129
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enaminones as Building Blocks in Heterocyclic Synthesis: Novel Routs for Synthesis of Coumarin Analogs and Study their Anticancer Activities

, & ORCID Icon
Pages 1581-1592 | Received 28 Jun 2022, Accepted 05 Apr 2023, Published online: 20 Apr 2023

References

  • S. Sidney, A. S. Go, and J. S. Rana, “Transition from Heart Disease to Cancer as the Leading Cause of Death in the United States,” Annals of Internal Medicine 171, no. 3 (2019): 225. doi:10.7326/L19-0202
  • B. N. Marak, J. Dowarah, L. Khiangte, and V. P. Singh, “A Comprehensive Insight on the Recent Development of Cyclic Dependent Kinase Inhibitors as Anticancer Agents,” European Journal of Medicinal Chemistry 203 (2020): 112571. doi:10.1016/j.ejmech.2020.112571
  • Z. Huang, B. Zhao, Z. Qin, Y. Li, T. Wang, W. Zhou, J. Zheng, S. Yang, Y. Shi, Y. Fan, et al, “Novel Dual Inhibitors Targeting CDK4 and VEGFR2 Synergistically Suppressed Cancer Progression and Angiogenesis,” European Journal of Medicinal Chemistry 181 (2019): 111541. doi:10.1016/J.EJMECH.2019.07.044
  • Y. Wan, Y. Li, C. Yan, M. Yan, and Z. Tang, “Indole: A Privileged Scaffold for the Design of Anti-Cancer Agents,” European Journal of Medicinal Chemistry 183 (2019): 111691. doi:10.1016/j.ejmech.2019.111691
  • E. K. Akkol, Y. Genç, B. Karpuz, E. Sobarzo-Sánchez, and R. Capasso, “Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer,” Cancers (Cancers 12, no. 7 (2020): 1959. doi:10.3390/cancers12071959
  • M. B. Yerer, S. Dayan, M. I. Han, A. Sharma, H. S. Tuli, and K. Sak, “Nanoformulations of Coumarins and the Hybrid Molecules of Coumarins with Potential Anticancer Effects,” Anti-Cancer Agents in Medicinal Chemistry 20, no. 15 (2020): 1797–816. doi:10.2174/1871520620666200310094646
  • K. N. Venugopala, V. Rashmi, and B. Odhav, “Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity,” Biomed Research International. 2013 (2013): 1–14. doi:10.1155/2013/963248
  • B. Bibak, F. Shakeri, G. E. Barreto, Z. Keshavarzi, T. Sathyapalan, and A. Sahebkar, “A Review of the Pharmacological and Therapeutic Effects of Auraptene,” BioFactors (Oxford, England) 45, no. 6 (2019): 867–79. doi:10.1002/biof.1550
  • J. J. Zhu, and J. G. Jiang, “Pharmacological and Nutritional Effects of Natural Coumarins and Their Structure–Activity Relationships,” Molecular Nutrition & Food Research 62, no. 14 (2018): 1701073. doi:10.1002/mnfr.201701073
  • J. R. S. Hoult, and M. Payá, “Pharmacological and Biochemical Actions of Simple Coumarins: Natural Products with Therapeutic Potential,” General Pharmacology 27, no. 4 (1996): 713–22. doi:10.1016/0306-3623(95)02112-4
  • F. Annunziata, C. Pinna, S. Dallavalle, L. Tamborini, and A. Pinto, “An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities,” International Journal of Molecular Sciences 21, no. 13 (2020): 4618. doi:10.3390/ijms21134618
  • M. Lončar, M. Jakovljević, D. Šubarić, M. Pavlić, V. Buzjak Služek, I. Cindrić, and M. Molnar, “Coumarins in Food and Methods of Their Determination,” Foods 9, no. 5 (2020): 645. doi:10.3390/foods9050645
  • A. Abdel-Aziem, and A. O. Abdelhamid, “Synthesis of Coumarin Analogues Clubbed 1,3,4-Thiadiazine or Thiazole and Their Anticancer Activity,” Polycyclic Aromatic Compounds 42 (2021): 7310–20. doi:10.1080/10406638.2021.1998152
  • H. L. Qin, Z. W. Zhang, L. Ravindar, and K. P. Rakesh, “Antibacterial Activities with the Structure-Activity Relationship of Coumarin Derivatives,” European Journal of Medicinal Chemistry 207 (2020): 112832. doi:10.1016/j.ejmech.2020.112832
  • C. Liang, W. Ju, S. Pei, Y. Tang, and Y. Xiao, “Pharmacological Activities and Synthesis of Esculetin and Its Derivatives: A Mini-Review,” Journal of Lipid Research. 22, no. 3 (2017): 387. doi:10.3390/molecules22030387
  • M. O. Sarhan, S. S. Abd El-Karim, M. M. Anwar, R. H. Gouda, W. A. Zaghary, and M. A. Khedr, “Discovery of New Coumarin-Based Lead with Potential Anticancer, cdk4 Inhibition and Selective Radiotheranostic Effect: Synthesis, 2d & 3d Qsar, Molecular Dynamics, in Vitro Cytotoxicity, Radioiodination, and Biodistribution Studies,” Molecules 26, no. 8 (2021): 2273. doi:10.3390/molecules26082273
  • Z. Tayarani-Najaran, N. Tayarani-Najaran, and S. Eghbali, “A Review of Auraptene as an Anticancer Agent,” Frontiers in Pharmacology 12, (2021): 1–9. doi:10.3389/fphar.2021.698352
  • T. Al-Warhi, A. Sabt, E. B. Elkaeed, and W. M. Eldehna, “Recent Advancements of Coumarin-Based Anticancer Agents: An up-to-Date Review,” Bioorganic Chemistry 103 (2020): 104163. doi:10.1016/J.BIOORG.2020.104163
  • N. Bhattarai, A. A. Kumbhar, Y. R. Pokharel, and P. N. Yadav, “Anticancer Potential of Coumarin and Its Derivatives,” Mini-Reviews in Medicinal Chemistry 21, no. 19 (2021): 2996–3029. doi:10.2174/1389557521666210405160323
  • B. Z. Kurt, N. Ozten Kandas, A. Dag, F. Sonmez, and M. Kucukislamoglu, “Synthesis and Biological Evaluation of Novel Coumarin-Chalcone Derivatives Containing Urea Moiety as Potential Anticancer Agents,” Arabian Journal of Chemistry 13, no. 1 (2020): 1120–9. doi:10.1016/j.arabjc.2017.10.001
  • S. K. Ramadan, and S. A. Rizk, “Synthesis, Density Functional Theory, and Cytotoxic Activity of Some Heterocyclic Systems Derived from 3-(3-(1,3-Diphenyl-1H-Pyrazol-4-yl)Acryloyl)-2H-Chromen-2-One,” Journal of the Iranian Chemical Society 19, no. 1 (2022): 187–201. doi:10.1007/s13738-021-02298-6
  • A. Thakur, R. Singla, and V. Jaitak, “Coumarins as Anticancer Agents: A Review on Synthetic Strategies, Mechanism of Action and SAR Studies,” European Journal of Medicinal Chemistry. 101 (2015): 476–95. doi:10.1016/j.ejmech.2015.07.010
  • A. M. El-Naggar, M. M. Hemdan, and S. R. Atta-Allah, “An Efficient One-Pot Synthesis of New Coumarin Derivatives as Potent Anticancer Agents under Microwave Irradiation,” Journal of Heterocyclic Chemistry 54, no. 6 (2017): 3519–26. doi:10.1002/jhet.2975
  • X. Wang, H. Zhou, X. Wang, K. Lei, and S. Wang, “Coumarin Derivatives with Potential Antidepressant Effects,” Published Online (2021).
  • S. Weigt, N. Huebler, R. Strecker, T. Braunbeck, and T. H. Broschard, “Developmental Effects of Coumarin and the Anticoagulant Coumarin Derivative Warfarin on Zebrafish (Danio rerio) Embryos,” Reproductive Toxicology (Elmsford, NY) 33, no. 2 (2012): 133–41. doi:10.1016/j.reprotox.2011.07.001
  • B. M. Bizzarri, L. Botta, E. Capecchi, I. Celestino, P. Checconi, A. T. Palamara, L. Nencioni, and R. Saladino, “Regioselective IBX-Mediated Synthesis of Coumarin Derivatives with Antioxidant and anti-Influenza Activities,” Journal of Natural Products 80, no. 12 (2017): 3247–54. doi:10.1021/acs.jnatprod.7b00665
  • K. I. Bhat, A. Kumar, and P. Kumar, “Synthesis, Cytotoxic and Antihyperlipidemic Activities of Some New Coumarinyl 4-Thiazolidinone Derivatives,” Indian Journal of Pharmaceutical Education and Research 55, no. 3s (2021): S807–S813. doi:10.5530/ijper.55.3s.188
  • C. A. Kontogiorgis, K. Savvoglou, and D. J. Hadjipavlou-Litina, “Antiinflammatory and Antioxidant Evaluation of Novel Coumarin Derivatives,” Journal of Enzyme Inhibition and Medicinal Chemistry 21, no. 1 (2006): 21–9. doi:10.1080/14756360500323022
  • K. Pérez-Cruz, M. Moncada-Basualto, J. Morales-Valenzuela, G. Barriga-González, P. Navarrete-Encina, L. Núñez-Vergara, J. A. Squella, and C. Olea-Azar, “Synthesis and Antioxidant Study of New Polyphenolic Hybrid-Coumarins,” Arabian Journal of Chemistry 11, no. 4 (2018): 525–37. doi:10.1016/j.arabjc.2017.05.007
  • Y. K. Al-Majedy, D. L. Al-Duhaidahawi, K. F. Al-Azawi, A. A. Al-Amiery, A. A. H. Kadhum, and A. B. Mohamad, “Coumarins as Potential Antioxidant Agents Complemented with Suggested Mechanisms and Approved by Molecular Modeling Studies,” Molecules 21, no. 2 (2016): 135. doi:10.3390/molecules21020135
  • C. P. Kaushik, and M. Chahal, “Synthesis, Antimalarial and Antioxidant Activity of Coumarin Appended 1,4-Disubstituted 1,2,3-Triazoles,” Monatshefte Für Chemie - Chemical Monthly 152, no. 8 (2021): 1001–12. doi:10.1007/s00706-021-02821-8
  • Z. Najafi, M. Mahdavi, M. Saeedi, E. Karimpour-Razkenari, N. Edraki, M. Sharifzadeh, M. Khanavi, and T. Akbarzadeh, “Novel Tacrine-Coumarin Hybrids Linked to 1,2,3-Triazole as Anti-Alzheimer’s Compounds: In Vitro and in Vivo Biological Evaluation and Docking Study,” Bioorganic Chemistry 83 (2019): 303–16. doi:10.1016/j.bioorg.2018.10.056
  • Q. He, J. Liu, J. S. Lan, J. Ding, Y. Sun, Y. Fang, N. Jiang, Z. Yang, L. Sun, Y. Jin, et al, “Coumarin-Dithiocarbamate Hybrids as Novel Multitarget AChE and MAO-B Inhibitors against Alzheimer’s Disease: Design, Synthesis and Biological Evaluation,” Bioorganic Chemistry 81 (2018): 512–28. doi:10.1016/j.bioorg.2018.09.010
  • A. Abdel-Aziem, B. S. Baaiu, A. W. Elbazzar, and F. Elabbar, “A Facile Synthesis of Some Novel Thiazoles, Arylazothiazoles, and Pyrazole Linked to Thiazolyl Coumarin as Antibacterial Agents,” Synthetic Communications. 50, no. 16 (2020): 2522–30. doi:10.1080/00397911.2020.1782431
  • A. Abdel-Aziem, B. S. Baaiu, and E. R. El-Sawy, “Reactions and Antibacterial Activity of 6-Bromo-3-(2-Bromoacetyl)-2H-Chromen-2-One,” Polycyclic Aromatic Compounds 42 (2021): 4809–18. doi:10.1080/10406638.2021.1916543
  • D. Feng, A. Zhang, Y. Yang, and P. Yang, “Coumarin-Containing Hybrids and Their Antibacterial Activities,” Archiv Der Pharmazie 353, no. 6 (2020): 1900380. doi:10.1002/ardp.201900380
  • C. Ranjan Sahoo, J. Sahoo, M. Mahapatra, D. Lenka, P. Kumar Sahu, B. Dehury, R. Nath Padhy, and S. Kumar Paidesetty, “Coumarin Derivatives as Promising Antibacterial Agent(s),” Arabian Journal of Chemistry 14, no. 2 (2021): 102922. doi:10.1016/j.arabjc.2020.102922
  • Y. F. Shen, L. Liu, C. Z. Feng, Y. Hu, C. Chen, G. X. Wang, and B. Zhu, “Synthesis and Antiviral Activity of a New Coumarin Derivative against Spring Viraemia of Carp Virus,” Fish & Shellfish Immunology 81 (2018): 57–66. doi:10.1016/J.FSI.2018.07.005
  • S. Mishra, A. Pandey, and S. Manvati, “Coumarin: An Emerging Antiviral Agent,” Heliyon 6, no. 1 (2020): e03217. doi:10.1016/j.heliyon.2020.e03217
  • N. Prahadeesh, M. Sithambaresan, and U. Mathiventhan, “A Study on Hydrogen Peroxide Scavenging Activity and Ferric Reducing Ability of Simple Coumarins,” Emerging Science Journal 2, no. 6 (2018): 417. doi:10.28991/esj-2018-01161
  • M. Zhu, L. Ma, J. Wen, B. Dong, Y. Wang, Z. Wang, J. Zhou, G. Zhang, J. Wang, Y. Guo, et al, “Rational Design and Structure − Activity Relationship of Coumarin Derivatives Effective on HIV-1 Protease and Partially on HIV-1 Reverse Transcriptase,” European Journal of Medicinal Chemistry 186 (2020): 111900. doi:10.1016/j.ejmech.2019.111900
  • Z. Xu, Q. Chen, Y. Zhang, and C. Liang, “Coumarin-Based Derivatives with Potential anti-HIV Activity,” Fitoterapia 150 (2021): 104863. doi:10.1016/j.fitote.2021.104863
  • E. J. T. Sierra, C. F. Cordeiro, L. de Figueiredo Diniz, I. S. Caldas, J. A. Hawkes, and D. T. Carvalho, “Coumarins as Potential Antiprotozoal Agents: Biological Activities and Mechanism of Action,” Revista Brasileira de Farmacognosia 31, no. 5 (2021): 592–611. doi:10.1007/s43450-021-00169-y
  • V. Mandlik, S. Patil, R. Bopanna, S. Basu, and S. Singh, “Biological Activity of Coumarin Derivatives as anti-Leishmanial Agents,” PLoS One 11, no. 10 (2016): e0164585. doi:10.1371/journal.pone.0164585
  • R. S. Keri, B. S. Sasidhar, B. M. Nagaraja, and M. A. Santos, “Recent Progress in the Drug Development of Coumarin Derivatives as Potent Antituberculosis Agents,” European Journal of Medicinal Chemistry 100 (2015): 257–69. doi:10.1016/j.ejmech.2015.06.017
  • S. M. Gomha, Y. H. Zaki, A. O. Abdelhamid, and R. A. Bunce, “Utility of 3-Acetyl-6-Bromo-2H-Chromen-2-One for the Synthesis of New Heterocycles as Potential Antiproliferative Agents,” Molecules (Basel, Switzerland) 20, no. 12 (2015): 21826–39. doi:10.3390/molecules201219803
  • R. H. Shoemaker, “The NCI60 Human Tumour Cell Line Anticancer Drug Screen,” Nature Reviews Cancer 6, no. 10 (2006): 813–23. doi:10.1038/nrc1951
  • M. R. Boyd, “The NCI in Vitro Anticancer Drug Discovery Screen,” Anticancer Drug Dev Guid. Published Online (Totowa, NJ: HumanaPress, 1997), 23–42. doi:10.1007/978-1-4615-8152-9_2
  • M. R. Boyd, and K. D. Paull, “Some Practical Considerations and Applications of the National Cancer Institute in Vitro Anticancer Drug Discovery Screen,” Drug Development Research 34, no. 2 (1995): 91–109. doi:10.1002/ddr.430340203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.