R. Battersby, J. C. Byrne, R. S. Kapil, J. A. Martin, T. G. Payne, D. Arigoni, and P. Loew, “The Mechanism of Indole Alkaloid Biosynthesis,” Chemical Communications no. 16 (1968): 951–3.
  • L. N. Wang, S. L. Shen, and J. Qu, “Simple and Efficient Synthesis of Tetrahydroβ-Carbolines via the Pictet-Spengler Reaction in 1,1,1,3,3,3-Hexafluoro-2-Propanol (HFIP),” RSC Advances 4, no. 58 (2014): 30733–41. doi:10.1039/C4RA03628J
  • M. Singh, P. Awasthi, and V. Singh, “Iodine Catalysed Synthesis of Luminescent β-Carboline Tethered thiazolo4,5-c.carbazole and naphtho2,1-d.thiazole Derivatives and Estimation of Their Light Emitting Properties,” European Journal of Organic Chemistry 8 (2020): 1023–41.
  • D. NikolíC, T. Gödecke, S. N. Chen, J. White, D. C. Lankin, G. F. Pauli, and R. B. van Breemen, “Mass Spectrometric Dereplication of Nitrogen-Containing Constituents of Black Cohosh (Cimifuga Racemosa L.),” Fitoterapia 83, no. 3 (2012): 441–60. doi:10.1016/j.fitote.2011.12.006
  • A. Dömling, and I. Ugi, “Multicomponent Reactions with Isocyanide,” Angewandte Chemie 39, no. 18 (2000): 3168–210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
  • C. M. Roggero, J. M. Giulietti, and S. P. Mulcahy, “Efficient Synthesis of Eudistomin U and Evaluation of Its Cytotoxicity,” Bioorganic and Medicinal Chemistry Letters 24, no. 15 (2014): 3549–51. doi:10.1016/j.bmcl.2014.05.049
  • B. Shi, R. Cao, W. Fan, L. Guo, Q. Ma, X. Chen, G. Zhang, L. Qiu, and H. Song, “Design, Synthesis and in Vitro and in Vivo Antitumor Activities of Novel Bivalent Bcarbolines,” European Journal of Medicinal Chemistry 60 (2013): 10–22. doi:10.1016/j.ejmech.2012.11.033
  • H. Zeng, Z. Wang, and C. J. Li, “Two-in-One Strategy for Palladium-Catalyzed C-H Functionalization in Water,” Angewandte Chemie International Edition 58, no. 9 (2019): 2859–63. doi:10.1002/anie.201813391
  • E. Duval, and G. D. Cuny, “One Example with an Additional 4-Methyl Group is Also Presented in This Publication,” Tetrahedron Letters 45, no. 28 (2004): 5411–3. doi:10.1016/j.tetlet.2004.05.053
  • I. T. Raheem, P. S. Thiara, E. A. Peterson, and E. N. Jacobsen, “Enantioselective Pictet-Spengler-Type Cyclizations of Hydroxylactams: H-Bond Donor Catalysis by Anion Binding,” Journal of the American Chemical Society 129, no. 44 (2007): 13404–5. doi:10.1021/ja076179w
  • M. J. Wanner, R. N. S. V. Haas, K. R. de Cuba, J. H. V. Maarseveen, and H. Hiemstra, “Catalytic Asymmetric Pictet-Spengler Reactions via Sulfenyliminium Ions,” Angewandte Chemie International Edition 46, no. 39 (2007): 7485–7. nodoi:10.1002/anie.200701808
  • C. A. Holloway, M. E. Muratore, R. I. Storer, and D. J. Dixon, “Direct Enantioselective Bronsted Acid Catalyzed N-Acyliminium Cyclization Cascades of Tryptamines and Ketoacids,” Organic Letters 12, no. 21 (2010): 4720–3. doi:10.1021/ol101651t
  • F. R. B. Hamdan, and J. L. Leighton, “Highly Enantioselective Pictet-Spengler Reactions with α–Ketoamide-Derived Ketimines: Access to an Unusual Class of Quaternary α–Amino Amides,” Angewandte Chemie International Edition 48, no. 13 (2009): 2403–6. doi:10.1002/anie.200806110
  • C. M. Adolph, J. Werth, R. Selvaraj, E. C. Wegener, and C. Uyeda, “Dehydrogenative Transformations of Imines Using a Heterogenous Photocatalyst,” The Journal of Organic Chemistry 82, no. 11 (2017): 5959–65. doi:10.1021/acs.joc.7b00617
  • Y. He, P. K. Agarwal, I. N. C. Kiran, Y. Ruocheng, B. Cao, C. Zou, X. Zhou, H. Xu, B. Xu, L. Zhu, et al, “Efficient Synthesis of Dimeric Oxazoles, Piperidine and Tetrahydroisoquinolines from N-Substituted 2-Oxazolones,” Chemistry - A European Journal 22, no. 23 (2016): 7696–701. doi:10.1002/chem.201601471
  • L. R. Wen, Q. Dou, Y. C. Wang, J. W. Zhang, W. S. Guo, and M. Li, “Synthesis of 1-Thio-Substituted Isoquinoline Derivatives by Tandem Cyclization,” The Journal of Organic Chemistry 82, no. 3 (2017): 1428–36. doi:10.1021/acs.joc.6b02605
  • G. Zeni, and R. C. Larock, “Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition,” Chemical Reviews 106, no. 11 (2006): 4644–80. doi:10.1021/cr0683966
  • T. A. Engler, and J. Wanner, “Lewis Acid-Directed Cyclocondensation of Piperidone Enol Ethers with 2-Methoxy-4-(N-Phenylsulfonyl)-1,4-Benzoquinoneimine: A New Regioselective Synthesis of Oxygenated Carbolines,” The Journal of Organic Chemistry 65, no. 8 (2000): 2444–57. doi:10.1021/jo9916176
  • K. Huber, O. Kast, and F. Bracher, “A Versatile Synthesis of 3-Substituted 4-Cyano-1,2,3,4-Tetrahydro-1-Oxo-β-Carbolines,” Synthesis, 2010, no. 22 (2010): 3849–54.
  • R. S. Fornicola, K. Subburaj, and J. Montgomery, “A New Entry to the Isogeissoschizoid Skeleton,” Organic Letters 4, no. 4 (2002): 615–7. doi:10.1021/ol017213t
  • Ashish Patel, Drashti Shah, Naiya Patel, Khushbu Patel, Nidhi Soni, Afzal Nagai, Umang Shah, Mehul Patel, Swayamprakash Patel, Bhargav Bhimani, et al, “Quinoxaline as Ubiquitous Structural Fragment: An Update on the Recent Development of Its Green Synthetic Approaches,” Current Organic Chemistry 25, no. 24 (2021): 3004–16. doi:10.2174/1385272825666211125102145
  • A. Patel, D. Shah, N. Patel, K. Patel, N. Soni, A. Nagani, P. Parikh, H. Shah, and T. Bambharoliya, “Benzimidazole as Ubiquitous Structural Fragment: An Update on Development of Its Green Synthetic Approaches,” Mini-Reviews in Organic Chemistry 18, no. 8 (2021): 1064–85. doi:10.2174/1570193X17999201211194908

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.