195
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Facile, One-pot, and Green Method for Synthesis of 2-Aryl-3-(Phenylamino)Dihydroquinazolin-4(1H)-One Derivatives Using Sodium Lauryl Sulfate (SLS) in Aqueous Media at the Room Temperature

, , , , , & show all
Pages 981-993 | Received 11 Aug 2022, Accepted 18 Feb 2023, Published online: 08 Mar 2023

References

  • P. G. Jessop, “The Use of Auxiliary Substances (e.g. Solvents, Separation Agents) Should Be Made Unnecessary Wherever Possible and Innocuous When Used,” Green Chemistry 18, no. 9 (2016): 2577–8. doi:10.1039/C6GC90039A
  • H. C. Erythropel, J. B. Zimmerman, T. M. De Winter, L. Petitjean, F. Melnikov, C. H. Lam, A. W. Lounsbury, K. E. Mellor, N. Z. Janković, Q. Tu, et al. “The Green ChemisTREE: 20 Years after Taking Root with the 12 Principles,” Green Chemistry 20, no. 9 (2018): 1929–61. doi:10.1039/C8GC00482J
  • A. Moazzam and F. Jafarpour, “Chlorophyll-catalyzed Photochemical Regioselective Coumarin C–H Arylation with Diazonium Salts,” New Journal of Chemistry 44, no. 39 (2020): 16692–6. doi:10.1039/D0NJ02012E
  • D. Paprocki, A. Madej, D. Koszelewski, A. Brodzka, and R. Ostaszewski, “Multicomponent Reactions Accelerated by Aqueous Micelles,” Frontiers in Chemistry 6 (2018): 1–21. doi:10.3389/fchem.2018.00502
  • K. Manabe, Y. Mori, T. Wakabayashi, S. Nagayama, and S. Kobayashi, “Organic Synthesis inside Particles in Water: Lewis Acid − Surfactant-combined Catalysts for Organic Reactions in Water Using Colloidal Dispersions as Reaction Media,” Journal of the American Chemical Society 122, no. 30 (2000): 7202–7. doi:10.1021/ja001420r
  • R. El-Sayed, and A. A. Fadda, “Synthesis of Pharmacological Heterocyclic Derivatives Based Surfactants,” Journal of Oleo Science 65, no. 11 (2016): 929–40. doi:10.5650/jos.ess15300
  • A. Abdelmajeid, M. S. Amine, and R. A. Hassan, “Fatty Acids in Heterocyclic Synthesis. Part XVII: Synthesis of Non Ionic Surfactants Containing Piperidine, Piperazine, Imidazole Based on Thiadiazole and Microbiological Activities Evaluation,” International Journal of Organic Chemistry 07, no. 04 (2017): 346–68. doi:10.4236/ijoc.2017.74029
  • R. El-Sayed, H. H. Alotaibi, and H. A. Elhady, “Synthesis, Surface Parameters, and Biodegradability of Water-soluble Surfactants for Various Applications,” Journal of Oleo Science 67, no. 5 (2018): 551–69. doi:10.5650/jos.ess17214
  • I. A. Gad El-Karim, M. S. Amine, A. A. Mahmoud, and A. S. Gouda, “Fatty Acids in Heterocyclic Synthesis. Part XIV: Synthesis of Surface Active Agents from Some Novel Class of Oxadiazole, Thiadiazole and Triazole Derivatives Having Microbiological Activities,” Journal of Surfactants and Detergents 17, no. 3 (2014): 509–23. doi:10.1007/s11743-013-1530-9
  • U. Kanbur, G. Zang, A. L. Paterson, P. Chatterjee, R. A. Hackler, M. Delferro, I. I. Slowing, F. A. Perras, P. Sun, and A. D. Sadow, “Catalytic Carbon-carbon Bond Cleavage and Carbon-element Bond Formation Give New Life for Polyolefins as Biodegradable Surfactants,” Chem 7, no. 5 (2021): 1347–62. doi:10.1016/j.chempr.2021.03.007
  • K. Manabe, X.-M. Sun, and S. j Kobayashi, “Dehydration Reactions in Water. Surfactant-type Brønsted Acid-catalyzed Direct Esterification of Carboxylic Acids with Alcohols in an Emulsion System,” Journal of the American Chemical Society 123, no. 41 (2001): 10101–2. doi:10.1021/ja016338q
  • G. I. Anderton, A. S. Bangerter, T. C. Davis, Z. Feng, A. J. Furtak, J. O. Larsen, T. L. Scroggin, and J. M. Heemstra, “Accelerating Strain-promoted Azide–Alkyne Cycloaddition Using Micellar Catalysis,” Bioconjugate Chemistry 26, no. 8 (2015): 1687–91. doi:10.1021/acs.bioconjchem.5b00274
  • C. Srinivas, C. N. S. S. P. Kumar, V. J. Rao, and S. Palaniappan, “Green Approach for the Synthesis of Quinoxaline Derivatives in Water Medium Using Reusable Polyaniline-sulfate Salt Catalyst and Sodium Laurylsulfate,” Catalysis Letters 121, no. 3-4 (2008): 291–6. doi:10.1007/s10562-007-9335-y
  • Sheng-Hui Li, Yan-Hong Shen, Na Gao, and Ji-Tai Li, “One-pot Synthesis of Some New Pyrido[2,3-d]Pyrimidine Derivatives Catalyzed by Sodium Lauryl Sulfate in Aqueous Media,” E-Journal of Chemistry 7, no. 3 (2010): 779–84. doi:10.1155/2010/230707
  • P. K. Sahu, P. K. Sahu, M. S. Kaurav, M. Messali, S. M. Almutairi, P. L. Sahu, and D. D. Agarwal, “One-pot Facile and Mild Construction of Densely Functionalized Pyrimidines in Water via Consecutive C–C and C–S Bonds Formation,” RSC Advances 8, no. 59 (2018): 33952–9. doi:10.1039/C8RA04363A
  • D. R. Merchán Arenas, C. A. Martínez Bonilla, and V. V. Kouznetsov, “Aqueous SDS Micelle-promoted Acid-catalyzed Domino ABB′ Imino Diels–Alder Reaction: A Mild and Efficient Synthesis of Privileged 2-Methyl-Tetrahydroquinoline Scaffolds,” Organic & Biomolecular Chemistry 11, no. 22 (2013): 3655–63. doi:10.1039/c3ob40171e
  • A. Kumar, M. S. Rao, and V. K. Rao, “Sodium Dodecyl Sulfate‐assisted Synthesis of 1‐ (Benzothiazolylamino)Methyl‐2‐Naphthols in Water,” Australian Journal of Chemistry 63, no. 11 (2010): 1538–40. doi:10.1071/CH10209
  • F. Gholami, A. Moazzam, S. Hosseini, B. Larijani, M. Adib, and M. Mahdavi, “Simple, Green and One Pot New Strategy for Synthesis of the Phthalimide Derivatives,” Tetrahedron Letters 100 (2022): 153859. doi:10.1016/j.tetlet.2022.153859
  • M. Henary, S. Paranjpe, and E. A. Owens, “Substituted Benzothiazoles: Synthesis and Medicinal Characteristics,” Heterocyclic Communication 19, no. 2 (2013): 89–99. doi:10.1515/hc-2013-0026
  • A. Rahmati, A. Moazzam, and Z. Khalesi, “A One-pot Four-component Synthesis of N-Arylidene-2-Aryl-Imidazo[1,2-a]Azin-3-Amines,” Tetrahedron Letters 55, no. 29 (2014): 3840–3. doi:10.1016/j.tetlet.2014.03.098
  • A. Moazzam, M. Khodadadi, F. Jafarpour, and M. Ghandi, “Dual Role of Oxoaldehydes: Divergent Synthesis of 3-Aryl- and 3-Aroylcoumarins,” The Journal of Organic Chemistry 87, no. 5 (2022): 3630–7. doi:10.1021/acs.joc.1c02159
  • Y. Ju, and R. S. Varma, “Aqueous N-Heterocyclization of Primary Amines and Hydrazines with Dihalides: Microwave-assisted Syntheses of N-Azacycloalkanes, Isoindole, Pyrazole, Pyrazolidine, and Phthalazine Derivatives,” The Journal of Organic Chemistry 71, no. 1 (2006): 135–41. doi:10.1021/jo051878h
  • N. Sepehri, M. Khoshneviszadeh, S. Moghadam Farid, S. S. Moayedi, M. S. Asgari, A. Moazzam, S. Hosseini, H. Adibi, B. Larijani, S. Pirhadi, et al, “Design, “Synthesis, Biological Evaluation, and Molecular Docking Study of Thioxo-2,3-Dihydroquinazolinone Derivative as Tyrosinase Inhibitors,” Journal of Molecular Structure 1253 (2022): 132283.
  • M. Sohrabi, M. Nazari Montazer, S. Moghadam Farid, N. Tanideh, M. Dianatpour, A. Moazzam, K. Zomorodian, S. Yazdanpanah, M. Asadi, S. Hosseini, et al. “Design and Synthesis of Novel Nitrothiazolacetamide Conjugated to Different Thioquinazolinone Derivatives as Anti-urease Agents,” Scientific Reports 12, no. 1 (2022): 1–14. doi:10.1038/s41598-022-05736-4
  • V. Alagarsamy, V. R. Solomon, and S. Murugesan, “Synthesis and Pharmacological Evaluation of Some 3-(2-Methylphenyl)-2-Substituted Amino-Quinazolin-4(3H)-Ones as Analgesic and Anti-inflammatory Agents,” Arzneimittel-Forschung/Drug Research 58, no. 4 (2008): 174–81.
  • V. Alagarsamy, S. Murugesan, K. Dhanabal, M. Murugan, and E. De Clercq, “AntiHIV, Antibacterial and Antifungal Activities of Some Novel 2-Methyl-3-(Substituted Methylamino)-(3H)-Quinazolin-4-Ones,” Indian Journal of Pharmaceutical Sciences 69, no. 2 (2007): 304–7. doi:10.4103/0250-474X.33167
  • G. M. Chinigo, M. Paige, S. Grindrod, E. Hamel, S. Dakshanamurthy, M. Chruszcz, W. Minor, and M. L. Brown, “Asymmetric Synthesis of 2,3-Dihydro-2-Arylquinazolin-4-Ones: Methodology and Application to a Potent Fluorescent Tubulin Inhibitor with Anticancer Activity,” Journal of Medicinal Chemistry 51, no. 15 (2008): 4620–31. doi:10.1021/jm800271c
  • Z. Wang, M. Wang, X. Yao, Y. Li, J. Tan, L. Wang, W. Qiao, Y. Geng, Y. Liu, and Q. Wang, “Design, Synthesis and Antiviral Activity of Novel Quinazolinones,” European Journal of Medicinal Chemistry 53 (2012): 275–82. doi:10.1016/j.ejmech.2012.04.010
  • C. G. Bonde, A. Peepliwal, and N. J. Aikwad, “Synthesis and Antimycobacterial Activity of Azetidine-, Quinazoline-, and Triazolo-thiadiazole-containing Pyrazines,” Archiv Der Pharmazie 343, no. 4 (2010): 228–36.
  • S. Eguchi, T. Suzuki, T. Okawa, Y. Matsushita, E. Yashima, and Y. Okamoto, “Synthesis of Optically Active Vasicinone Based on Intramolecular Aza-Wittig Reaction and Asymmetric Oxidation1,” The Journal of Organic Chemistry 61, no. 21 (1996): 7316–9. doi:10.1021/jo9609283
  • J. Bergman and A. Brynolf, “ Ynthesis of Chrysogine, a Metabolite of Penicillium chrysogenum and Some Related 2-Substituted 4-(3H)-Quinazolinones,” Tetrahedron 46, no. 4 (1990): 1295–310. doi:10.1016/S0040-4020(01)86694-1
  • E. F. Van Zyl, “A Survey of Reported Synthesis of Methaqualone and Some Positional and Structural Isomers,” Forensic Science International 122, no. 2-3 (2001): 142–9. doi:10.1016/S0379-0738(01)00484-4
  • C. Ferrando, J. M. Foy, C. N. F. W. Pratt, and J. R. Purvis, “On the Pharmacological Actions of a Diuretic, Fenquizone, with Particular Reference to Its Site of Action,” Journal of Pharmacy and Pharmacology 33, no. 1 (2011): 219–22. doi:10.1111/j.2042-7158.1981.tb13761.x
  • S. Jiang, Q. Zeng, M. Gettayacamin, A. Tungtaeng, S. Wannaying, A. Lim, P. Hansukjariya, C. O. Okunji, S. Zhu, and D. Fang, “Antimalarial Activities and Therapeutic Properties of Febrifugine Analogs,” Antimicrobial Agents and Chemotherapy 49, no. 3 (2005): 1169–76.
  • X. Zhu, S. R. Kang, L. Xia, J. Lee, N. Basavegowda, and Y. R. Lee, “Efficient Cu(OTf)2-catalyzed Synthesis of Novel and Diverse 2,3-Dihydroquinazolin-4(1H)-Ones,” Molecular Diversity 19, no. 1 (2015): 67–75. doi:10.1007/s11030-014-9557-z
  • B.R. Yan, X.-Y. Lv, H. Du, M.-N. Gao, J. Huang, and X.-P. Bao, “Plant Extracts as “Green” Corrosion Inhibitors for Steel in Sulphuric Acid,” Chemical Papers 70, no. 9 (2016): 1131–43.
  • B. Mirza, “An Efficient Metal-free Synthesis of 2-Amino-Substituted-4(3H)-Quinazolinones,” Tetrahedron Letters 57, no. 1 (2016): 146–7. doi:10.1016/j.tetlet.2015.11.085
  • W. L. F. Armarego, “Quinazolines,” Advances in Heterocyclic Chemistry 1 (1963): 253–309.
  • K. Ozaki, Y. Yamada, T. Oine, T. Ishizuka, and Y. Iwasawa, “Studies on 4(l H)-Quinazolinones. Synthesis and Antiinflammatory Activity of 4(l H)-Quinazolinone Derivatives,” Journal of Medicinal Chemistry 28, no. 5 (1985): 568–76. doi:10.1021/jm50001a006
  • M. Badolato, F. Aiello, and N. Neamati, “2,3-Dihydroquinazolin-4(1H)-One as a Privileged Scaffold in Drug Design,” RSC Advances 8, no. 37 (2018): 20894–921. doi:10.1039/C8RA02827C
  • X.-S. Wang, K. Yang, J. Zhou, and S.-J. Tu, “Facile Method for the Combinatorial Synthesis of 2,2-Disubstituted Quinazolin-4(1H)-One Derivatives Catalyzed by Iodine in Ionic Liquids,” ACS Combinatorial Science 12, no. 4 (2010): 417–21.
  • X.-S. Wang, K. Yang, M.-M. Zhang, and C.-S. Yao, “Synthesis of 2-Arylquinazolin-4(3H)-One Derivatives Catalyzed by Iodine in [Bmim+],” Synthetic Communications 40, no. 17 (2010): 2633–46. doi:10.1080/00397910903318609
  • F. Miklós, V. Hum, and F. Fülöp, “Eco-friendly Syntheses of 2,2-Disubstituted- and 2-Spiroquinazolinones,” Arkivoc 2014, no. 6 (2014): 25–37. doi:10.3998/ark.5550190.p008.717
  • S.-C. Li, W.-F. Jhang, T.-J. Liou, and D.-Y. Yang, “Photochemical Synthesis of Indazolo[3,2-b]Quinazolines and Their Redox-switching Properties,” Dyes and Pigments 114 (2015): 259–66. doi:10.1016/j.dyepig.2014.11.020
  • M. Wang, J. J. Gao, Z. G. Song, and L. Wang, “Cerium(IV) Ammonium Nitrate Catalyzed Green Synthesis of 2-Substituted 2,3-Dihydro-Quinazolin-4(1H)-Ones Using a Grinding Technique,” Chemistry of Heterocyclic Compounds 47, no. 7 (2011): 851–5. doi:10.1007/s10593-011-0846-5
  • R. K. Jadhav, S. S. Mahurkar, and D. R. Munde, “An Efficient and Simple Method for Synthesis of 2-Phenyl-2,3-Dihydroquinazolin-4(1H)-Ones Catalyzed by ImidazoliumIonic Liquids,” International Journal of Research and Analytical Reviews 6, no. 1 (2019): 498–502.
  • K. Ramesh, K. Karnakar, G. Satish, B. S. P. Anil Kumar, and Y. V. D. Nageswar, “A Concise Aqueous Phase Supramolecular Synthesis of 2-Phenyl-2,3-Dihydroquinazolin-4(1H)-One Derivatives,” Tetrahedron Letters 53, no. 51 (2012): 6936–9. doi:10.1016/j.tetlet.2012.10.029
  • Y. Ma, D. Ren, J. Zhang, J. Liu, J. Zhao, L. Wang, and F. Zhang, “Synthesis, Antibacterial Activities Evaluation, and Docking Studies of Some 2-Substituted-3-(Phenylamino)-Dihydroquinazolin-4(1 H)-Ones,” Tetrahedron Letters 56, no. 27 (2015): 4076–9. doi:10.1016/j.tetlet.2015.05.020
  • A. Maleki, M. Aghaei, H. R. Hafizi-Atabak, and M. Ferdowsi, “Ultrasonic Treatment of CoFe2O4@B2O3-SiO2 as a New Hybrid Magnetic Composite Nanostructure and Catalytic Application in the Synthesis of Dihydroquinazolinones,” Ultrasonics Sonochemistry 37 (2017): 260–6. doi:10.1016/j.ultsonch.2017.01.022
  • G. Mohammadi Ziarani, Z. Kazemi Asl, P. Gholamzadeh, A. Badiei, and M. Afshar, “The Use of SrFe12O19 Magnetic Nanoparticles as an Efficient Catalyst in the Modified Niementowski Reaction,” Applied Organometallic Chemistry 31, no. 12 (2017): e3830–7. doi:10.1002/aoc.3830
  • A. A. Mohammadi, R. Ahdenov, and A. Abolhasani. Sooki, “Design, Synthesis and Antibacterial Evaluation of 2-Alkyl- and 2-Aryl-3-(Phenylamino)Quinazolin-4(3H)-One Derivatives,” Heterocyclic Communications 23, no. 2 (2017): 105–8. doi:10.1515/hc-2016-0201

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.