56
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green Synthesis of Nd2sn2o7 Nanostructures Using Gum of Ferula Assa-Feotida for the Fabrication of 3a,4-dihydronaphtho[2,3-c]furan-1(3H)-One

, , , & ORCID Icon
Pages 1669-1681 | Received 23 Nov 2022, Accepted 09 Apr 2023, Published online: 22 Apr 2023

References

  • S. Park, H. J. Hwang, and J. Moon, "Catalytic Combustion of Methane over Rare Earth Stannate Pyrochlore" Catalysis Letters 87, no. 3/4 (2003): 219–23. doi:10.1023/A:1023626226464
  • K. Li, H. Wang, and H. Yan, “Hydrothermal Preparation and Photocatalytic Properties of Y2Sn2O7 Nanocrystals,” Journal of Molecular Catalysis A: Chemical 249, no. 1–2 (2006): 65–70. doi:10.1016/j.molcata.2006.01.002
  • S. Zinatloo-Ajabshir, M. S. Morassaei, and M. Salavati-Niasari, “Facile Fabrication of Dy(2)Sn(2)O(7)-SnO(2) Nanocomposites as an Effective Photocatalyst for Degradation and Removal of Organic Contaminants,” Journal of Colloid and Interface Science 497 (2017): 298–308. doi:10.1016/j.jcis.2017.03.031
  • E. López-Navarrete, V. M. Orera, F. J. Lázaro, J. B. Carda, and M. Ocaña, “Preparation through Aerosols of Cr-Doped Y2Sn2O7 (Pyrochlore) Red-Shade Pigments and Determination of the Cr Oxidation State,” Journal of the American Ceramic Society 87, no. 11 (2005): 2108–13. doi:10.1111/j.1151-2916.2004.tb06367.x
  • M. S. Morassaei, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, “Simple Salt-Assisted Combustion Synthesis of Nd2Sn2O7–SnO2 Nanocomposites with Different Amino Acids as Fuel: An Efficient Photocatalyst for the Degradation of Methyl Orange Dye,” Journal of Materials Science: Materials in Electronics 27, no. 11 (2016): 11698–706. doi:10.1007/s10854-016-5306-7
  • F. Matteucci, G. Cruciani, M. Dondi, G. Baldi, and A. Barzanti, “Crystal Structural and Optical Properties of Cr-Doped Y2Ti2O7 and Y2Sn2O7 Pyrochlores,” Acta Materialia 55, no. 7 (2007): 2229–2238. doi:10.1016/j.actamat.2006.11.008
  • S. Fujihara, and K. Tokumo, “Multiband Orange-Red Luminescence of Eu 3+ Ions Based on the Pyrochlore-Structured Host Crystal,” Chemistry of Materials 17, no. 22 (2005): 5587–93. doi:10.1021/cm0513785
  • M. S. Morassaei, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, “New Facile Synthesis, Structural and Photocatalytic Studies of NdOCl-Nd2Sn2O7-SnO2 Nanocomposites,” Journal of Molecular Liquids 220 (2016): 902–9. doi:10.1016/j.molliq.2016.05.041
  • L. Kong, I. Karatchevtseva, M. G. Blackford, N. Scales, and G. Triani, “Aqueous Chemical Synthesis of Ln 2 Sn 2 O 7 Pyrochlore-Structured Ceramics,” Journal of the American Ceramic Society 96, no. 9 (2013): 2994–3000. doi:10.1111/jace.12409
  • M. S. Morassaei, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, “Nd2Sn2O7 Nanostructures: New Facile Pechini Preparation, Characterization, and Investigation of Their Photocatalytic Degradation of Methyl Orange Dye,” Advanced Powder Technology 28, no. 3 (2017): 697–705. doi:10.1016/j.apt.2016.11.017
  • K. Eurenius, E. Ahlberg, and C. Knee, “Proton Conductivity in Sm2Sn2O7 Pyrochlores,” Solid State Ionics. 181, no. 35–36 (2010): 1577–85. doi:10.1016/j.ssi.2010.09.008
  • T. H. Yu, and H. L. Tuller, “Ionic Conduction and Disorder in the Gd2Sn2O7 Pyrochlore System,” Solid State Ionics. 86-88 (1996): 177–82. doi:10.1016/0167-2738(96)00118-X
  • Jinyu Yang, Yuchang Su, Haibin Li, Xueying Liu, and Zhuo Chen, “Hydrothermal Synthesis and Photoluminescence of Ce3+ and Tb3+ Doped La2Sn2O7 Nanocrystals,” Journal of Alloys and Compounds 509, no. 31 (2011): 8008–12. doi:10.1016/j.jallcom.2010.09.018
  • S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, and M. Salavati-Niasari, “Sono-Synthesis and Characterization of Ho2O3 Nanostructures via a New Precipitation Way for Photocatalytic Degradation Improvement of Erythrosine,” International Journal of Hydrogen Energy 42, no. 22 (2017): 15178–88. doi:10.1016/j.ijhydene.2017.04.252
  • F. Beshkar, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, “Simple Morphology-Controlled Fabrication of Nickel Chromite Nanostructures via a Novel Route,” Chemical Engineering Journal 279 (2015): 605–14. doi:10.1016/j.cej.2015.05.076
  • F. Razi, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, “Preparation and Characterization of HgI2 Nanostructures via a New Facile Route,” Materials Letters 193 (2017): 9–12. doi:10.1016/j.matlet.2017.01.095
  • F. Beshkar, S. Zinatloo-Ajabshir, S. Bagheri, and M. Salavati-Niasari, “Novel Preparation of Highly Photocatalytically Active Copper Chromite Nanostructured Material via a Simple Hydrothermal Route,” PLOS One 12, no. 6 (2017): e0158549. doi:10.1371/journal.pone.0158549
  • S. Zinatloo-Ajabshir, M. Salavati-Niasari, and Z. Zinatloo-Ajabshir, “Facile Size-Controlled Preparation of Highly Photocatalytically Active Praseodymium Zirconate Nanostructures for Degradation and Removal of Organic Pollutants,” Separation and Purification Technology 177 (2017): 110–20. doi:10.1016/j.seppur.2016.12.043
  • Z. Salehi, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, “Dysprosium Cerate Nanostructures: Facile Synthesis, Characterization, Optical and Photocatalytic Properties,” Journal of Rare Earths 35, no. 8 (2017): 805–12. doi:10.1016/S1002-0721(17)60980-3
  • C. Yu, Z. Wu, R. Liu, D. D. Dionysiou, K. Yang, C. Wang, and H. Liu, “Novel Fluorinated Bi 2 MoO 6 Nanocrystals for Efficient Photocatalytic Removal of Water Organic Pollutants under Different Light Source Illumination,” Applied Catalysis B: Environmental 209 (2017): 1–11. doi:10.1016/j.apcatb.2017.02.057
  • S. Zinatloo-Ajabshir, Z. Salehi, and M. Salavati-Niasari, “Green Synthesis and Characterization of Dy2Ce2O7 Ceramic Nanostructures with Good Photocatalytic Properties under Visible Light for Removal of Organic Dyes in Water,” Journal of Cleaner Production 192 (2018): 678–87. doi:10.1016/j.jclepro.2018.05.042
  • J. Tian, Z. Wu, Z. Liu, C. Yu, K. Yang, L. Zhu, W. Huang, and Y. Zhou, “Low-Cost and Efficient Visible-Light-Driven CaMg(CO3)2@Ag2CO3 Microspheres Fabricated via an Ion Exchange Route,” Chinese Journal of Catalysis 38, no. 11 (2017): 1899–908. doi:10.1016/S1872-2067(17)62924-3
  • S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, and M. Salavati-Niasari, “Nd2O3-SiO2 Nanocomposites: A Simple Sonochemical Preparation, Characterization and Photocatalytic Activity,” Ultrasonics Sonochemistry 42 (2018): 171–82. doi:10.1016/j.ultsonch.2017.11.026
  • M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “New Photocatalyst, Sb 2 S 3, for Degradation of Methyl Orange under Visible-Light Irradiation,” The Journal of Physical Chemistry C 112, no. 46 (2008): 18076–81. doi:10.1021/jp806496d
  • M. Dhiman, B. Chalke, and V. Polshettiwar, “Organosilane Oxidation with a Half Million Turnover Number Using Fibrous Nanosilica Supported Ultrasmall Nanoparticles and Pseudo-Single Atoms of Gold,” Journal of Materials Chemistry A 5, no. 5 (2017): 1935–40. doi:10.1039/C6TA09434A
  • S. Zinatloo-Ajabshir, Z. Salehi, and M. Salavati-Niasari, “Green Synthesis and Characterization of Dy2Ce2O7 Nanostructures Using Ananas Comosus with High Visible-Light Photocatalytic Activity of Organic Contaminants,” Journal of Alloys and Compounds 763 (2018): 314–21. doi:10.1016/j.jallcom.2018.05.311
  • J. Tian, R. Liu, Z. Liu, C. Yu, and M. Liu, “Boosting the Photocatalytic Performance of Ag2CO3 Crystals in Phenol Degradation via Coupling with Trace N-CQDs,” Chinese Journal of Catalysis 38, no. 12 (2017): 1999–2008. doi:10.1016/S1872-2067(17)62926-7
  • X. Liu, Y. Xiao, J.-Q. Li, B. Fu, and Z. Qin, “1,1-Diaryl Compounds as Important Bioactive Module in Pesticides,” Molecular Diversity 23, no. 3 (2019): 809–20. doi:10.1007/s11030-018-9895-3
  • S. Mondal, and G. Panda, “Synthetic Methodologies of Achiral Diarylmethanols, Diaryl and Triarylmethanes (TRAMs) and Medicinal Properties of Diaryl and Triarylmethanes-an Overview,” RSC Advances. 4, no. 54 (2014): 28317–58. doi:10.1039/C4RA01341G
  • Y.-L. Liu, and X.-T. Lin, “Recent Advances in Catalytic Asymmetric Synthesis of Tertiary Alcohols via Nucleophilic Addition to Ketones,” Advanced Synthesis & Catalysis 361, no. 5 (2019): 876–918. doi:10.1002/adsc.201801023
  • S. Mondal, D. Roy, and G. Panda, “Critical View on the Recent Enantioselective Synthesis of Alcohols, Amines and Related Molecules Having Tertiary Benzylic Stereocenter,” Tetrahedron 74, no. 36 (2018): 4619–703. doi:10.1016/j.tet.2018.07.011
  • W. Li, and J. Zhang, "Recent advances in Pd-catalyzed asymmetric addition reactions," Adv Organometallic Chemistry. 74 (2020): 325.
  • Y.-W. Sun, P.-l Zhu, Q. Xu, and M. Shi, “Development of Pd Catalyzed Asymmetric Additions in the Last Five Years,” RSC Advances. 3, no. 10 (2013): 3153–68. doi:10.1039/C2RA22674J
  • D. V. Partyka, “Transmetalation of Unsaturated Carbon Nucleophiles from Boron-Containing Species to the Mid to Late d-Block Metals of Relevance to Catalytic C-X Coupling Reactions (X = C, F, N, O, Pb, S, Se, Te),” Chemical Reviews 111, no. 3 (2011): 1529–95. doi:10.1021/cr1002276
  • C.-A. Chang, T.-Y. Uang, J.-H. Jian, M.-Y. Zhou, M.-L. Chen, T.-S. Kuo, P.-Y. Wu, and H.-L. Wu, “Efficient and Enantioselective Rhodium(I)-Catalyzed Arylation of α-Ketoesters: Synthesis of (S)-Flutriafol,” Advanced Synthesis & Catalysis 360, no. 17 (2018): 3381–90. doi:10.1002/adsc.201800575
  • L. G. Borrego, R. Recio, M. Alcarranza, N. Khiar, and I. Fernández, “An Efficient and Practical Method for the Enantioselective Synthesis of Tertiary Trifluoromethyl Carbinols,” Advanced Synthesis & Catalysis 360, no. 6 (2018): 1273–9. doi:10.1002/adsc.201701212
  • F. Bie, X. Liu, M. Wang, H. Cui, T. Li, J. Ma, and H. Cao, “Diarylmethanols Synthesis by Nickel(II)-Catalyzed Addition of Arylboronic Acids to Aryl Aldehydes,” Letters in Organic Chemistry 17, no. 4 (2020): 248–53. doi:10.2174/1570178616666190724124849
  • Q. W. Song, Z. H. Zhou, and L. N. He, “Efficient, Selective and Sustainable Catalysis of Carbon Dioxide,” Green Chemistry 19, no. 16 (2017): 3707–28. doi:10.1039/C7GC00199A
  • N. T. S. Phan, T. T. Nguyen, and A. H. Ta, “The Arylation of Aldehydes with Arylboronic Acids Using Metal-Organic Framework Ni(HBTC)BPY as an Efficient Heterogeneous Catalyst,” Journal of Molecular Catalysis A: Chemical 365 (2012): 95–102. doi:10.1016/j.molcata.2012.08.015
  • D. Fattakhova-Rohlfing, A. Zaleska, and T. Bein, “Three-Dimensional Titanium Dioxide Nanomaterials,” Chemical Reviews 114, no. 19 (2014): 9487–558. doi:10.1021/cr500201c
  • U. Gulati, U. C. Rajesh, D. S. Rawat, and J. M. Zaleski, “Development of Magnesium Oxide-Silver Hybrid Nanocatalysts for Synergistic Carbon Dioxide Activation to Afford Esters and Heterocycles at Ambient Pressure,” Green Chemistry : An International Journal and Green Chemistry Resource : GC 22, no. 10 (2020): 3170–7. doi:10.1039/c9gc04040d
  • Z. Wang, X. Li, L. Feng, B. Liu, and F. Shamsa, “DFNS/α-CD/Au as a Nanocatalyst for Interpolation of CO2 into Aryl Alkynes Followed by SN2 Coupling with Allylic Chlorides,” Catalysis Letters 151, no. 7 (2021): 1911–22. doi:10.1007/s10562-020-03451-1
  • Y. Zhu, G. Xu, W. Song, M. Wu, R. Yao, and S. M. Sadeghzadeh, “Cu2O Nanocatalysts Immobilized on p(SBMA) for Synergistic CO2 Activation to Afford Esters and Heterocycles at Ambient Pressure,” Catalysis Letters 151, no. 9 (2021): 2724–33. doi:10.1007/s10562-020-03518-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.