80
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Production of Methyl Formate Using Copper Oxide Nanoparticles (CuO-NPs) and Structural Investigation of Its Halogenated Derivatives by Density Functional Theory Method

, &
Pages 1520-1536 | Received 26 Oct 2022, Accepted 31 Mar 2023, Published online: 11 Apr 2023

References

  • R. Kishi, H. Ogihara, M. Yoshida-Hirahara, K. Shibanuma, I. Yamanaka, and H. Kurokawa, “Green Synthesis of Methyl Formate via Electrolysis of Pure Methanol,” ACS Sustainable Chemistry & Engineering 8, no. 31 (2020): 11532–40. doi:10.1021/acssuschemeng.0c02281
  • R. Fathollahi, H. Khara, Z. Pajand, and A. Shenavar, “A. Effects of Sodium Chloride and Methylthioninium Chloride on Persian Sturgeon, Acipenser Persicus (Borodin, 1897): a Histopathological and Bacteriological Study,” Caspian Journal of Environmental Sciences 19, no. 1 (2021): 75–83.
  • M. Rao V, and V. K. Manikala, “Synthesis, Molecular Docking and Anticancer Activity of Novel (E)-5-((1-Phenyl-1H-1,2,3-Triazol-4-YL) Methylene)-2-Thioxothiazolidin-4-One Analogues,” Iranian Journal of Chemistry and Chemical Engineering 40, no. 6 (2021): 1793–9.
  • K. M. K. Yu, C. M. Y. Yeung, and S. C. Tsang, “Carbon Dioxide Fixation into Chemicals (Methyl Formate) at High Yields by Surface Coupling over a Pd/Cu/ZnO Nanocatalyst,” Journal of the American Chemical Society 129, no. 20 (2007): 6360–1. doi:10.1021/ja0706302
  • Y. Zhang, G. Liu, L. Shi, P. Wu, G. Zeng, C. Zhang, N. Yang, S. Li, and Y. Sun, “Quantitative Conversion of Methanol to Methyl Formate on Graphene-Confined Nano-Oxides,” iScience 23, no. 6 (2020): 101157. doi:10.1016/j.isci.2020.101157
  • R. J. Farrauto, and R. M. Heck, “Catalytic Converters: State of the Art and Perspectives,” Catalysis Today. 51, no. 3-4 (1999): 351–60. doi:10.1016/S0920-5861(99)00024-3
  • P. Brown, and P. Mazumder, “Current Progress in Mechanically Durable Water‐Repellent Surfaces: A Critical Review,” Reviews of Adhesion and Adhesives 9, no. 1 (2021): 123–52.
  • A. Charles, K. Sivaraj, and S. Krishnaraj, “Synthesis of Copper (II) Schiff Base Complex and Its Mixed Thin Layer with ZnO Nanoparticles,” Iranian Journal of Chemistry and Chemical Engineering 40, no. 3 (2021): 758–64.
  • R. Davarnejad, A. Azizi, S. Asadi, and M. Mohammadi, “Green Synthesis of Copper Nanoparticles Using Centaurea Cyanus Plant Extract: A Cationic Dye Adsorption Application,” Iranian Journal of Chemistry and Chemical Engineering 41, no. 1 (2022): 1–14.
  • M. Shojaie, “One-Pot Multicomponent Synthesis of Pyrano[2,3-c]Pyrazoles Catalyzed by Copper Oxide Nanoparticles (CuO NPs),” Journal of Synthetic Chemistry 1 (2022): 125–31.
  • R. Wojcieszak, M. N. Ghazzal, E. M. Gaigneaux, and P. Ruiz, “Low Temperature Oxidation of Methanol to Methyl Formate over Pd Nanoparticles Supported on γ-Fe2O3,” Catalysis Science & Technology 4, no. 3 (2014): 738–45. doi:10.1039/c3cy00859b
  • C. Sun, B. Shen, J. Liu, and S. M. Mirzamani Bafghi, “Photocatalytic Oxidation of Methanol Selectivity in the Preparation of the Application of Methylformate,” Iranian Journal of Chemistry & Chemical Engineering. 41, no. 3 (2022): 843–52.
  • S. Maerten, C. Kumpidet, D. Voß, A. Bukowski, P. Wasserscheid, and J. Albert, “Glucose Oxidation to Formic Acid and Methyl Formate in Perfect Selectivity,” Green Chemistry 22, no. 13 (2020): 4311–20. doi:10.1039/D0GC01169J
  • V. V. Kaichev, GYa Popova, YuA. Chesalov, A. A. Saraev, D. Y. Zemlyanov, S. A. Beloshapkin, A. Knop-Gericke, R. Schlögl, T. V. Andrushkevich, and V. I. Bukhtiyarov, “Selective Oxidation of Methanol to Form Dimethoxymethane and Methyl Formate over a Monolayer V2O5/TiO2 Catalyst,” Journal of Catalysis 311 (2014): 59–70. doi:10.1016/j.jcat.2013.10.026
  • J. Deutsch, R. Eckelt, A. Köckritz, and A. Martin, “Catalytic Reaction of Methyl Formate with Amines to Formamides,” Tetrahedron 65, no. 50 (2009): 10365–9. doi:10.1016/j.tet.2009.10.047
  • M. O. McLinden, and M. L. Huber, “(R) Evolution of Refrigerants,” Journal of Chemical & Engineering Data 65, no. 9 (2020): 4176–93. doi:10.1021/acs.jced.0c00338
  • M. Monai, T. Montini, M. Melchionna, T. Duchoň, P. Kúš, C. Chen, N. Tsud, L. Nasi, K. C. Prince, K. Veltruská, et al, “The Effect of Sulfur Dioxide on the Activity of Hierarchical Pd-Based Catalysts in Methane Combustion,” Applied Catalysis B 202 (2017): 72–83. doi:10.1016/j.apcatb.2016.09.016
  • S. Q. Liu, M. R. Gao, R. F. Feng, L. Gong, H. Zeng, and J. L. Luo, “Electronic Delocalization of Bismuth Oxide Induced by Sulfur Doping for Efficient CO2 Electroreduction to Formate,” ACS Catalysis 11, no. 12 (2021): 7604–12. doi:10.1021/acscatal.1c01899
  • M. S. Shafik, “CuI Nanoparticles Immobilized on Magnetic Nanoparticles Catalyzed Synthesis of Diaryl Ethers through C–O Cross-Coupling of Phenols with Aryl Iodides,” Journal of Synthetic Chemistry 1 (2022): 132–6.
  • C. Della Volpe, and S. Siboni, “From Van Der Waals Equation to Acid-Base Theory of Surfaces: A Chemical-Mathematical Journey,” Reviews of Adhesion and Adhesives 10, no. 1 (2022): 47–97.
  • A. Irfan, “Effect of Nitrogen Doping and Acene Cores Elongation on Charge Transport and Electronic Nature of Organic Semiconductor Materials: A DFT Study,” Iranian Journal of Chemistry and Chemical Engineering 41, no. 2 (2022): 399–409.
  • I. V. Alabugin, L. Kuhn, N. V. Krivoshchapov, P. Mehaffy, and M. G. Medvedev, “Anomeric Effect, Hyperconjugation and Electrostatics: lessons from Complexity in a Classic Stereoelectronic Phenomenon,” Chemical Society Reviews 50, no. 18 (2021): 10212–52. doi:10.1039/d1cs00564b
  • M. Mansouri, M. Nademi, M. Ebrahim Olya, and H. Lotfi, “Study of Methyl Tert-Butyl Ether (MTBE) Photocatalytic Degradation with UV/TiO2-ZnO-CuO Nanoparticles,” Journal of Chemical Health Risks 7, no. 1 (2017): 19–32.
  • S. Rehman, N. A. Shad, M. M. Sajid, K. Ali, Y. Javed, Y. Jamil, M. Sajjad, A. Nawaz, and S. K. Sharma, “Tuning Structural and Optical Properties of Copper Oxide Nanomaterials by Thermal Heating and Its Effect on Photocatalytic Degradation of Congo Red Dye,” Iranian Journal of Chemistry and Chemical Engineering 41, no. 5 (2022): 1549–60.
  • E. Akbas, A. Ruzgar, A. Cagla, and S. Ertan, “Synthesis, Characterization, and DFT Calculation of Some New Pyrimidine Derivatives and Theoretical Studies on the Corrosion Inhibition Performance,” Iranian Journal of Chemistry and Chemical Engineering 41, no. 5 (2022): 1643–56.
  • B. Ruscic, D. Feller, and K. A. Peterson, “Active Thermochemical Tables: Dissociation Energies of Several Homonuclear First-Row Diatomics and Related Thermochemical Values,” Theoretical Chemistry Accounts 133, no. 1 (2014): 1415/1–2. doi:10.1007/s00214-013-1415-z
  • S. J. Klippenstein, L. B. Harding, and B. Ruscic, “Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species,” The Journal of Physical Chemistry A 121, no. 35 (2017): 6580–602. doi:10.1021/acs.jpca.7b05945
  • B. Ruscic, “Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables,” International Journal of Quantum Chemistry 114, no. 17 (2014): 1097–101. doi:10.1002/qua.24605
  • M. A. Albo Hay Allah, A. A. Balakit, H. I. Salman, A. A. Abdulridha, and Y. Sert, “New Heterocyclic Compound as Carbon Steel Corrosion Inhibitor in 1 M H2SO4, High Efficiency at Low Concentration: Experimental and Theoretical Studies,” Journal of Adhesion Science and Technology 37, no. 3 (2023): 525–47. doi:10.1080/01694243.2022.2034588
  • A. A. Abdulridha, M. A. Albo Hay Allah, S. Q. Makki, Y. Sert, H. E. Salman, and A. A. Balakit, “Corrosion Inhibition of Carbon Steel in 1 M H2SO4 Using New Azo Schiff Compound: Electrochemical, Gravimetric, Adsorption, Surface and DFT Studies,” Journal of Molecular Liquids 315 (2020): 113690. doi:10.1016/j.molliq.2020.113690
  • A. A. Balakit, S. Q. Makki, Y. Sert, F. Ucun, M. B. Alshammari, P. Thordarson, and G. A. El-Hiti, “Synthesis, Spectrophotometric and DFT Studies of New Triazole Schiff Bases as Selective Naked-Eye Sensors for Acetate Anion,” Supramolecular Chemistry 32, no. 10 (2020): 519–26. doi:10.1080/10610278.2020.1808217
  • N. Dege, H. Gökce, O. E. Doğan, G. Alpaslan, T. Ağar, S. Muthu, and Y. Sert, “Quantum Computational, Spectroscopic Investigations on N-(2-((2-Chloro-4,5-Dicyanophenyl) Amino) Ethyl) -4-Methyl Benzene Sulfonamide by DFT/TD-DFT with Different Solvents, Molecular Docking and Drug-Likeness Researches,” Colloids and Surfaces A 638 (2022): 128311. doi:10.1016/j.colsurfa.2022.128311
  • S. M. Blinder, “Chapter 14 – Density Functional Theory,” In Introduction to Quantum Mechanics 2nd ed. 235–44, 2021. doi:10.1016/C2019-0-04431-7
  • D. V. Chachkov, and O. V. Mikhailov, “CuIV Oxidation State Stabilization in the Macrocyclic Compound with Phthalocyanine and Two Fluoro Ligands: DFT Quantum-Chemical Research,” European Chemical Bulletin 9, no. 9 (2020): 313–6. doi:10.17628/ecb.2020.9.313-316
  • B. Tüzün, and J. Bhawsar, “Quantum Chemical Study of Thiaozole Derivatives as Corrosion Inhibitors Based on Density Functional Theory,” Arabian Journal of Chemistry 14, no. 2 (2021): 102927. doi:10.1016/j.arabjc.2020.102927
  • L. Rong, Z. Xu, J. Sun, and G. Guo, “New Methyl Formate Synthesis Method: coal to Methyl Formate,” Journal of Energy Chemistry 27, no. 1 (2018): 238–42. doi:10.1016/j.jechem.2017.07.015
  • R. J. Ouellette, and J. D. Rawn, “1 - Structure and Bonding in Organic Compounds,” Organic Chemistry Structure, Mechanism, and Synthesis (2014): 1–39.
  • S. Lin, D. Xie, and H. Guo, “Methyl Formate Pathway in Methanol Steam Reforming on Copper: Density Functional Calculations,” ACS Catalysis 1, no. 10 (2011): 1263–71. doi:10.1021/cs200311t
  • M. Rahami, and L. Mahdavian, “Computational Investigation of the Interaction of Poly-Chloride Biphenyl (PCB-169) with Carbon Nanoparticles,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1302–14. doi:10.1080/10406638.2018.1540999

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.