41
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical Study on Design and Feasibility of Novel Circumtrindene Derivatives to Remove Ionic Contaminants

, ORCID Icon, &
Pages 1037-1056 | Received 19 Sep 2022, Accepted 23 Feb 2023, Published online: 13 Mar 2023

References

  • S. J. S. Flora, V. Pachauri, “Chelation in Metal Intoxication,” International Journal of Environmental Research and Public Health 7, no. 7 (2010): 2745–88. doi:10.3390/ijerph7072745
  • L. A. Malik, A. Bashir, A. Qureashi, and A. H. Pandith, “Detection and Removal of Heavy Metal Ions: A Review,” Environmental Chemistry Letters 17, no. 4 (2019): 1495–521. doi:10.1007/s10311-019-00891-z
  • L. Liu, S. Liu, L. Zhao, G. Su, X. Liu, H. Peng, J. Xue, and A. Tang, “Fabrication of Novel Magnetic Core-Shell Chelating Adsorbent for Rapid and Highly Efficient Adsorption of Heavy Metal Ions from Aqueous Solution,” Journal of Molecular Liquids 313 (2020): 113593–47. doi:10.1016/j.molliq.2020.113593
  • T. Wajima, K. Murakami, T. Kato, and K. Sugawara, “Preparation of Carbonaceous Heavy Metal Adsorbent from Coal Using Sulfur Impregnation,” Energy Sources, Part A 32, no. 5 (2010): 442–9. doi:10.1080/15567030802612218
  • S. Radi, Y. Toubi, M. Bacquet, S. Degouti, and F. Cazier, “1-(Pyridin-2-yl) Imine Functionalized Silica Gel: synthesis, Characterization, and Preliminary Use in Metal Ion Extraction,” Separation Science and Technology 48, no. 9 (2013): 1349–55. doi:10.1080/01496395.2012.726309
  • A. E. Sherbini, K. S. Kenawy, I. M. M. Hamed, M. A. Issa, and R. M. Elmorsi, “Separation and Preconcentration in a Batch Mode of Cd(II), Cr(III, VI), Cu(II), Mn(II, VII) and Pb(II) by Solid-Phase Extraction by Using of Silica Modified with N-Propylsalicylaldimine,” Talanta 2 (2002): 289–300. doi:10.1016/s0039-9140(02)00248-5
  • A. M. Adam, H. A. Saad, A. A. Atta, M. Alsawat, M. S. Hegab, T. A. Altalhi, and M. S. Refat, “An Environmentally Friendly Method for Removing Hg(II), Pb(II), Cd(II) and Sn(II) Heavy Metals from Wastewater Using Novel Metal–Carbon-Based Composites,” Crystals 11, no. 8 (2021): 882. doi:10.3390/cryst11080882
  • T. Guo, C. Bulin, B. Li, Z. Zhao, H. Yu, H. Sun, X. Ge, R. Xing, and B. Zhang, “Efficient Removal of Aqueous Pb(II) Using Partially Reduced Graphene oxide-Fe3O4,” Adsorption Science & Technology 36, no. 3-4 (2018): 1031–48. doi:10.1177/0263617417744402
  • Q. F. Zeng, J. Fu, Y. Zhou, Y. T. Shi, and H. L. Zhu, “Photooxidation Degradation of Reactive Brilliant Red K-2BP in Aqueous Solution by Ultraviolet Radiation/Sodium Hypochlorite,” CLEAN - Soil, Air, Water 37, no. 7 (2009): 574–80. doi: doi:10.1002/clen.200800203
  • W. Dou, J. Liu, and M. Li, “Competitive Adsorption of Cu2+ in Cu2+, Co2+ and Ni2+ Mixed Multi–Metal Solution onto Graphene Oxide (GO)–Based Hybrid Membranes,” Journal of Molecular Liquids 322 (2021): 114516. doi:10.1016/j.molliq.2020.114516
  • P. Li, X. Li, and Sh Dai, “Adsorption of Gold in Gold-Thiosulfate Solution onto a Quartz Surface,” Journal of Molecular Liquids 335 (2021): 116114. doi:10.1016/j.molliq.2021.116114
  • A. Behera, and K. Parida, “Facile Synthesis of Fullerene Modified ZnFe2O4 Composites towards Photocatalytic H2 Evolution under Visible Light Irradiation,” Materials Today: Proceedings 35 (2021): 203–6. doi:10.1016/j.matpr.2020.04.255
  • L. Yuxiang, Z. Yang, Y. Wang, Zh Bai, T. Zheng, X. Dai, Sh Liu, D. Gui, W. Liu, M. Chen, et al, “A Mesoporous Cationic Thorium-Organic Framework That Rapidly Traps Anionic Persistent Organic Pollutants,” Nature Communications 8, no. 1 (2017): 1354. doi:10.1038/s41467-017-01208-w
  • T. Zheng, Z. Yang, D. Gui, Zh Liu, X. Wang, X. Dai, Sh Liu, L. Zhang, Y. Gao, L. Chen, et al, “Overcoming the Crystallization and Designability Issues in the Ultrastable Zirconium Phosphonate Framework System,” Nature Communications 8, no. 1 (2017): 15369. doi:10.1038/ncomms15369
  • A. Hirsch, and O. Vostrowsky, Dendrimers with Carbon Rich-Cores, (Heidelberg: Springer Verlag/Berlin, 2001), 51–93.
  • B. Dardel, R. Deschenaux, M. Even, and E. Serrano, “Synthesis, Characterization, and Mesomorphic Properties of a Mixed [60] Fullerene-Ferrocene Liquid-Crystalline Dendrimer,” Macromolecules 32, no. 16 (1999): 5193–8. doi:10.1021/ma990034v
  • Sh. Zhang, Y. Rio, F. Cardinali, C. Bourgogne, J.-L. Gallani, J.-F. Nierengarten, “Amphiphilic Diblock Dendrimers with a Fullerene Core,” The Journal of Organic Chemistry 68, no. 25 (2003): 9787–97. doi:10.1021/jo035040a
  • L. T. Scott, H. E. Bronstein, D. V. Preda, R. B. M. Ansems, M. S. Bratcher, and S. Hagen, “Geodesic Polyarenes with Exposed Concave Surfaces,” Pure and Applied Chemistry 71, no. 2 (1999): 209–19. doi:10.1351/pac199971020209
  • R. B. M. Ansems, and L. T. Scott, “Circumtrindene: A Geodesic Dome of Molecular Dimensions Rational Synthesis of 60% of C60,” Journal of the American Chemical Society 122, no. 12 (2000): 2719–24. doi:10.1021/ja993028n
  • S. Kazemi, N. Zabarjad Shiraz, M. Samadizadeh, and A. Ezabadi, “Evaluation of the Structure and Characteristics of Circumtrindene Derivatives: A DFT Study,” Journal of Structural Chemistry 63, no. 3 (2022): 331–43. doi:10.26902/jsc-id88691
  • M W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, Sh. Koseki, N. Matsunaga, K. A. Nguyen, Sh. Su, et al, “General Atomic and Molecular Electronic Structure System,” Journal of Computational Chemistry 14, no. 11 (1993): 1347–63. doi:10.1002/jcc.540141112
  • J. Seminario, and P. Politzer, Modern Density Functional Theory a Tool for Chemistry (Elsevier: Amsterdam, 1995).
  • A. Soltani, M. Baei, T. Lemeski, S. Kaveh, and H. Balakheyli, ” “A DFT Study of 5-Fluorouracil Adsorption on the Pure and Doped BN Nanotubes,” Journal of Physical and Chemistry of Solids 10 (2014): 1099–105. doi:10.1016/j.jpcs.2015.06.008
  • N. Benhalima, S. Yahiaoui, N. Boubegra, M. Boulakoud, Y. Megrouss, A. Chouaih, and F. Hamzaoui, “Quantum Chemical Investigation of Spectroscopic, Electronic and NLO Properties of (1E, 4E)-1-(3-Nitrophenyl)-5-Phenylpenta-1,4-Dien-3-One,” International Journal of Advanced Chemistry 6, no. 1 (2018): 121–31. doi:10.14419/ijac.v6i1.11795
  • M. Meunier, N. Quirke, and D. Binesti, “The Calculation of the Electron Affinity of Atoms and Molecules,” Molecular Simulation 23, no. 2 (1999): 109–25. doi:10.1080/08927029908022116
  • J. W. Gibbs, On the equilibrium of heterogeneous substances (Connecticut :Academy of arts and sciences, 1874).
  • F. J. C. Rossotti, and Hazel. Rossotti, The Determination of Stability Constants and Other Equilibrium Constants in Solution (London: McGraw-Hill Book Company, Inc.,1961).
  • B. S. Sekhon, and S. L. Chopra, “Stabilities of Vanadyl Complexes with Methionine, Phenylalanine and Threonine,” Zeitschrift Für Naturforschung C 29, no. 7-8 (1974): 336–8. doi:10.1515/znc-1974-7-804
  • J. J. R. Erichsen, ” “A Study of the Relative Toxicity of Anions, with Polycelis Nigra as Test Animal,” The Journal of Experimental Biology 2 (1941): 170–81. doi:10.1242/jeb.18.2.170
  • C. L. Evans, “The Toxicity of Hydrogen Sulphide and Other Sulphides,” Quarterly Journal of Experimental Physiology and Cognate Medical Sciences 52, no. 3 (1967): 231–48. doi:10.1113/expphysiol.1967.sp001909
  • P. Fang, Z. J. Tang, X. B. Chen, J. H. Huang, Z. X. Tang, and Ch P. Cen, “Chloride Ion Removal from the Wet Flue Gas Desulfurization and Denitrification Wastewater Using Friedel’s Salt Precipitation Method,” Journal of Chemistry 2018 (2018): 1–9. doi:10.1155/2018/5461060
  • A. A. Wahab, and B. Batchelor, “Chloride Removal from Recycled Cooling Water Using Ultra-High Lime with Aluminium Process,” Water Environment Research 74, no. 3 (2002): 256–63. doi:10.2175/106143002X139983
  • L. Kong, X. Peng, and X. Hu, “Mechanisms of UV-Light Promoted Removal of as(V) by Sulphide from Strongly Acidic Wastewater,” Environmental Science & Technology 51, no. 21 (2017): 12583–91. doi:10.1021/acs.est.7b02451
  • X. Peng, J. Chen, L. Kong, and X. Hu, “Removal of Arsenic from Strongly Acidic Wastewater Using Phosphorus Pentasulfide as Precipitant: UV-Light Promoted Sulfuration Reaction and Particle Aggregation,” Environmental Science & Technology 52, no. 8 (2018): 4794–801. doi:10.1021/acs.est.8b00206
  • W. A. Shaw, “Fundamentals of Zero Liquid Discharge System Design,” Power 10 (2011): 56–63.
  • B. Elsener, and U. Angst, “Mechanism of Electrochemical Chloride Removal,” Corrosion Science 49, no. 12 (2007): 4504–22. doi:10.1016/j.corsci.2007.05.019
  • Y. Zhou,D. Hou,J. Jiang, L. Liu, W. She, J. Yu, “Experimental and Molecular Dynamics Studies on the Transport and Adsorption of Chloride Ions in the Nano-Pores of Calcium Silicate Phase: The Influence of Calcium to Silicate Ratios,” Microporous and Mesoporous Materials 255 (2018): 23–35. doi:10.1016/j.micromeso.2017.07.024
  • L. Lv, P. Sun, Z. Gu, H. Du, X. Pang, X. Tao, R. Xu, L. Xu, “Removal of Chloride Ion from Aqueous Solution by ZnAl-NO3 Layered Double Hydroxides as Anion-Exchanger,” Journal of Hazardous Materials 161, no. 2-3 (2009): 1444–9. doi:10.1016/j.jhazmat.2008.04.114
  • Sh. Jiang, Y. Li, B. P. Ladewig, “A Review of Reverse Osmosis Membrane Fouling and Control Strategies,” The Science of the Total Environment 595 (2017): 567–83. doi:10.1016/j.scitotenv.2017.03.235
  • A. A. Wahab, B. Batchelor, and J. Schwantes, “An Equilibrium Model for Chloride Removal from Recycled Cooling Water Using the Ultra-High Lime with Aluminum Process,” Water Environment Research 77, no. 7 (2005): 3059–65. doi:10.2175/106143005X73956
  • X. Peng, W. Dou, L. Kong, X. Hu, and X. Wang, “Removal of Chloride Ions from Strongly Acidic Wastewater Using Cu(0)/Cu(II): Efficiency Enhancement by UV Irradiation and the Mechanism for Chloride Ions Removal,” Environmental Science & Technology 53, no. 1 (2019): 383–9. doi:10.1021/acs.est.8b05787
  • T. Kameda, T. Yoshioka, T. Hoshi, M. Uchida, and A. Okuwaki, “The Removal of Chloride from Solutions with Various Cations Using Magnesium–Aluminum Oxide,” Separation and Purification Technology 42, no. 1 (2005): 25–9. doi:10.1016/j.seppur.2004.05.010
  • R. Baby, B. Saifullah, and M. Z. Hussein, “Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation,” Nanoscale Research Letters 14, no. 1 (2019): 1–17. doi:10.1186/s11671-019-3167-8
  • V. Kumar, R. K. Thakur, P. Kumar, “Assessment of Heavy Metals Uptake by Cauliflower (Brassica Oleracea Var. botrytis) Grown in Integrated Industrial Effluent Irrigated Soils: A Prediction Modeling Study,” Scientia Horticulturae 257, no. 2019 (2019): 108682. doi:10.1016/j.scienta.2019.108682
  • S. Ahmadipouya, M. H. Haris, F. Ahmadijokani, A. Jarahiyan, H. Molavi, F. M. Moghaddam, M. Rezakazemi, and M. Arjmand, “Magnetic Fe3O4@UiO-66 Nanocomposite for Rapid Adsorption of Organic Dyes from Aqueous Solution,” Journal of Molecular Liquids 322 (2021): 114910. doi:10.1016/j.molliq.2020.114910
  • L. A. Zemnukhova, O. D. Arefieva, N. P. Morgun, M. A. Tsvetnov, and A. V. Kovekhova, “Removal of Sulfide Ions from Aqueous Solutions Using Carbon- and Silicon-Containing Sorbents,” Journal of Sulfur Chemistry 38, no. 4 (2017): 401–20. doi:10.1080/17415993.2017.1310865
  • E. G. Saad, T. M. Zewail, A. A. Zatout, E.-S. Z. El-Ashtoukhy, and M. H. Abdel-Aziz, “Electrochemical Removal of Sulfide Ions and Recovery of Sulfur from Sulfide Ions Containing Wastes,” Journal of Industrial and Engineering Chemistry 94 (2021): 390–6. doi:10.1016/j.jiec.2020.11.008
  • M. H. Abdel-Aziz, E.-S. Z. El-Ashtoukhy, M. Sh. Zoromba, M. Bassyouni, and G. H. Sedahmed, “Removal of Nitrates from Water by Electrocoagulation Using a Cell with Horizontally Oriented Al Serpentine Tube Anode,” Journal of Industrial and Engineering Chemistry 82 (2020): 105–12. doi:10.1016/j.jiec.2019.10.001
  • P. Dutta, K. Rabaey, Zh Yuan, R. A. Rozendal, and J. Keller, “Electrochemical Sulfide Removal and Recovery from Paper Mill Anaerobic Treatment Effluent,” Water Research 44, no. 8 (2010): 2563–71. doi:10.1016/j.watres.2010.01.008
  • A. G. Badr, and Al Kh M. Faizah, “Anodic Oxidation of Sulfide Ions from Chloride Brines,” Electrochemistry Communications 3 (2002): 231–8. doi:10.1016/S1388-2481(02)00254-0
  • B. G. Ateya, F. M. AlKharafi, A. S. Alazab, and A. M. Abdullah, “Kinetics of the Electrochemical Deposition of Sulfur from Sulfide Polluted Brines,” Journal of Applied Electrochemistry 37, no. 3 (2007): 395–404. doi:10.1007/s10800-006-9270-4
  • I. Pikaar, R. A. Rozendal, Zh. Yuan, J. Keller, K. Rabaey, “Electrochemical Sulfide Oxidation from Domestic Wastewater Using Mixed Metal-Coated Titanium Electrodes,” Water Research 45, no. 6 (2011): 2281–9. 4, doi:10.1016/j.watres.2010.12.025
  • H. Huang, Y. Yu, and K. Chung, “Recovery of Hydrogen and Sulfur by Indirect Electrolysis of Hydrogen Sulfide,” Energy & Fuels 23, no. 9 (2009): 4420–5. doi:10.1021/ef900424a
  • Y. Mochizuki, and K. Sugawara, “Removal of Organic Sulfur from Hydrocarbon Resources Using Ionic Liquids,” Energy & Fuels 22, no. 5 (2008): 3303–7. doi:10.1021/ef800400k
  • J. G. Egan, A. J. Hynes, H. M. Fruehwald, I. I. Ebralidze, S. D. King, R. A. M. Esfahani, F. Y. Naumkin, E. B. Easton, and O. V. Zenkina, “A Novel Material for the Detection and Removal of Mercury(II) Based on a 2,6-Bis(2-Thienyl) Pyridine Receptor,” Journal of Materials Chemistry C 7, no. 33 (2019): 10187–95. doi:10.1039/C9TC03201K
  • N. Ratner, and D. Mandler, “Electrochemical Detection of Low Concentrations of Mercury in Water Using Gold Nanoparticles,” Analytical Chemistry 87, no. 10 (2015): 5148–55. doi:10.1021/ac504584f
  • A. Chaudhary, Ch Dwivedi, M. Chawla, A. Gupta, and Ch Nandi, “Lysine and Dithiothreitol Promoted Ultrasensitive Optical and Colorimetric Detection of Mercury Using Anisotropic Gold Nanoparticles,” Journal of Materials Chemistry C 3, no. 27 (2015): 6962–5. doi:10.1039/C5TC01397F
  • K. Nie, B. Dong, H. Shi, Zh Liu, and B. Liang, “Diketopyrrolopyrrole Amphiphile-Based Micelle-Like Fluorescent Nanoparticles for Selective and Sensitive Detection of Mercury(II) Ions in Water,” Analytical Chemistry 89, no. 5 (2017): 2928–36. doi:10.1021/acs.analchem.6b04258
  • L. He, H. Tao, S. Koo, G. Chen, A. Sharma, Y. Chen, I. T. Lim, Q. Y. Cao, and J. S. Kim, “Multifunctional Fluorescent Nanoprobe for Sequential Detections of Hg2+ Ions and Biothiols in Live Cells,” ACS Applied Bio Materials 1, no. 3 (2018): 871–8. doi:10.1021/acsabm.8b00300

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.