113
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and Assessment of the Cytotoxic Effects of Some Novel Biginelli 3,4-Dihydropyrmidine-2-(1H) One Derivatives Containing 2-Mercapto-3-Phenyl-4(3H)-Quinazolinone

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1781-1792 | Received 13 Dec 2022, Accepted 19 Apr 2023, Published online: 08 May 2023

References

  • Hyuna Sung, Jacques Ferlay, Rebecca L. Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, and Freddie Bray, “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 71, no. 3 (2021): 209–49. doi:10.3322/caac.21660
  • Gulcen Yeldag, Alistair Rice, and Armando Del Río Hernández, “Chemoresistance and the Self-Maintaining Tumor Microenvironment,” Cancers 10, no. 12 (2018): 471. doi:10.3390/cancers10120471
  • B. S Holla, B. S Rao, B. K. Sarojini, and P. M. Akberali, “One Pot Synthesis of Thiazolodihydropyrimidinones and Evaluation of Their Anticancer Activity,” European Journal of Medicinal Chemistry 39, no. 9 (2004): 777–83. doi:10.1016/j.ejmech.2004.06.001
  • Ye Liu, Jiaqi Liu, Renmei Zhang, Yan Guo, Hongbo Wang, Qingguo Meng, Yuan Sun, and Zongliang Liu, “Synthesis, Characterization, and Anticancer Activities Evaluation of Compounds Derived from 3, 4-Dihydropyrimidin-2 (1H)-One,” Molecules 24, no. 5 (2019): 891. doi:10.3390/molecules24050891
  • Mashooq Ahmad Bhat, Abdullah Al-Dhfyan, and Mohamed A. Al-Omar, “Targeting Cancer Stem Cells with Novel 4-(4-Substituted Phenyl)-5-(3, 4, 5-Trimethoxy/3, 4-Dimethoxy)-Benzoyl-3, 4-Dihydropyrimidine-2 (1H)-One/Thiones,” Molecules 21, no. 12 (2016): 1746. doi:10.3390/molecules21121746
  • Katharigatta N. Venugopala, Reshme Govender, Mohammed A. Khedr, Rashmi Venugopala, Bandar E. Aldhubiab, Sree Harsha, and Bharti Odhav, “Design, Synthesis, and Computational Studies on Dihydropyrimidine Scaffolds as Potential Lipoxygenase Inhibitors and Cancer Chemopreventive Agents,” Drug Design, Development and Therapy 9 (2015): 911–21. doi:10.2147/DDDT.S73890
  • Wasim Akhtar, Garima Verma, Mohemmed F. Khan, Mohammad Shaquiquzzaman, Arpana Rana, Tarique Anwer, Mymoona Akhter, and M. Mumtaz Alam, “Synthesis of Hybrids of Dihydropyrimidine and Pyridazinone as Potential Anti-breast Cancer Agents,” Mini Reviews in Medicinal Chemistry 18, no. 4 (2018): 369–79.
  • Sahand Safari, Reza Ghavimi, Nima Razzaghi‐Asl, and Saghi Sepehri, “Synthesis, Biological Evaluation and Molecular Docking Study of Dihydropyrimidine Derivatives as Potential Anticancer Agents,” Journal of Heterocyclic Chemistry 57, no. 3 (2020): 1023–33. doi:10.1002/jhet.3822
  • Rawdha Medyouni, Wissal Elgabsi, Olfa Naouali, Antonio Romerosa, Abdullah Sulaiman Al-Ayed, Lasaad Baklouti, and Naceur Hamdi, “One-pot Three-component Biginelli-type Reaction to Synthesize 3, 4-Dihydropyrimidine-2-(1H)-Ones Catalyzed by Co Phthalocyanines: Synthesis, Characterization, Aggregation Behavior and Antibacterial Activity,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 167 (2016): 165–74. doi:10.1016/j.saa.2016.04.045
  • Afaf El-Malah, Zeinab. Mahmoud, Heba. Hamed Salem, Amr M. Abdou, Mona M. H. Soliman, and Rasha A. Hassan, “Design, Ecofriendly Synthesis, Anticancer and Antimicrobial Screening of Innovative Biginelli Dihydropyrimidines Using β-Aroylpyruvates as Synthons,” Green Chemistry Letters and Reviews 14, no. 2 (2021): 221–33. doi:10.1080/17518253.2021.1896789
  • Mariela E. Sánchez-Borzone, Maria E. Mariani, Virginia Miguel, Raquel M. Gleiser, Bharti Odhav, Katharigatta N. Venugopala, and Daniel A. García, “Membrane Effects of Dihydropyrimidine Analogues with Larvicidal Activity,” Colloids and Surfaces. B, Biointerfaces 150 (2017): 106–13. doi:10.1016/j.colsurfb.2016.11.028
  • Seerat Fatima, Anindra Sharma, Reshu Saxena, Rajkamal Tripathi, Sanjeev K. Shukla, Swaroop Kumar Pandey, Renu Tripathi, and Rama P. Tripathi, “One Pot Efficient Diversity Oriented Synthesis of Polyfunctional Styryl Thiazolopyrimidines and Their Bio-evaluation as Antimalarial and Anti-HIV Agents,” European Journal of Medicinal Chemistry 55 (2012): 195–204. doi:10.1016/j.ejmech.2012.07.018
  • Gianluigi Lauro, Maria Strocchia, Stefania Terracciano, Ines Bruno, Katrin Fischer, Carlo Pergola, Oliver Werz, Raffaele Riccio, and Giuseppe Bifulco, “Exploration of the Dihydropyrimidine Scaffold for the Development of New Potential Anti-inflammatory Agents Blocking Prostaglandin E2 Synthase-1 Enzyme (mPGES-1),” European Journal of Medicinal Chemistry 80 (2014): 407–15. doi:10.1016/j.ejmech.2014.04.061
  • Safinaz E. Abbas, Fadi M. Awadallah, Nashwa A. Ibrahin, Eman G. Said, and Gihan M. Kamel, “New Quinazolinone–Pyrimidine Hybrids: Synthesis, Anti-inflammatory, and Ulcerogenicity Studies,” European Journal of Medicinal Chemistry 53 (2012): 141–9. doi:10.1016/j.ejmech.2012.03.050
  • Ozair Alam, Suroor A. Khan, Nadeem Siddiqui, Waquar Ahsan, Suraj P. Verma, and Sadaf J. Gilani, “Antihypertensive Activity of Newer 1, 4-Dihydro-5-Pyrimidine Carboxamides: Synthesis and Pharmacological Evaluation,” European Journal of Medicinal Chemistry 45, no. 11 (2010): 5113–9. doi:10.1016/j.ejmech.2010.08.022
  • R. Ramajayam, Nilesh B. Mahera, Nouri Neamati, Mange Ram Yadav, and Rajani Giridhar, “Synthesis and Anti‐HIV‐1 Integrase Activitiy of Cyano Pyrimidinones,” Archiv Der Pharmazie 342, no. 12 (2009): 710–5. doi:10.1002/ardp.200900066
  • P. Biginelli, “The Urea-Aldehyde Derivatives of Acetoacetic Esters,” Gazzetta Chimica Italiana. 23 (1893): 360–416.
  • C. Oliver Kappe, “A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for an N-Acyliminium Ion intermediate1,” The Journal of Organic Chemistry 62, no. 21 (1997): 7201–4. doi:10.1021/jo971010u
  • Karim Akbari Dilmaghani, Behzad Zeynizadeh, and Hadi Parasajam, “The Efficient Synthesis of 3, 4-Dihydropyrimidin-2-(1 H)-Ones and Their Sulfur Derivatives with H2SO4 Immobilized on Activated Charcoal,” Phosphorus, Sulfur, and Silicon and the Related Elements 187, no. 4 (2012): 544–53. doi:10.1080/10426507.2011.631644
  • Hamid Mostafavi, Mohammad Reza Islami, Hojatollah Khabazzadeh, and Moj Khaleghi, “Synthesis of New Quinazolin‐4‐(3H)‐One Derivatives and Evaluation of Their Biological Activities,” ChemistrySelect 4, no. 11 (2019): 3169–74. doi:10.1002/slct.201803039
  • Malleshappa N. Noolvi, Harun M. Patel, Varun Bhardwaj, and Ankit Chauhan, “Synthesis and In Vitro Antitumor Activity of Substituted Quinazoline and Quinoxaline Derivatives: Search for Anticancer Agent,” European Journal of Medicinal Chemistry 46, no. 6 (2011): 2327–46. doi:10.1016/j.ejmech.2011.03.015
  • Sahana Kuntikana, Chinmay Bhat, Manasa Kongot, Subrahmanya I. Bhat, and Amit Kumar, “An Expeditious Green Cascade Synthesis of 3‐Arylideneaminoquinazolin‐4 (1H)‐One Derivatives via ‘Solvent Drop Grinding’ and Their Antioxidant and DNA Protective Studies,” ChemistrySelect 1, no. 8 (2016): 1723–8. doi:10.1002/slct.201600362
  • Atsuo Baba, Noriaki Kawamura, Haruhiko Makino, Yoshikazu Ohta, Shigehisa Taketomi, and Takashi Sohda, “Studies on Disease-Modifying Antirheumatic Drugs: Synthesis of Novel Quinoline and Quinazoline Derivatives and Their Anti-inflammatory Effect,” Journal of Medicinal Chemistry 39, no. 26 (1996): 5176–82. doi:10.1021/jm9509408
  • Adel S. El-Azab, Sami G. Abdel-Hamide, Mohamed M. Sayed-Ahmed, Ghada S. Hassan, Tariq M. El-Hadiyah, Othman A. Al-Shabanah, Omar A. Al-Deeb, and Hussein I. El-Subbagh, “Novel 4 (3 H)-Quinazolinone Analogs: Synthesis and Anticonvulsant Activity,” Medicinal Chemistry Research 22, no. 6 (2013): 2815–27. doi:10.1007/s00044-012-0280-y
  • Rupesh Nanjunda and W. David Wilson, “Binding to the DNA Minor Groove by Heterocyclic Dications: From at‐Specific Monomers to GC Recognition with Dimers,” Current Protocols in Nucleic Acid Chemistry 51, no. 1 (2012): 8. doi:10.1002/0471142700.nc0808s51
  • Lan-ya Li, Yi-di Guan, Xi-sha Chen, Jin-ming Yang, and Yan Cheng, “DNA Repair Pathways in Cancer Therapy and Resistance,” Frontiers in Pharmacology 11 (2021): 2520. doi:10.3389/fphar.2020.629266
  • Sherine Nabil Khattab, Nesreen Saied Haiba, Ahmed Mosaad Asal, Adnan A. Bekhit, Adel Amer, Hamdy M. Abdel-Rahman, and Ayman El-Faham, “Synthesis and Evaluation of Quinazoline Amino Acid Derivatives as Mono Amine Oxidase (MAO) Inhibitors,” Bioorganic & Medicinal Chemistry 23, no. 13 (2015): 3574–85. doi:10.1016/j.bmc.2015.04.021
  • Malikotsi A. Qhobosheane, Anel Petzer, Jacobus P. Petzer, and Lesetja J. Legoabe, “Synthesis and Evaluation of 2-Substituted 4 (3H)-Quinazolinone Thioether Derivatives as Monoamine Oxidase Inhibitors,” Bioorganic & Medicinal Chemistry 26, no. 20 (2018): 5531–7. doi:10.1016/j.bmc.2018.09.032
  • Benedito A. Carneiro and Wafik S. El-Deiry, “Targeting Apoptosis in Cancer Therapy,” Nature Reviews. Clinical Oncology 17, no. 7 (2020): 395–417. doi:10.1038/s41571-020-0341-y
  • P. N. Bhargava and M. R. Chaurasia, “Some 6, 8-dibromo-S-Substituted-2-Mercapto-3-Aryl (or Alkyl)-4-Quinazolones,” Journal of Medicinal Chemistry 11, no. 2 (1968): 404–405. doi:10.1021/jm00308a067
  • Lisa C. Crowley, Brooke J. Marfell, and Nigel J. Waterhouse, “Analyzing Cell Death by Nuclear Staining with Hoechst 33342,” Cold Spring Harbor Protocols 2016, no. 9 (2016): pdb.prot087205. doi:10.1101/pdb.prot087205
  • Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N. Bhat, Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne, “The Protein Data Bank,” Nucleic Acids Research 28, no. 1 (2000): 235–242. doi:10.1093/nar/28.1.235
  • Æleen Frisch. Gaussian 09: Iops Reference (Gaussian, 2009). https://www.cwu.edu/chemistry/sites/cts.cwu.edu.chemistry/files/documents/Gaussian_09_ReferenceManual.pdf
  • Garrett M. Morris, Ruth. Huey, William. Lindstrom, Michel F. Sanner, Richard K. Belew, David S. Goodsell, and Arthur J. Olson, “AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–91. doi:10.1002/jcc.21256
  • Fahimeh Taayoshi, Aida Iraji, Ali Moazzam, Meysam Soleimani, Mehdi Asadi, Keyvan Pedrood, Mosayeb Akbari, Hafezeh Salehabadi, Bagher Larijani, Neda Adibpour, et al, “Synthesis, Molecular Docking, and Cytotoxicity of Quinazolinone and Dihydroquinazolinone Derivatives as Cytotoxic Agents,” BMC Chemistry 16, no. 1 (2022): 35. doi:10.1186/s13065-022-00825-x
  • Shruti Gupta, Gaurav Bartwal, Ashima Singh, Jyoti Tanwar, and J. M. Khurana, “Design, Synthesis and Biological Evaluation of Spiroisoquinoline-Pyrimidine Derivatives as Anticancer Agents against MCF-7 Cancer Cell Lines,” Results in Chemistry 4 (2022): 100386. doi:10.1016/j.rechem.2022.100386
  • Mario Niepel, Marc Hafner, Qiaonan Duan, Zichen Wang, Evan O. Paull, Mirra Chung, Xiaodong Lu, Joshua M. Stuart, Todd R. Golub, Aravind Subramanian, et al, “Common and Cell-Type Specific Responses to Anti-cancer Drugs Revealed by High Throughput Transcript Profiling,” Nature Communications 8, no. 1 (2017): 1186. doi:10.1038/s41467-017-01383-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.