99
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fe3O4@Diamine-CuI Nanocomposite: A Novel and Highly Reusable Nanomagnetic Catalyst for Ecofriendly Synthesis of Triaryl Imidazoles

, , , , &
Pages 1309-1325 | Received 09 Jan 2023, Accepted 15 Mar 2023, Published online: 30 Mar 2023

References

  • Z. Huang, S. Cao, J. Yu, X. Tang, Y. Guo, Y. Guo, L. Wang, S. Dai, and W. Zhan, “Total Oxidation of Light Alkane over Phosphate-Modified Pt/CeO 2 Catalysts, Environ,” Environmental Science & Technology 56, no. 13 (2022): 9661–71. doi:10.1021/acs.est.2c00135
  • Z. Wu, C. Li, F. Zhang, S. Huang, F. Wang, X. Wang, and H. Jiao, “High-Performance Ultra-Narrow-Band Green-Emitting Phosphor LaMgAl 11 O 19 :Mn 2+ for Wide Color-Gamut WLED Backlight Displays,” Journal of Materials Chemistry C 10 (2022): 7443–8. doi:10.1039/D2TC00850E
  • Y. Yang, S. Wang, H. Wen, T. Ye, J. Chen, C. Li, and M. Du, “Nanoporous Gold Embedded ZIF Composite for Enhanced Electrochemical Nitrogen Fixation,” Angewandte Chemie 58 (2019): 15362–6. doi:10.1002/anie.201909770
  • X. Chen, X. Chen, L. Zhu, W. Liu, and L. Jiang, “Programming an Orthogonal Self-Assembling Protein Cascade Based on Reactive Peptide–Protein Pairs for in Vitro Enzymatic Trehalose Production,” Journal of Agricultural and Food Chemistry 70 (2022): 4690–700. doi:10.1021/acs.jafc.2c01118
  • Z. Huang, J. Ding, X. Yang, H. Liu, P. Song, Y. Guo, Y. Guo, L. Wang, and W. Zhan, “Highly Efficient Oxidation of Propane at Low Temperature over a Pt-Based Catalyst by Optimization Support,” Environmental Science and Technology 56 (2022): 17278–87. doi:10.1021/acs.est.2c05599
  • L. Zhang, Y. Han, H. Shu, L. Zhang, Z. Han, X. Yang, and Y. Chen, “Effect of Bimetallic Modification on Blast Furnace Slag and Its Application in Low‐Temperature Selective Catalytic Reduction,” Journal of Chemical Technology and Biotechnology 98 (2023): 949-957. doi:10.1002/jctb.7298
  • Z. Liu, B. Fan, J. Zhao, B. Yang, and X. Zheng, “Benzothiazole Derivatives-Based Supramolecular Assemblies as Efficient Corrosion Inhibitors for Copper in Artificial Seawater: Formation, Interfacial Release and Protective Mechanisms,” Corrosion Science 212 (2023): 110957. doi:10.1016/j.corsci.2022.110957
  • X. Feng, L. Xia, Z. Jiang, M. Tian, S. Zhang, and C. He, “Dramatically Promoted Toluene Destruction over Mn@Na-Al2O3@Al Monolithic Catalysts by Ce Incorporation: Oxygen Vacancy Construction and Reaction Mechanism,” Fuel 326 (2022): 125051. doi:10.1016/j.fuel.2022.125051
  • Z. Wang, L. Dai, J. Yao, T. Guo, D. Hrynsphan, S. Tatsiana, and J. Chen, “Improvement of Alcaligenes sp.TB Performance by Fe-Pd/Multi-Walled Carbon Nanotubes: Enriched Denitrification Pathways and Accelerated Electron Transport,” Bioresource Technology 327 (2021): 124785. doi:10.1016/j.biortech.2021.124785
  • Y. Yang, M. Zhao, and L. Lai, “Surface Activity, Micellization, and Application of Nano-Surfactants—Amphiphilic Carbon Dots,” Carbon 202 (2023): 398–413. doi:10.1016/j.carbon.2022.11.012
  • K.-Q. Zhang, Q.-F. Deng, J. Luo, C.-L. Gong, Z.-G. Chen, W. Zhong, S.-Q. Hu, and H.-F. Wang, “Multifunctional Ag(I)/CAAA-Amidphos Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of α-Substituted Acrylamides,” ACS Catalysis 11 (2021): 5100–7. doi:10.1021/acscatal.1c00913
  • N. Zhang, Y. Guo, Y. Guo, Q. Dai, L. Wang, S. Dai, and W. Zhan, “Synchronously Constructing the Optimal Redox-Acidity of Sulfate and RuOx Co-Modified CeO2 for Catalytic Combustion of Chlorinated VOCs,” Chemical Engineering Journal and the Biochemical Engineering Journal 454 (2023): 140391. doi:10.1016/j.cej.2022.140391
  • S. Ghoreishi, and F. Moeinpour, “Microwave-Assisted Beckman Rearrangement by Cu(II)/Triazine-Based Dendrimer as an Efficacious Recoverable Nano-Catalyst under Solvent-Free Conditions,” Polycyclic Aromatic Compounds 43 (2023): 740–54. doi:10.1080/10406638.2021.2020311
  • A. Khojastehnezhad, “Molybdenum Oxide Supported on Silica (MoO/SiO) : An Efficient and Reusable Catalyst for the Synthesis of 1,8-Dioxodecahydroacridines under Solvent-Free Conditions,” Journal of the Mexican Chemical Society 59 (2017): 29–35. doi:10.29356/jmcs.v59i1.11
  • M. Rahimizadeh, S. M. Seyedi, M. Abbasi, H. Eshghi, A. Khojastehnezhad, F. Moeinpour, and M. Bakavoli, “Nanomagnetically Modified Ferric Hydrogen Sulfate (NiFe2O4@SiO2-FHS): a Reusable Green Catalyst for the Synthesis of Highly Functionalized Piperidine Derivatives,” Journal of the Iranian Chemical Society 12 (2015): 839–44. doi:10.1007/s13738-014-0546-z
  • F. Moeinpour, R. Khalifeh, M. Rajabzadeh, F. Rezaei, and S. Javdan, “Cu(II)/Triazine-Based Dendrimer as an Efficacious Recoverable Nano-Catalyst for CO2 Fixation under Solvent-Free Conditions,” Catalysis Letters 152 (2022): 3679–90. doi:10.1007/s10562-022-03935-2
  • S. Javdan, F. Moeinpour, and F. S. Mohseni-Shahri, “Cu(II)/Triazine-Based Dendrimer as an Efficacious Recoverable Nano-Catalyst for the Preparation of 1-Substituted-1 H-1,2,3,4-Tetrazoles under Solventless Conditions,” Organic Preparations and Procedures International 54 (2022): 346–54. doi:10.1080/00304948.2022.2057143
  • M. Lakshman, “Fe3O4@SiO2-Pip-SA Nanocomposite: A Novel and Highly Efficient Reusable Acidic Catalyst for Synthesis of Rhodanine Derivatives,” Journal of Synthetic Chemistry 1 (2022): 48–51. doi:10.22034/jsc.2022.149234
  • M. Ghobadi, “Based on Copper Ferrite Nanoparticles (CuFe2O4 NPs): Catalysis in Synthesis of Heterocycles,” Journal of Synthetic Chemistry 1 (2022): 84–96. doi:10.22034/jsc.2022.155234
  • M. Kazemi, and M. Ghobadi, “Magnetically Recoverable Nano-Catalysts in Sulfoxidation Reactions,” Nanotechnology Reviews 6 (2017): 549–571. doi:10.1515/ntrev-2016-0113
  • M. Ghobadi, M. Kargar Razi, R. Javahershenas, and M. Kazemi, “Nanomagnetic Reusable Catalysts in Organic Synthesis,” Synthetic Communications 51 (2021): 647–69. doi:10.1080/00397911.2020.1819328
  • M. Kazemi, M. Ghobadi, and A. Mirzaie, “Cobalt Ferrite Nanoparticles (CoFe2O4 MNPs) as Catalyst and Support: Magnetically Recoverable Nanocatalysts in Organic Synthesis,” Nanotechnology Reviews 7 (2018): 43–68. doi:10.1515/ntrev-2017-0138
  • J. Luo, Y. Liu, H. Wang, C. Gong, Z. Zhou, and Q. Zhou, “Chiral 1,2-Diaminocyclohexane-α-Amino Acid-Derived Amidphos/Ag(I)-Catalyzed Divergent Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides,” Heterocycles 104 (2022): 123. doi:10.3987/COM-21-14561
  • Y. Liang, J. Li, Y. Xue, T. Tan, Z. Jiang, Y. He, W. Shangguan, J. Yang, and Y. Pan, “Benzene Decomposition by Non-Thermal Plasma: A Detailed Mechanism Study by Synchrotron Radiation Photoionization Mass Spectrometry and Theoretical Calculations,” Journal of Hazardous Materials. 420 (2021): 126584. doi:10.1016/j.jhazmat.2021.126584
  • G. Zhu, Z.-C. Duan, H. Zhu, D. Ye, and D. Wang, “Selective C-C Bonds Formation, N-Alkylation and Benzo[d]Imidazoles Synthesis by a Recyclable Zinc Composite,” Chinese Chemical Letters 33 (2022): 266–70. doi:10.1016/j.cclet.2021.06.060
  • A. K. Dhingra, B. Chopra, A. Jain, and J. Chaudhary, “Imidazole: Multi-Targeted Therapeutic Leads for the Management of Alzheimer’s Disease,” Mini Reviews in Medicinal Chemistry 22 (2022): 1352–73. doi:10.2174/1389557522666220104152141
  • Y. Hou, L. Zhu, K. He, Z. Yang, S. Ma, and J. Lei, “Synthesis of Three Imidazole Derivatives and Corrosion Inhibition Performance for Copper,” Journal of Molecular Liquids 348 (2022): 118432. doi:10.1016/j.molliq.2021.118432
  • S. Chauhan, V. Verma, D. Kumar, R. Gupta, S. Gupta, A. Bajaj, A. Kumar, and M. Parshad, “N-Heterocycles Hybrids: Synthesis, Antifungal and Antibiofilm Evaluation,” Synthetic Communications 52 (2022): 898–911. doi:10.1080/00397911.2022.2056852
  • X.-W. Zhu, D. Luo, X.-P. Zhou, and D. Li, “Imidazole-Based Metal-Organic Cages: Synthesis, Structures, and Functions,” Coordination Chemistry Reviews 455 (2022): 214354. doi:10.1016/j.ccr.2021.214354
  • X. Yang, H. Sun, S. K. Maddili, S. Li, R.-G. Yang, and C.-H. Zhou, “Dihydropyrimidinone Imidazoles as Unique Structural Antibacterial Agents for Drug-Resistant Gram-Negative Pathogens,” European Journal of Medicinal Chemistry 232 (2022): 114188. doi:10.1016/j.ejmech.2022.114188
  • L. D. Luca, “Naturally Occurring and Synthetic Imidazoles: Their Chemistry and Their Biological Activities,” Current Medicinal Chemistry 13 (2006): 1–23. doi:10.2174/092986706775197971
  • P. K. Gupta, M. A. Azzam, M. Saquib, and M. K. Hussain, “A Highly Efficient and Eco-Friendly Synthesis of Disubstituted Imidazoles in Ionic Liquid from Gem -Dibromo Vinylarenes and Amidines,” Polycyclic Aromatic Compounds 43 (2023): 1–10. doi:10.1080/10406638.2022.2061532
  • M. Ouakki, M. Galai, and M. Cherkaoui, “Imidazole Derivatives as Efficient and Potential Class of Corrosion Inhibitors for Metals and Alloys in Aqueous Electrolytes: A Review,” Journal of Molecular Liquids 345 (2022): 117815. doi:10.1016/j.molliq.2021.117815
  • M. M. A. Zadeh, E. Rostami, and A. Farhadi, “An Extremely Productive and Sustainable Procedure for the Synthesis of 2,4,5-Trisubstituted Imidazoles Using Graphene Oxide-Substituted Sulfoacetic Acid Amide, Russ,” Journal of Organic Chemistry 58 (2022): 1487–97. doi:10.1134/S1070428022100153
  • M. Nasr-Esfahani, S. J. Hoseini, M. Montazerozohori, R. Mehrabi, and H. Nasrabadi, “Magnetic Fe3O4 Nanoparticles: Efficient and Recoverable Nanocatalyst for the Synthesis of Polyhydroquinolines and Hantzsch 1,4-Dihydropyridines under Solvent-Free Conditions,” Journal of Molecular Catalysis A 382 (2014): 99–105. doi:10.1016/j.molcata.2013.11.010
  • H. Eslahi, Reza. Sardarian, and A. Esmaeilpour, “M. Green Approach for Preparation of New Hybrids of 5-Substituted-1H-Tetrazoles Using Novel Recyclable Nanocatalyst Based on Copper(II) Anchored onto Glucosamine Grafted to Fe3O4@SiO2,” ChemistrySelect 6, no. 9 (2021): 1984–93. doi:10.1002/slct.202004539
  • T. Kikhavani, P. Moradi, M. Mashari-Karir, and J. Naji, “A New Copper Schiff-Base Complex of 3,4-Diaminobenzophenone Stabilized on Magnetic MCM-41 as a Homoselective and Reusable Catalyst in the Synthesis of Tetrazoles and Pyranopyrazoles,” Applied Organometallic Chemistry 36, no. 12 (2022): e689. doi:10.1002/aoc.6895
  • A. Jamshidi, B. Maleki, F. M. Zonoz, and R. Tayebee, “HPA-Dendrimer Functionalized Magnetic Nanoparticles (Fe3O4@D-NH2-HPA) as a Novel Inorganic-Organic Hybrid and Recyclable Catalyst for the One-Pot Synthesis of Highly Substituted Pyran Derivatives,” Materials Chemistry and Physics 209 (2018): 46–59. doi:10.1016/j.matchemphys.2018.01.070
  • A. Ahmadi, T. Sedaghat, H. Motamedi, and R. Azadi, “Anchoring of Cu (II)-Schiff Base Complex on Magnetic Mesoporous Silica Nanoparticles: catalytic Efficacy in One-Pot Synthesis of 5-Substituted-1H-Tetrazoles, Antibacterial Activity Evaluation and Immobilization of α-Amylase,” Applied Organometallic Chemistry 34, no. 5 (2020): e5572. doi:10.1002/aoc.5572
  • F. Rezaei, Ali. Amrollahi, and M. Khalifeh, “R. Design and Synthesis of Fe3O4@SiO2/Aza-Crown ether-Cu(II) as a Novel and Highly Efficient Magnetic Nanocomposite Catalyst for the Synthesis of 1,2,3-Triazoles, 1-Substituted 1H-Tetrazoles and 5-Substituted 1H-Tetrazoles in Green Solvents,” Inorganica Chimica Acta 489 (2019): 8–18. doi:10.1016/j.ica.2019.01.039
  • J. Sonar, S. Pardeshi, S. Dokhe, R. Pawar, K. Kharat, A. Zine, et al, “An Efficient Method for the Synthesis of 2,4,5-Trisubstituted Imidazoles Using Lactic Acid as Promoter,” SN Applied Sciences 1, no. 9 (2019): 1045. doi:10.1007/s42452-019-0935-0
  • L. D. Chavan, and S. G. Shankarwar, “KSF Supported 10-Molybdo-2-Vanadophosphoric Acid as an Efficient and Reusable Catalyst for One-Pot Synthesis of 2,4,5-Trisubstituted Imidazole Derivatives under Solvent-Free Condition,” Chinese Journal of Catalysis 36, no. 7 (2015): 1054–9. doi:10.1016/S1872-2067(15)60830-0
  • B. Maleki, K. Shirvan, H. Taimazi, and F. Akbarzadeh, “E. Sulfuric Acid Immobilized on Silica Gel as Highly Efficient and Heterogeneous Catalyst for the One-Pot Synthesis of 2,4,5-Triaryl-1H-Imidazoles,” International Journal of Organic Chemistry 02, no. 01 (2012): 93–9. doi:10.4236/ijoc.2012.21015
  • A. R. Karimi, Z. Alimohammadi, and M. M. Amini, “Wells–Dawson Heteropolyacid Supported on Silica: A Highly Efficient Catalyst for Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles,” Molecular Diversity 14, no. 4 (2010): 635–41. doi:10.1007/s11030-009-9197-x
  • A. Maleki, Z. Alirezvani, and N. Ghamari, “UHP as a Mild and Efficient Catalyst for the Synthesis of Substituted Imidazoles via Multicomponent Condensation Strategy,” (Proceedings of the 17th International Electronic Conference on Synthetic Organic Chemistry. MDPI; 2013, a031). doi:10.3390/ecsoc-17-a031
  • M. Ashrafi, A. Davoodnia, and N. Tavakoli-Hoseini, “A Fast, Highly Efficient and Green Protocol for One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles Catalyzed by [TBA] 2 [W 6 O 19] as a Reusable Heterogeneous Catalyst,” Bulletin of the Korean Chemical Society 34, no. 5 (2013): 1508–12. doi:10.5012/bkcs.2013.34.5.1508

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.