37
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Tribological, Biomedical Studies of 4 Bromo–4' Chloro Benzylidene Aniline Macro-crystals for Photonic, Mechano, Electronic-displays and Pharma Applications

, , & ORCID Icon
Pages 1850-1879 | Received 14 Dec 2022, Accepted 24 Apr 2023, Published online: 15 May 2023

References

  • T. Kolev, R.W. Seidel, B.B. Koleva, M. Spiteller, H.M. Figge, and W.S. Sheldrick, “Crystal Structure and Spectroscopic Properties of Ammonium Hydrogensquarate Squaric Acid Monohydrate,” Structural Chemistry 19, no. 1 (2008): 101–7. doi:10.1007/s11224-007-9257-8
  • A. Subashini, R. Kumaravel, S. Leela, H. S. Evans, D. Sastikumar, and K. Ramamurthi, “Synthesis, Growth and Characterization of 4-Bromo-4'chloro Benzylidene Aniline-A Third Order Non Linear Optical Material,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 78, no. 3 (March 2011): 935–41. doi:10.1016/j.saa.2010.11.041
  • O. Ostroverkhova, Handbook of Organic Materials for Optical and (Opto) Elec-Tronic Devices (Oxford: Woodhead Publishing Limited, 2013).
  • N. Tyagi, N. Sinha, H. Yadav, and B. Kumar, “Growth, Crystal Structure, Hirshfeld Surface, Dielectric and Mechanical Properties of a New Organic Single Crystal: ‘Bis Glycine’ Squarate,” RSC Advances 6, no. 29 (2016): 24565–76. doi:10.1039/C5RA18983G
  • J. Fraxedas, Molecular Organic Materials (Cambridge: Cambridge University Press, 2006).
  • V. Siva, S.A. Bahadur, A. Shameem, S. Athimoolam, K.U. Lakshmi, and G. Vinitha, “Synthesis, Structural, Vibrational, Thermal, Dielectric and Optical Properties of Third Order Nonlinear Optical Single Crystal for Optical Power Limiting Applications,” Journal of Molecular Structure 1191 (2019): 110–7. doi:10.1016/j.molstruc.2019.04.091
  • M. Fleck and A.M. Petrosyan, Salts of Amino Acids (Cham: Springer International Publishing, 2014).
  • G.C. Ibarrett and D.T. Elmore, Amino Acids and Peptides (Cambridge: Cambridge University Press, 2004).
  • E.N. Kolesnik, S.V. Goryainov, and E.V. Boldyreva, “Different Behavior of L- and DL-Serine Crystals at High Pressures: Phase Transitions in L-Serine and Stability of the DL-Serine Structure,” Doklady Physical Chemistry 404, no. 1-3 (2005): 169–72. doi:10.1007/s10634-005-0052-1
  • K. Rajesh and P. Praveen Kumar, “Structural, Linear, and Nonlinear Optical and Mechanical Properties of New Organic L-Serine Crystal,” J MaterJournal of Materials 2014 (2014), 790957.
  • D. Semmingsen, M. Velsvik, L. Kenne, Å. Pilotti, S. Svensson, and C.-G. Swahn, “The Crystal Structure of Squaric Acid,” Acta Chemica Scandinavica 27 (1973): 3961–72. doi:10.3891/acta.chem.scand.27-3961
  • F.R. Wurm and H.A. Klok, “Be Squared: Expanding the Horizon of Squaric Acid-mediated Conjugations,” Chemical Society Reviews 42, no. 21 (2013): 8220–36. doi:10.1039/c3cs60153f
  • V. Bertolasi, P. Gilli, V. Ferretti, and G. Gilli, “General Rules for the Packing of Hydrogen-bonded Crystals as Derived from the Analysis of Squaric Acid Anions: Aminoaromatic Nitrogen Base Co-crystals,” Acta Crystallographica. Section B, Structural Science 57, no. Pt 4 (2001): 591–8. doi:10.1107/s010876810100814x
  • A.A. Balakit, S.Q. Makki, Y. Sert, F. Ucun, M.B. Alshammari, P. Thordarson, and G.A. El-Hiti, "Synthesis, spectrophotometric and DFT studies of new Triazole Schiff bases as selective naked-eye sensors for acetate anion," Supramolecular Chemistry 32, no. 10 (2020): 519–26. doi:10.1080/10610278.2020.1808217
  • D. Semmingsen, F.J. Hollander, and T.F. Koetzle, “A Neutron Diffraction Study of Squaric Acid (3,4‐Dihydroxy‐3‐Cyclobutene‐1,2‐Dione),” The Journal of Chemical Physics 66, no. 10 (1977): 4405–12. doi:10.1063/1.433745
  • T. Shinada, A. Yamasaki, Y. Kiniwa, K. Shimamoto, and Y. Ohfune, “Thiol Addition to t-Butyl Methyl Squarate. Efficient Synthesis of Novel Sulfur-linked Squaryl Group-containing Glutamate Analogs,” Tetrahedron Letters 50, no. 30 (2009): 4354–7. doi:10.1016/j.tetlet.2009.05.037
  • H. Yadav, N. Sinha, S. Goel, B. Singh, I. Bdikin, A. Saini, K. Gopalaiah, and B. Kumar, “Growth, Crystal Structure, Hirshfeld Surface, Optical, Piezoelectric, Dielectric and Mechanical Properties of Bis(L-Asparaginium Hydrogensquarate) Single Crystal,” Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials 73, no. Pt 3 (2017): 347–59. doi:10.1107/S2052520617002906
  • V. Vusak, D. Vusak, K. Molcanov, and M. Ernest, “Synthesis, Crystal Structure and Spectroscopic and Hirshfeld Surface Analysis of 4-hy-Droxy-3-Meth-Oxy-5-Nitro-Benzaldehyde,” Acta Crystallographica. Section E, Crystallographic Communications 76, no. Pt 2 (2020): 239–44. doi:10.1107/S2056989020000225
  • M.A. Spackman, “Molecules in Crystals,” Physica Scripta 87 (2013): 1–12.
  • J.J. McKinnon, A.S. Mitchell, and M.A. Spackman, “Hirshfeld Surfaces: A New Tool for Visualising and Exploring Molecular Crystals,” Chemistry - A European Journal 4, no. 11 (1998): 2136–41. doi:10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G
  • C. Jelsch, K. Ejsmont, and L. Huder, "The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis" IUCr Chemistry | Crysteng 1 (2014): 119–28.
  • A. Saeed, M. Bolte, M.F. Erben, and H. Pérez, “Intermolecular Interactions in Crystalline 1-(Adamantane-1-Carbonyl)-3-Substituted Thioureas with Hirshfeld Surface Analysis,” CrystEngComm 17, no. 39 (2015): 7551–63. doi:10.1039/C5CE01373A
  • L.J. Farrugia, “WinGX and ORTEP for Windows: An Update,” Journal of Applied Crystallography 45, no. 4 (2012): 849–54. doi:10.1107/S0021889812029111
  • G.J. Ashwell, Molecular Electronics (Taunton: Research Studies Press, 1992).
  • R. Senthilkumar, K. Senthilkannan, S. Udhayakumar, and S.T. Aadithya Narayanan, “Anti-Diabetic (AD) and Hardness Profile of 12-(4-Chlorophenyl)-9,9- Dimethyl-9,10-Dihydro-8H-Benzo[a]Xanthen-11(12H)-One –(CPDDHBXH) – Comparative Analysis of Macro and Nano Crystals,” Materials Today: Proceedings 33 (2020): 4167–70. doi:10.1016/j.matpr.2020.06.594
  • K. SenthilKannan, B.K. Khan, H.A.J. Ali, V.K. Ponnusamy, and N.M. Govindan, “Effect of anti Microbial and Fluorescence on L-Alaninium Maleate (LAM) Macro and Nano Crystals,” Materials Today: Proceedings 33 (2020): 2779–81. doi:10.1016/j.matpr.2020.02.133
  • K. SenthilKannan, R. Krishnaveni, D. Anbuvel, V.M. Porselvi, and H. Abdul Jaffar Ali, “Anti Microbial and Fluorescence Activities of L-Valinium Picrate (LVP) Macro and Nano Crystals,” Materials Today: Proceedings. 33 (2020): 2776–8. doi:10.1016/j.matpr.2020.02.132
  • K. Suganya, J. Maalmarugan, R. Manikandan, T. Sakthi Nagaraj, R.P. Patel, K. Tamilarasi, M. Vimalan, and K. SenthilKannan, “Synthesis, Studies of 2-Benzyl-Amino-4-p-Tolyl-6,7-di-Hydro 5H-Cyclo-Penta–[b]Pyridine-3 Carbo-Nitrile (BAPTDHCPCN) Crystals for Optical, Photonic and Mechano-Electronic Uses,” Journal of Materials Science: Materials in Electronics 33, no. 24 (2022): 19320–30. doi:10.1007/s10854-022-08770-0
  • V. Sathiya, K. Suganya, K. SenthilKannan, and R. Manikandan, “Synthesis and Studies of the Zinc Acetate (ZA) Crystal for Dielectric, Nano-photonics and Electronic Applications,” Journal of Materials Science: Materials in Electronics 33, no. 24 (2022): 19514–33. doi:10.1007/s10854-022-08787-5
  • X. Vasanth Winston, D. Sankar, K. SenthilKannan, M. Vimalan, and T. Rajesh Kumar, “Gamma Ray-irradiated Induced Effects on SCN Ligand-Based MMTC Single Crystals for Optoelectronic Applications Synthesized by SR Method,” Journal of Materials Science: Materials in Electronics 33, no. 26 (2022): 20616–30. doi:10.1007/s10854-022-08873-8
  • K. Kumar, K. SenthilKannan, R. Hariharasuthan, M. Jothibas, M. Vimalan, P. Baskaran, M. Iyanar, and M. Kolanjinathan, “Growth of Diethyl 3,3′-[(2,4-Dichlorophenyl) Methylidene]Bis(1H-Indole-2-Carboxylate)-(D32DMBC) Organic NLO Single Crystal and Its Optical, Thermal, Mechanical, Dielectric and Computational Studies,” Journal of Materials Science: Materials in Electronics 31, no. 23 (2020): 20816–23. doi:10.1007/s10854-020-04594-y
  • M. Rezvani, M. Astaraki, A. Rahmanzadeh, and M. Darvish Ganji, Theoretical assessments on the interaction between amino acids and the g-Mg3N2 monolayer: dispersion corrected DFT and DFT-MD simulations. Physical Chemistry Chemical Physics : PCCP 23, no. 32 (2021): 17440–52. doi:10.1039/d1cp02891j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.