177
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and Antimicrobial Activity of New Carbohydrazide Bearing Quinoline Scaffolds in Silico ADMET and Molecular Docking Studies

ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 1348-1365 | Received 14 Sep 2022, Accepted 18 Mar 2023, Published online: 13 Apr 2023

References

  • J. Jampilek, “Heterocycles in Medicinal Chemistry,” Molecules 24, no. 21 (2019): 3839.
  • N. Kerru, L. Gummidi, S. Maddila, K. K. Gangu, and S. B. Jonnalagadda, “A Review on Recent Advances in Nitrogen-containing Molecules and Their Biological Applications,” Molecules 25, no. 8 (2020): 1909.
  • M. M. Heravi, and V. Zadsirjan, “Prescribed Drugs Containing Nitrogen Heterocycles: An Overview,”RSC Advances 10, no.72 (2020): 44247–311.
  • W.-Y. Fang, L. Ravindar, K. P. Rakesh, H. M. Manukumar, C. S. Shantharam, N. S. Alharbi, and H.-L. Qin, “Synthetic Approaches and Pharmaceutical Applications of Chloro-containing Molecules for Drug Discovery: A Critical Review,” European Journal of Medicinal Chemistry 173 (2019): 117–53.
  • P. N. Kalaria, S. C. Karad, and D. K. Raval, “A Review on Diverse Heterocyclic Compounds as the Privileged Scaffolds in Antimalarial Drug Discovery,” European Journal of Medicinal Chemistry 158 (2018): 917–36.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, V. D. Songire, A. P. Patil, and C. H. Gill, “Efficient Rapid Access to Biginelli for the Multicomponent Synthesis of 1,2,3,4-Tetrahydropyrimidines in Room-temperature Diisopropyl Ethyl Ammonium Acetate,” ACS Omega 4, no. 27 (2019): 22313–24.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, V. S. Dofe, J. N. Sangshetti, V. M. Khedkar, and C. H. Gill, “Rapid Construction of Substituted Dihydrothiophene Ureidoformamides at Room Temperature Using Diisopropyl Ethyl Ammonium Acetate: A Green Perspective,” ACS Omega 5, no. 45 (2020): 29055–67.
  • A. S. Nipate, C. K. Jadhav, A. V. Chate, T. R. Deshmukh, A. P. Sarkate, and C. H. Gill, “Synthesis and in Vitro Anticancer Activities of New 1,4‐Disubstituted‐1,2,3‐Triazoles Derivatives through Click Approach,” ChemistrySelect 6, no. 21 (2021): 5173–9.
  • C. Viegas-Junior,, Danuello, A. da Silva Bolzani, V. Barreiro, E. J. Fraga, C. A. M. “Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes,” Current Medicinal Chemistry 14, no. 17 (2007): 1829–52. doi:10.2174/092986707781058805
  • A. H. Alkhzem, T. J. Woodman, and I. S. Blagbrough, “Design and Synthesis of Hybrid Compounds as Novel Drugs and Medicines,” RSC Advances 12, no. 30 (2022): 19470–84.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, A. P. Patil, and C. H. Gill, “Ionic Liquid Catalyzed One-pot Multi-component Synthesis of Fused Pyridine Derivatives: A Strategy for Green and Sustainable Chemistry,” Journal of Heterocyclic Chemistry 57, no. 12 (2020): 4291–303.
  • A. S. Nipate, C. K. Jadhav, A. V. Chate, K. S. Taur, and C. H. Gill, “β-Cyclodextrin Catalyzed Access to Fused 1,8-Dihydroimidazo[2,3-b]Indoles via One-pot Multicomponent Cascade in Aqueous Ethanol: Supramolecular Approach toward Sustainability,” Journal of Heterocyclic Chemistry 57, no. 2 (2020): 820–9.
  • T. Shiro, T. Fukaya, and M. Tobe, “The Chemistry and Biological Activity of Heterocycle-fused Quinolinone Derivatives: A Review,” European Journal of Medicinal Chemistry 97, no. 1 (2015): 397–408.
  • M. C. Mandewale, U. C. Patil, S. V. Shedge, U. R. Dappadwad, and R. S. Yamgar, “A Review on Quinoline Hydrazone Derivatives as a New Class of Potent Antitubercular and Anticancer Agents,” Beni-Suef University Journal of Basic and Applied Sciences 6, no. 4 (2017): 354–61. doi:10.1016/j.bjbas.2017.07.005
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, P. M. Kamble, G. A. Kadam, V. S. Dofe, V. M. Khedkar, and C. H. Gill, “Room Temperature Ionic Liquid Promoted Improved and Rapid Synthesis of Highly Functionalized Imidazole and Evaluation of Their Inhibitory Activity against Human Cancer Cells,” Journal of the Chinese Chemical Society 68, no. 6 (2021): 1067–81. doi:10.1002/jccs.202000468
  • K. George, P. Elavarasan, S. Ponnusamy, and K. Sathananthan, “Facile One-pot Synthesis of Functionalized Quinoline-fused Fluorescent Dihydro/Spiro-quinazolinone Derivatives,” ACS Omega 7, no. 24 (2022): 20605–18. doi:10.1021/acsomega.2c00674
  • C. B. Sangani, J. A. Makawana, Y.-T. Duan, Y. Yin, S. B. Teraiya, N. J. Thumar, and H.-L. Zhu, “Design, Synthesis and Molecular Modeling of Biquinoline–Pyridine Hybrids as a New Class of Potential EGFR and HER-2 Kinase Inhibitors,” Bioorganic & Medicinal Chemistry Letters 24, no. 18 (2014): 4472–6. doi:10.1016/j.bmcl.2014.07.094
  • O. O. Ajani, K. T. Iyaye, and O. T. Ademosun, “Recent Advances in Chemistry and Therapeutic Potential of Functionalized Quinoline Motifs – A Review,” RSC Advances 12, no. 29 (2022): 18594–614. doi:10.1039/d2ra02896d
  • M. Mishra, V. K. Mishra, V. Kashaw, A. K. Iyer, and S. K. Kashaw, “Comprehensive Review on Various Strategies for Antimalarial Drug Discovery,” European Journal of Medicinal Chemistry 125 (2017): 1300–20. doi:10.1016/j.ejmech.2016.11.025
  • E. G. Tse, M. Korsik, and M. H. Todd, “The Past, Present and Future of Anti-malarial Medicines,” Malaria Journal 18, no. 1 (2019): 93. doi:10.1186/s12936-019-2724-z
  • B. S. Matada, R. Pattanashettar, and N. G. Yernale, “A Comprehensive Review on the Biological Interest of Quinoline and Its Derivatives,” Bioorganic & Medicinal Chemistry 32 (2021): 115973. doi:10.1016/j.bmc.2020.115973
  • M. F. El Shehry, M. M. Ghorab, S. Y. Abbas, E. A. Fayed, S. A. Shedid, and Y. A. Ammar, “Quinoline Derivatives Bearing Pyrazole Moiety: Synthesis and Biological Evaluation as Possible Antibacterial and Antifungal Agents,” European Journal of Medicinal Chemistry 143 (2018): 1463–73. doi:10.1016/j.ejmech.2017.10.046
  • S. Kumar, S. Bawa, and H. Gupta, “Biological Activities of Quinoline Derivatives,” Mini Reviews in Medicinal Chemistry 9, no. 14 (2009): 1648–54. doi:10.2174/138955709791012247
  • R. Kaur, and K. Kumar, “Synthetic and Medicinal Perspective of Quinolines as Antiviral Agents,” European Journal of Medicinal Chemistry 215 (2021): 113220. doi:10.1016/j.ejmech.2021.113220
  • Z. Diamant, E. Mantzouranis, and L. Bjermer, “Montelukast in the Treatment of Asthma and Beyond,” Expert Review of Clinical Immunology 5, no. 6 (2009): 639–58. doi:10.1586/eci.09.62
  • B. Furlan, B. T. de Melo, J. Z. B. Papini, M. Sperandio, J. D. Oliveira, E. de Paula, C. M. S. Cereda, and G. R. Tofoli, “Pre-clinical Evaluation of New Dibucaine Formulations for Preventive Analgesia,” Journal of Liposome Research 31, no. 3 (2021): 230–6. doi:10.1080/08982104.2020.1785494
  • D. Sriram, P. Yogeeswari, R. Thirumurugan, and T. Ratan Bal, “Camptothecin and Its Analogues: A Review on Their Chemotherapeutic Potential,” Natural Product Research 19, no. 4 (2005): 393–412. doi:10.1080/14786410412331299005
  • V. J. Venditto, and E. E. Simanek, “Cancer Therapies Utilizing the Camptothecins: A Review of the in Vivo Literature,” Molecular Pharmaceutics 7, no. 2 (2010): 307–49. doi:10.1021/mp900243b
  • J. S. Frankel, and T. L. Schwartz, “Brexpiprazole and Cariprazine: Distinguishing Two New Atypical Antipsychotics from the Original Dopamine Stabilizer Aripiprazole,” Therapeutic Advances in Psychopharmacology 7, no. 1 (2017): 29–41. doi:10.1177/2045125316672136
  • I. A. Subhan, R. Alosaimy, N. T. Alotaibi, B. Mirza, G. Mirza, and O. Bantan, “Evaluation of Compliance Issues to Anti-glaucoma Medications before and after a Structured Interventional Program,” Cureus 14, no. 6 (2022). doi:10.7759/cureus.25943
  • A. S. Lader, A. Baguisi, R. Casale, S. A. Kates, and R. Beeuwkes, “CMX-2043 Mechanisms of Action In Vitro,” Journal of Cardiovascular Pharmacology 68, no. 3 (2016): 241–7. doi:10.1097/FJC.0000000000000408
  • K. Murugan, C. Panneerselvam, J. Subramaniam, M. Paulpandi, R. Rajaganesh, M. Vasanthakumaran, J. Madhavan, S. Shafi, S. Roni, M. Portilla-Pulido, et al, “Synthesis of New Series of Quinoline Derivatives with Insecticidal Effects on Larval Vectors of Malaria and Dengue Diseases,” Scientific Reports 12, no. 1 (2022): 4765. doi:10.1038/s41598-022-08397-5
  • S. Jain, V. Chandra, P. Kumar Jain, K. Pathak, D. Pathak, and A. Vaidya, “Comprehensive Review on Current Developments of Quinoline-based Anticancer Agents,” Arabian Journal of Chemistry 12, no. 8 (2019): 4920–46. doi:10.1016/j.arabjc.2016.10.009
  • B. Abdi, M. Fekadu, D. Zeleke, R. Eswaramoorthy, and Y. Melaku, “Synthesis and Evaluation of the Antibacterial and Antioxidant Activities of Some Novel Chloroquinoline Analogs,” Journal of Chemistry 2021, (2021): 1–13.
  • G. da Rosa Monte Machado, D. Diedrich, T. C. Ruaro, A. R. Zimmer, M. Lettieri Teixeira, L. F. de Oliveira, M. Jean, P. Van de Weghe, S. F. de Andrade, S. C. Baggio Gnoatto, et al, “Quinolines Derivatives as Promising New Antifungal Candidates for the Treatment of Candidiasis and Dermatophytosis,” Brazilian Journal of Microbiology 51, no. 4 (2020): 1691–701.
  • D. R. Adams, J. M. Bentley, K. R. Benwell, M. J. Bickerdike, C. D. Bodkin, I. A. Cliffe, C. T. Dourish, A. R. George, G. A. Kennett, A. R. Knight, et al, “Pyrrolo(Iso)Quinoline Derivatives as 5-HT(2C) Receptor Agonists,” Bioorganic & Medicinal Chemistry Letters 16, no. 3 (2006): 677–80.
  • S. Mukherjee, and M. Pal, “Medicinal Chemistry of Quinolines as Emerging Anti-inflammatory Agents: An Overview,” Current Medicinal Chemistry 20, no. 35 (2013): 4386–410.
  • M. Foley, and L. Tilley, “Quinoline Antimalarials: Mechanisms of Action and Resistance,” International Journal for Parasitology 27, no. 2 (1997): 231–40.
  • R. S. Keri, and S. A. Patil, “Quinoline: A Promising Antitubercular Target,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 68, no. 8 (2014): 1161–75. doi:10.1016/j.biopha.2014.10.007
  • B. Campo, O. Vandal, D. L. Wesche, and J. N. Burrows, “Killing the Hypnozoite – Drug Discovery Approaches to Prevent Relapse in Plasmodium Vivax,” Pathogens and Global Health 109, no. 3 (2015): 107–22.
  • P. Zajdel, K. Marciniec, A. Maślankiewicz, K. Grychowska, G. Satała, B. Duszyńska, T. Lenda, A. Siwek, G. Nowak, A. Partyka, et al, “Antidepressant and Antipsychotic Activity of New Quinoline- and Isoquinoline-sulfonamide Analogs of Aripiprazole Targeting Serotonin 5-HT1A/5-HT2A/5-HT7 and Dopamine D2/D3 Receptors,” European Journal of Medicinal Chemistry 60 (2013): 42–50.
  • A. Dorababu, “Quinoline: A Promising Scaffold in Recent Antiprotozoal Drug Discovery,” ChemistrySelect 6, no. 9 (2021): 2164–77.
  • W.-Y. Li, X.-Q. Xiong, D.-M. Zhao, Y.-F. Shi, Z.-H. Yang, C. Yu, P.-W. Fan, M.-S. Cheng, and J.-K. Shen, “Quinoline-3-Carboxamide Derivatives as Potential Cholesteryl Ester Transfer Protein Inhibitors,” Molecules 17, no. 5 (2012): 5497–507.
  • S. Rossiter, J.-M. Péron, P. J. Whitfield, and K. Jones, “Synthesis and Anthelmintic Properties of Arylquinolines with Activity against Drug-resistant Nematodes,” Bioorganic & Medicinal Chemistry Letters 15, no. 21 (2005): 4806–8.
  • S. Kumar Gupta, and A. Mishra, “Synthesis, Characterization & Screening for Anti-inflammatory & Analgesic Activity of Quinoline Derivatives Bearing Azetidinones Scaffolds,” Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 15, no. 1 (2016): 31–43.
  • K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw, "Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters," Proceedings of the ACM/IEEE Conference on Supercomputing, (2006), 11–17.
  • H. A. Arjun, G. N. Anil Kumar, R. Elancheran, and S. Kabilan, “Crystal Structure, DFT and Hirshfeld Surface Analysis of (E)-N′-[(1-Chloro-3,4-dihydronaphthalen-2-yl)Methylidene]Benzohydrazide Monohydrate,” Acta Crystallographica Section E 76, no. 2 (2020): 132–6.
  • H. A. Arjun, R. K. Rajan, R. Elancheran, M. Ramanathan, A. Bhattacharjee, and S. Kabilan, “Crystal Structure, Hirshfeld Surface Analysis, DFT and Molecular Docking Studies on Benzohydrazide Derivatives as Potential Inhibitors of Prostate Cancer,” Chemical Data Collections 26 (2020): 100350.
  • H. A. Arjun, R. Elancheran, N. Manikandan, K. Lakshmithendral, M. Ramanathan, A. Bhattacharjee, N. K. Lokanath, and S. Kabilan, “Design, Synthesis, and Biological Evaluation of (E)-N’-((1-Chloro-3,4-Dihydronaphthalen-2-Yl)Methylene)Benzohydrazide Derivatives as Anti-prostate Cancer Agents,” Frontiers in Chemistry 7 (2019): 474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.