201
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

One-Pot Three Component Synthesis of Quinazolin-4(3H)-One Derivatives: Investigation of Photophysical Properties and FRET Application toward Protein Lysozyme

, & ORCID Icon
Pages 1896-1917 | Received 23 Nov 2022, Accepted 24 Apr 2023, Published online: 12 May 2023

References

  • R. Mishra, A. Jana, A.K. Panday, and L.H. Choudhury, “Synthesis of Fused Pyrroles Containing 4-Hydroxycoumarins by Regioselective Metal-Free Multicomponent Reactions,” Organic & Biomolecular Chemistry 16, no. 17 (2018): 3289–302. doi:10.1039/c8ob00161h
  • B. Borah, K.D. Dwivedi, and L.R. Chowhan, “4‐Hydroxycoumarin: A Versatile Substrate for Transition‐Metal‐Free Multicomponent Synthesis of Bioactive Heterocycles,” Asian Journal of Organic Chemistry 10, no. 12 (2021): 3101–26. doi:10.1002/ajoc.202100550
  • K.N. Singh, and Preeti, “Metal-Free Multicomponent Reactions: A Benign Access to Monocyclic Six-Membered n-Heterocycles,” Organic & Biomolecular Chemistry 19, no. 12 (2021): 2622–57. doi:10.1039/D1OB00145K
  • S. Ghosh, and K. Biswas, “Metal-Free Multicomponent Approach for the Synthesis of Propargylamine: A Review,” RSC Advances 11, no. 4 (2021): 2047–65. doi:10.1039/d0ra09392k
  • Z. Yao, J. Yang, Z. Luo, H. Wang, X. Zhang, J. Ye, L. Xu, and Q. Shi, “Photo-Driven Metal-Free Multicomponent Reaction between Aldehydes, Anilines and 4-substituted-DHPs for the Synthesis of Secondary Amines,” Green Chemistry 24, no. 20 (2022): 7968–73. doi:10.1039/D2GC02613A
  • A. Maleki, F.H. Afruzi, Z. Varzi, and M.S. Esmaeili, “Magnetic Dextrin Nanobiomaterial: An Organic-Inorganic Hybrid Catalyst for the Synthesis of Biologically Active Polyhydroquinoline Derivatives by Asymmetric Hantzsch Reaction,” Materials Science & Engineering. C, Materials for Biological Applications 109 (2020): 110502. doi:10.1016/j.msec.2019.110502
  • A. Maleki, N. Hamidi, S. Maleki, and J. Rahimi, “Surface Modified SPIONs‐Cr (VI) Ions‐Immobilized Organic‐Inorganic Hybrid as a Magnetically Recyclable Nanocatalyst for Rapid Synthesis of Polyhydroquinolines under Solvent‐Free Conditions at Room Temperature,” Applied Organometallic Chemistry 32, no. 4 (2018): e4245. doi:10.1002/aoc.4245
  • A. Mojtaba, A. Maleki, F. Hakimpoor, R.F. Haji, M. Ghassemi, and J. Rahimi, “Green Approach for Highly Efficient Synthesis of Polyhydroquinolines Using Fe3O4@PEO-SO3H as a Novel and Recoverable Magnetic Nanocomposite Catalyst,” Letters in Organic Chemistry 15, no. 9 (2018): 753–9. doi:10.2174/1570178615666180126155204
  • A. Maleki, A.R. Akbarzade, and A.R. Bhat, “Green Synthesis of Polyhydroquinolines via MCR Using Fe3O4/SiO2-OSO3H Nanostructure Catalyst and Prediction of Their Pharmacological and Biological Activities by PASS,” Journal of Nanostructure in Chemistry 7, no. 4 (2017): 309–16. doi:10.1007/s40097-017-0240-7
  • A. Maleki, R. Rahimi, S. Maleki, and N. Hamidi, “Synthesis and Characterization of Magnetic Bromochromate Hybrid Nanomaterials with Triphenylphosphine Surface-Modified Iron Oxide Nanoparticles and Their Catalytic Application in Multicomponent Reactions,” RSC Advances 4, no. 56 (2014): 29765–71. doi:10.1039/C4RA04654D
  • Z. Hajizadeh, F. Radinekiyan, R.E. Keihan, and Ali. Maleki, “Development of Novel and Green NiFe2O4/Geopolymer Nanocatalyst Based on Bentonite for Synthesis of Imidazole Heterocycles by Ultrasonic Irradiations,” Scientific Reports 10, no. 1 (2020): 1–11. doi:10.1038/s41598-020-68426-z
  • A. Maleki, Z. Hajizadeh, and P. Salehi, “Mesoporous Halloysite Nanotubes Modified by CuFe2O4 Spinel Ferrite Nanoparticles and Study of Its Application as a Novel and Efficient Heterogeneous Catalyst in the Synthesis of Pyrazolopyridine Derivatives,” Scientific Reports 9, no. 1 (2019): 1–8. doi:10.1038/s41598-019-42126-9
  • A. Maleki, and R.F. Haji, “L-Proline Functionalized Magnetic Nanoparticles: A Novel Magnetically Reusable Nanocatalyst for One-Pot Synthesis of 2,4,6-Triarylpyridines,” Scientific Reports 8, no. 1 (2018): 17303. doi:10.1038/s41598-018-35676-x
  • A. Maleki, T. Kari, and M. Aghaei, “Fe3O4@SiO2@TiO2-OSO3H: An Efficient Hierarchical Nanocatalyst for the Organic Quinazolines Syntheses,” Journal of Porous Materials 24, no. 6 (2017): 1481–96. doi:10.1007/s10934-017-0388-z
  • A. Maleki, “An Efficient Magnetic Heterogeneous Nanocatalyst for the Synthesis of Pyrazinoporphyrazine Macrocycles,” Polycyclic Aromatic Compounds 38, no. 5 (2018): 402–9. doi:10.1080/10406638.2016.1221836
  • A. Maleki, M. Aghaei, and T. Kari, “Facile Synthesis of 7-Aryl-Benzo[h]Tetrazolo[5,1-b]Quinazoline-5,6-Dione Fused Polycyclic Compounds by Using a Novel Magnetic Polyurethane Catalyst,” Polycyclic Aromatic Compounds 39, no. 3 (2019): 266–78. doi:10.1080/10406638.2017.1325746
  • S. Bikas, A.P. Marjani, S. Bibak, and H.S. Aslaheh, “Synthesis of New Magnetic Nanocatalyst Fe3O4@ CPTMO-phenylalanine-Ni and Its Catalytic Effect in the Preparation of Substituted Pyrazoles,” Scientific Reports 13, no. 1 (2023): 2564. doi:10.1038/s41598-023-29598-6
  • F.M. Arlan, A.P. Marjani, R. Javahershenas, and J. Khalafy, “Recent Developments in the Synthesis of Polysubstituted Pyridines via Multicomponent Reactions Using Nanocatalysts,” New Journal of Chemistry 45, no. 28 (2021): 12328–45. doi:10.1039/D1NJ01801A
  • L.K. Ahmadi, A.P. Marjani, and E. Nozad, “Ultrasonic‐Assisted Preparation of Co3O4 and Eu‐Doped Co3O4 Nanocatalysts and Their Application for Solvent‐Free Synthesis of 2‐Amino‐4H‐Benzochromenes under Microwave Irradiation,” Applied Organometallic Chemistry 35, no. 8 (2021): e6271.
  • L.K. Ahmadi, S. Khademinia, A.P. Marjani, and E. Nozad, “Microwave-Assisted Preparation of Polysubstituted Imidazoles Using Zingiber Extract Synthesized Green Cr2O3 Nanoparticles,” Scientific Reports 12, no. 1 (2022): 19942. doi:10.1038/s41598-022-24364-6
  • M. Khashaei, L.K. Ahmadi, S. Khademinia, A.P. Marjani, and E. Nozad, “A Facile Hydrothermal Synthesis of High-Efficient NiO Nanocatalyst for Preparation of 3,4-Dihydropyrimidin-2(1H)-Ones,” Scientific Reports 12, no. 1 (2022): 8585. doi:10.1038/s41598-022-12589-4
  • L.K. Ahmadi, S. Khademinia, A.P. Marjani, and P.G. Balkanloo, “Fabrication of 5-Aryl-1 H-Tetrazoles Derivatives by Solid-State Synthesized MgFe2O4 and MgFe2ZnxO4+δ Heterogeneous Nanocatalysts,” Research on Chemical Intermediates 48, no. 7 (2022): 2973–86. doi:10.1007/s11164-022-04741-6
  • A.P. Marjani, F. Asadzadeh, and A.D. Asl, “Fe3O4@ Glycerol-Cu as a Novel Heterogeneous Magnetic Nanocatalyst for the Green Synthesis of 2-Amino-4H-Chromenes,” Scientific Reports 12, no. 1 (2022): 22173. doi:10.1038/s41598-022-26769-9
  • M.R. Ahghari, V. Soltaninejad, and A. Maleki, “Synthesis of Nickel Nanoparticles by a Green and Convenient Method as a Magnetic Mirror with Antibacterial Activities,” Scientific Reports 10, no. 1 (2020): 12627. doi:10.1038/s41598-020-69679-4
  • R.T. Ledari, W. Zhang, M. Radmanesh, S.S. Mirmohammadi, A. Maleki, N. Cathcart, and V. Kitaev, “Multi‐Stimuli Nanocomposite Therapeutic: Docetaxel Targeted Delivery and Synergies in Treatment of Human Breast Cancer Tumor,” Small 16, no. 41 (2020): 2002733. doi:10.1002/smll.202002733
  • R.E. Keihan, F. Radinekiyan, A. Maleki, M.S. Bani, and M. Azizi, “A New Generation of Star Polymer: Magnetic Aromatic Polyamides with Unique Microscopic Flower Morphology and in Vitro Hyperthermia of Cancer Therapy,” Journal of Materials Science 55, no. 1 (2020): 319–36. doi:10.1007/s10853-019-04005-6
  • D.C. Fabry, M. Stodulski, S. Hoerner, and T. Gulder, “Metal‐Free Synthesis of 3, 3‐Disubstituted Oxoindoles by Iodine (III)‐Catalyzed Bromocarbocyclizations,” Chemistry (Weinheim an Der Bergstrasse, Germany) 18, no. 35 (2012): 10834–8. doi:10.1002/chem.201201232
  • K.K. Sharma, D.I. Patel, and R. Jain, “Metal-Free Synthesis of N-Fused Heterocyclic Iodides via C–H Functionalization Mediated by Tert-Butylhydroperoxide,” Chemical Communications (Cambridge, England) 51, no. 82 (2015): 15129–32. doi:10.1039/c5cc04013b
  • I. Saidalimu, S. Suzuki, E. Tokunaga, and N. Shibata, “Successive C-C Bond Cleavage, Fluorination, Trifluoromethylthio-and Pentafluorophenylthiolation under Metal-Free Conditions to Provide Compounds with Dual Fluoro-Functionalization,” Chemical Science 7, no. 3 (2016): 2106–10. doi:10.1039/c5sc04208a
  • N.A. Harry, S.M. Ujwaldev, and G. Anilkumar, “Recent Advances and Prospects in the Metal-Free Synthesis of Quinolones,” Organic & Biomolecular Chemistry 18, no. 48 (2020): 9775–90. doi:10.1039/d0ob02000a
  • J. Zhang, J. Hao, Z. Huang, J. Han, and Z. He, “PIII-Mediated Intramolecular Cyclopropanation and Metal-Free Synthesis of Cyclopropane-Fused Heterocycles,” Chemical Communications (Cambridge, England) 56, no. 70 (2020): 10251–4. doi:10.1039/d0cc04086j
  • B. Rammurthy, S. Peraka, A. Vasu, G.K. Sai, Y.D. Rohini, and N. Narender, “Metal‐Free Catalytic Esterification of Aryl Alkyl Ketones with Alcohols via Free‐Radical Mediated C(sp3)-H Bond Oxygenation,” Asian Journal of Organic Chemistry 10, no. 3 (2021): 594–601. doi:10.1002/ajoc.202000691
  • S. Mandal, and A. Pramanik, “Synthesis of Hydroxylated Polycyclic Pyrrolo/Indolo[1, 2-a]quinoxaline-Fused Lactam Derivatives via PhI(OAc)2-Promoted 1,2-Bond Migration and Solvent Insertion,” The Journal of Organic Chemistry 87, no. 14 (2022): 9282–95. doi:10.1021/acs.joc.2c01008
  • S.B. Mhaske, and N.P. Argade, “The Chemistry of Recently Isolated Naturally Occurring Quinazolinone Alkaloids,” Tetrahedron 62, no. 42 (2006): 9787–826. doi:10.1016/j.tet.2006.07.098
  • N.M.A. Gawad, H.H. Georgey, R.M. Youssef, and N.A. El-Sayed, “Synthesis and Antitumor Activity of Some 2, 3-Disubstituted Quinazolin-4(3H)-Ones and 4,6-Disubstituted-1,2,3,4-Tetrahydroquinazolin-2H-Ones,” European Journal of Medicinal Chemistry 45, no. 12 (2010): 6058–67. doi:10.1016/j.ejmech.2010.10.008
  • I. Khan, A. Ibrar, W. Ahmed, and A. Saeed, “Synthetic Approaches, Functionalization and Therapeutic Potential of Quinazoline and Quinazolinone Skeletons: The Advances Continue,” European Journal of Medicinal Chemistry 90 (2015): 124–69. doi:10.1016/j.ejmech.2014.10.084
  • I. Khan, A. Ibrar, N. Abbas, and A. Saeed, “Recent Advances in the Structural Library of Functionalized Quinazoline and Quinazolinone Scaffolds: Synthetic Approaches and Multifarious Applications,” European Journal of Medicinal Chemistry 76 (2014): 193–244. doi:10.1016/j.ejmech.2014.02.005
  • C. Wattanapiromsakul, P.I. Forster, and P.G. Waterman, “Alkaloids and Limonoids from Bouchardatia Neurococca: Systematic Significance,” Phytochemistry 64, no. 2 (2003): 609–15. doi:10.1016/s0031-9422(03)00205-x
  • S.L. Cao, Y.P. Feng, Y.Y. Jiang, S.Y. Liu, G.Y. Ding, and R.T. Li, “Synthesis and in Vitro Antitumor Activity of 4(3H)-Quinazolinone Derivatives with Dithiocarbamate Side Chains,” Bioorganic & Medicinal Chemistry Letters 15, no. 7 (2005): 1915–7. doi:10.1016/j.bmcl.2005.01.083
  • B.S. Kuarm, Y.T. Reddy, J.V. Madhav, P.A. Crooks, and B. Rajitha, “3-[Benzimidazo-and 3-[Benzothiadiazoleimidazo-(1,2-c)Quinazolin-5-yl]-2H-Chromene-2-Ones as Potent Antimicrobial Agents,” Bioorganic & Medicinal Chemistry Letters 21, no. 1 (2011): 524–7. doi:10.1016/j.bmcl.2010.10.082
  • J. Kuneš, J. Bažant, M. Pour, K. Waisser, M. Šlosárek, and J. Janota, “Quinazoline Derivatives with Antitubercular Activity," Il,” Farmaco (Societa Chimica Italiana : 1989) 55, no. 11-12 (2000): 725–9. doi:10.1016/s0014-827x(00)00100-2
  • K.I. Ozaki, Y. Yamada, T. Oine, T. Ishizuka, and Y. Iwasawa, “Studies on 4(1H)-Quinazolinones. 5. Synthesis and Antiinflammatory Activity of 4(1H)-Quinazolinone Derivatives,” Journal of Medicinal Chemistry 28, no. 5 (1985): 568–76. doi:10.1021/jm50001a006
  • M.M. Aly, Y.A. Mohamed, K.A. El-Bayouki, W.M. Basyouni, and S.Y. Abbas, “Synthesis of Some New 4(3H)-Quinazolinone-2-Carboxaldehyde Thiosemicarbazones and Their Metal Complexes and a Study on Their Anticonvulsant, Analgesic, Cytotoxic and Antimicrobial Activities–Part-1,” European Journal of Medicinal Chemistry 45, no. 8 (2010): 3365–73. doi:10.1016/j.ejmech.2010.04.020
  • K. Terashima, H. Shimamura, A. Kawase, Y. Tanaka, T. Tanimura, T. Kamisaki, Y. Ishizuka, and M. Sato, “Studies on Antiulcer Agents. IV. Antiulcer Effects of 2-Benzylthio-5,6,7,8-Tetrahydro-4(3H)-Quinazolinones and Related Compounds,” Chemical & Pharmaceutical Bulletin 43, no. 11 (1995): 2021–3. doi:10.1248/cpb.43.2021
  • O. Dehbi, Y. Riadi, M.H. Geesi, E.H. Anouar, E.O. Ibnouf, and R. Azzallou, “Synthesis, Characterization, Antibacterial Evaluation, and Molecular Docking of New Quinazolinone-Based Derivatives,” Polycyclic Aromatic Compounds 43, no. 2 (2023): 1879–87. doi:10.1080/10406638.2022.2041053
  • Y. Kurogi, Y. Inoue, K. Tsutsumi, S. Nakamura, K. Nagao, H. Yoshitsugu, and Y. Tsuda, “Synthesis and Hypolipidemic Activities of Novel 2-[4-[(Diethoxyphosphoryl) Methyl]Phenyl] Quinazolines and 4(3H)-Quinazolinones,” Journal of Medicinal Chemistry 39“No,” no. 7 (1996): 1433–7. doi:10.1021/jm9506938
  • G.W. Wang, C.B. Miao, and H. Kang, “Benign and Efficient Synthesis of 2-Substituted 4(3H)-Quinazolinones Mediated by Iron(III) Chloride Hexahydrate in Refluxing Water,” Bulletin of the Chemical Society of Japan 79, no. 9 (2006): 1426–30. doi:10.1246/bcsj.79.1426
  • M. Sharma, S. Pandey, K. Chauhan, D. Sharma, B. Kumar, and P.M. Chauhan, “Cyanuric Chloride Catalyzed Mild Protocol for Synthesis of Biologically Active Dihydro/Spiro Quinazolinones and Quinazolinone-Glycoconjugates,” The Journal of Organic Chemistry 77, no. 2 (2012): 929–37. doi:10.1021/jo2020856
  • D. Zhan, T. Li, X. Zhang, C. Dai, H. Wei, Y. Zhang, and Q. Zeng, “Vanadium-Catalyzed Synthesis of 4(3H)-Quinazolinones from Anthranilamides and Aryl Aldehydes,” Synthetic Communications 43, no. 18 (2013): 2493–500. doi:10.1080/00397911.2012.717669
  • J. Zhou, and J. Fang, “One-Pot Synthesis of Quinazolinones via Iridium-Catalyzed Hydrogen Transfers,” The Journal of Organic Chemistry 76, no. 19 (2011): 7730–6. doi:10.1021/jo201054k
  • A.J. Watson, A.C. Maxwell, and J.M. Williams, “Ruthenium-Catalysed Oxidative Synthesis of Heterocycles from Alcohols,” Organic & Biomolecular Chemistry 10, no. 2 (2012): 240–3. doi:10.1039/c1ob06516e
  • H. Hikawa, Y. Ino, H. Suzuki, and Y. Yokoyama, “Pd-Catalyzed Benzylic C–H Amidation with Benzyl Alcohols in Water: A Strategy to Construct Quinazolinones,” The Journal of Organic Chemistry 77, no. 16 (2012): 7046–51. doi:10.1021/jo301282n
  • M. Sharif, J. Opalach, P. Langer, M. Beller, and X.F. Wu, “Oxidative Synthesis of Quinazolinones and Benzothiadiazine 1, 1-Dioxides from 2-Aminobenzamide and 2-Aminobenzenesulfonamide with Benzyl Alcohols and Aldehydes,” RSC Adv. 4, no. 1 (2014): 8–17. doi:10.1039/C3RA45765F
  • C. Huang, Y. Fu, H. Fu, Y. Jiang, and Y. Zhao, “Highly Efficient Copper-Catalyzed Cascade Synthesis of Quinazoline and Quinazolinone Derivatives,” Chemical Communications 47, no. 47 (2008): 6333–5. doi:10.1039/b814011a
  • M. Mahdavi, R. Hassanzadeh, M. Soheilizad, S. Golshani, S. Moghimi, L. Firoozpour, A. Shafiee, and A. Foroumadi, “A Novel and Efficient Synthesis of 2-Substituted Quinazolin-4 (3H)-Ones by the Reaction of (Het)Arylmethanamines with Isatoic Anhydride,” Tetrahedron Letters 57, no. 33 (2016): 3770–2. doi:10.1016/j.tetlet.2016.07.025
  • W. Xu, and H. Fu, “Amino Acids as the Nitrogen-Containing Motifs in Copper-Catalyzed Domino Synthesis of N-Heterocycles,” The Journal of Organic Chemistry 76, no. 10 (2011): 3846–52. doi:10.1021/jo2002227
  • R. Mekala, R. Akula, R.R. Kamaraju, C.K. Bannoth, S. Regati, and J. Sarva, “An Efficient Synthesis of 2-Substituted Quinazolin-4 (3H)-Ones Catalyzed by Iron (III) Chloride,” Synlett 25, no. 06 (2014): 821–6. doi:10.1055/s-0033-1340786
  • H. Wei, T. Li, Y. Zhou, L. Zhou, and Q. Zeng, “Copper-Catalyzed Domino Synthesis of Quinazolin-4(3H)-Ones from (Hetero)Arylmethylhalides, Bromoacetate, and Cinnamyl Bromide,” Synthesis 45, no. 24 (2013): 3349–54. doi:10.1055/s-0033-1340040
  • X. Jiang, T. Tang, J.M. Wang, Z. Chen, Y.M. Zhu, and S.J. Ji, “Palladium-Catalyzed One-Pot Synthesis of Quinazolinones via Tert-Butyl Isocyanide Insertion,” The Journal of Organic Chemistry 79, no. 11 (2014): 5082–7. doi:10.1021/jo500636y
  • Q. Li, Y. Huang, T. Chen, Y. Zhou, Q. Xu, S.F. Yin, and L.B. Han, “Copper-Catalyzed Aerobic Oxidative Amination of sp3 C-H Bonds: Efficient Synthesis of 2-Hetarylquinazolin-4(3H)-Ones,” Organic Letters 16, no. 14 (2014): 3672–5. doi:10.1021/ol501454j
  • G. Shen, H. Zhou, Y. Sui, Q. Liu, and K. Zou, “FeCl3-Catalyzed Tandem Condensation/Intramolecular Nucleophilic Addition/C-C Bond Cleavage: A Concise Synthesis of 2-Substitued Quinazolinones from 2-Aminobenzamides and 1,3-Diketones in Aqueous Media,” Tetrahedron Letters 57, no. 5 (2016): 587–90. doi:10.1016/j.tetlet.2015.12.094
  • R. Cheng, T. Guo, D. Zhang-Negrerie, Y. Du, and K. Zhao, “One-Pot Synthesis of Quinazolinones from Anthranilamides and Aldehydes via p-Toluenesulfonic Acid Catalyzed Cyclocondensation and Phenyliodine Diacetate Mediated Oxidative Dehydrogenation,” Synthesis 45, no. 21 (2013): 2998–3006. doi:10.1055/s-0033-1338521
  • V. Tamilselvi, R. Ramesh, and A. Lalitha, “p-TSA Catalyzed One-Pot Synthesis of 2-(1H-Indol-3-yl)-3-Phenylquinazolin-4(3H)-Ones,” Polycyclic Aromatic Compounds 43, no. 1 (2023): 434–43. doi:10.1080/10406638.2021.2015399
  • S.A. Afsah, J. Ahmad, R. Purbey, and A. Kumar, “Synthesis of Some New Quinazoline-4-(3H)-Ones and Styryl Hemicyanines as Possible Antimicrobial Agents,” Asian Journal of Chemistry 15, no. 1 (2003): 552.
  • X. Yang, G. Cheng, J. Shen, C. Kuai, and X. Cui, “Cleavage of the C-C Triple Bond of Ketoalkynes: Synthesis of 4(3H)-Quinazolinones,” Organic Chemistry Frontiers 2, no. 4 (2015): 366–8. doi:10.1039/C4QO00260A
  • Z. Li, J. Dong, X. Chen, Q. Li, Y. Zhou, and S.F. Yin, “Metal-and Oxidant-Free Synthesis of Quinazolinones from β-Ketoesters with o-Aminobenzamides via Phosphorous Acid-Catalyzed Cyclocondensation and Selective C–C Bond Cleavage,” The Journal of Organic Chemistry 80, no. 19 (2015): 9392–400. doi:10.1021/acs.joc.5b00937
  • R.J.A. Jalil, H. M. Aldoqum, M. T. Ayoub, and W. Voelter, “Synthesis and Antitumor Activity of 2-Aryl-7-Fluoro-6-(4-Methyl-1-Piperazinyl)-4(3H)-Quinazolinones,” Heterocycles 65, no. 9 (2005): 2061–70. doi:10.3987/COM-05-10387
  • Y. Mitobe, S. Ito, T. Mizutani, T. Nagase, N. Sato, and S. Tokita, “Development of a Selective and Potent Radioactive Ligand for Histamine H3 Receptors: A Compound Potentially Useful for Receptor Occupancy Studies,” Bioorganic & Medicinal Chemistry Letters 19, no. 15 (2009): 4075–8. doi:10.1016/j.bmcl.2009.06.025
  • C. Balakumar, P. Lamba, D.P. Kishore, B.L. Narayana, K.V. Rao, K. Rajwinder, A.R. Rao, B. Shireesha, and B. Narsaiah, “Synthesis, anti-Inflammatory Evaluation and Docking Studies of Some New Fluorinated Fused Quinazolines,” European Journal of Medicinal Chemistry 45, no. 11 (2010): 4904–13. doi:10.1016/j.ejmech.2010.07.063
  • T.B. Nguyen, L. Ermolenko, and A. Al-Mourabit, “Selective Autoxidation of Benzylamines: Application to the Synthesis of Some Nitrogen Heterocycles,” Green Chemistry 15, no. 10 (2013): 2713–7. doi:10.1039/c3gc41186a
  • M. Adib, E. Sheikhi, and H.R. Bijanzadeh, “One-Pot Three-Component Synthesis of 4(3H)-Quinazolinones from Benzyl Halides, Isatoic Anhydride, and Primary Amines,” Synlett 2012, no. 01 (2012): 85–8. doi:10.1055/s-0031-1290098
  • J. Zhang, D. Ren, Y. Ma, W. Wang, and H. Wu, “CuO Nanoparticles Catalyzed Simple and Efficient Synthesis of 2, 3-Dihydroquinazolin-4 (1H)-Ones and Quinazolin-4(3H)-Ones under Ultrasound Irradiation in Aqueous Ethanol under Ultrasound Irradiation in Aqueous Ethanol,” Tetrahedron 70, no. 34 (2014): 5274–82. doi:10.1016/j.tet.2014.05.059
  • A. Khalafi-Nezhad, S.M. Haghighi, A. Purkhosrow, and F. Panahi, “An Efficient One-Pot Access to Quinazolinone Derivatives Using TiO2 Nanoparticles as Catalyst: Synthesis and Vasorelaxant Activity Evaluation,” Synlett 23, no. 06 (2012): 920–4. doi:10.1055/s-0031-1290610
  • P. Salehi, M. Dabiri, M.A. Zolfigol, and M. Baghbanzadeh, “A New Approach to the Facile Synthesis of Mono-and Disubstituted Quinazolin-4(3H)-Ones under Solvent-Free Conditions,” Tetrahedron Letters 46, no. 41 (2005): 7051–3. doi:10.1016/j.tetlet.2005.08.043
  • L. Lu, M.M. Zhang, H. Jiang, and X.S. Wang, “Structurally Diversified Products from the Reactions of 2-Aminobenzamides with 1,3-Cyclohexanediones Catalyzed by Iodine,” Tetrahedron Letters 54, no. 8 (2013): 757–60. doi:10.1016/j.tetlet.2012.11.042
  • M. Bakavoli, A. Shiri, Z. Ebrahimpour, and M. Rahimizadeh, “Clean Heterocyclic Synthesis in Water: I2/KI Catalyzed One-Pot Synthesis of Quinazolin-4(3H)-Ones,” Chinese Chemical Letters 19, no. 12 (2008): 1403–6. doi:10.1016/j.cclet.2008.07.016
  • W. Ge, X. Zhu, and Y. Wei, “Iodine-Catalyzed Oxidative System for Cyclization of Primary Alcohols with o-Aminobenzamides to Quinazolinones Using DMSO as the Oxidant in Dimethyl Carbonate,” RSC Advances 3, no. 27 (2013): 10817–22. doi:10.1039/c3ra40872h
  • Y. Yan, Y. Xu, B. Niu, H. Xie, and Y. Liu, “I2-Catalyzed Aerobic Oxidative C(sp3)-H Amination/C-N Cleavage of Tertiary Amine: Synthesis of Quinazolines and Quinazolinones,” The Journal of Organic Chemistry 80, no. 11 (2015): 5581–7. doi:10.1021/acs.joc.5b00474
  • L. Yang, X. Shi, B.Q. Hu, and L.X. Wang, “Iodine‐Catalyzed Oxidative Benzylic C-H Bond Amination of Azaarenes: Practical Synthesis of Quinazolin‐4(3H)‐Ones,” Asian Journal of Organic Chemistry 5, no. 4 (2016): 494–8. doi:10.1002/ajoc.201600041
  • S.L. Wang, K. Yang, C.S. Yao, and X.S. Wang, “Green Synthesis of Quinazolinone Derivatives Catalyzed by Iodine in Ionic Liquid,” Synthetic Communications 42, no. 3 (2012): 341–9. doi:10.1080/00397911.2010.524340
  • H. Hou, X. Ma, Y. Lin, J. Lin, W. Sun, L. Wang, X. Xu, and F. Ke, “Electrochemical Synthesis of Quinazolinone via I2-Catalyzed Tandem Oxidation in Aqueous Solution,” RSC Advances 11, no. 29 (2021): 17721–6. doi:10.1039/d1ra02706a
  • J. Wu, X. Yu, L. Zhong, K. Jin, G. Zhao, J. Zhu, H. Shi, and Y. Wei, “Dimethyl Sulfoxide as Methyl Source for the Synthesis of Quinazolinones under Metal‐Free Conditions,” Asian Journal of Organic Chemistry 11, no. 8 (2022): e202200278. doi:10.1002/ajoc.202200278
  • Y. Zhang, Z. Zhou, Z. Li, K. Hu, Z. Zha, and Z. Wang, “Iodine-Mediated Electrochemical C(sp3)-H Cyclization: The Synthesis of Quinazolinone-Fused N-Heterocycles,” Chemical Communications (Cambridge, England) 58, no. 3 (2022): 411–4. doi:10.1039/d1cc05865g
  • J.R. Lakowicz, ed. Principles of Fluorescence Spectroscopy (Boston, MA: Springer US, 2006).
  • P.R. Selvin, “The Renaissance of Fluorescence Resonance Energy Transfer,” Nature Structural Biology 7, no. 9 (2000): 730–4. doi:10.1038/78948
  • Z. Gu, X. Zhu, S. Ni, Z. Su, and H.M. Zhou, “Conformational Changes of Lysozyme Refolding Intermediates and Implications for Aggregation and Renaturation,” The International Journal of Biochemistry & Cell Biology 36, no. 5 (2004): 795–805. doi:10.1016/j.biocel.2003.08.015
  • F. Yang, Y. Liang, and F. Yang, “Unfolding of Lysozyme Induced by Urea and Guanidine Hydrochloride Studied by" Phase Diagram" Method of Fluorescence,” Acta Chimica Sinica-Chinese Edition 61, no. 6 (2003): 803–7.
  • A. Pellegrini, U. Thomas, N. Bramaz, S. Klauser, P. Hunziker, and R.V. Fellenberg, “Identification and Isolation of a Bactericidal Domain in Chicken Egg White Lysozyme,” Journal of Applied Microbiology 82, no. 3 (1997): 372–8. doi:10.1046/j.1365-2672.1997.00372.x
  • H.R. Ibrahim, T. Matsuzaki, and T. Aoki, “Genetic Evidence That Antibacterial Activity of Lysozyme is Independent of Its Catalytic Function,” FEBS Letters 506, no. 1 (2001): 27–32. doi:10.1016/s0014-5793(01)02872-1
  • A. Pellegrini, U. Thomas, P. Wild, E. Schraner, and R.V. Fellenberg, “Effect of Lysozyme or Modified Lysozyme Fragments on DNA and RNA Synthesis and Membrane Permeability of Escherichia coli,” Microbiological Research 155, no. 2 (2000): 69–77. doi:10.1016/S0944-5013(00)80040-3
  • S.M. Roopan, T. Maiyalagan, and F.N. Khan, “Solvent-Free Syntheses of Some Quinazolin-4 (3H)-Ones Derivatives,” Canadian Journal of Chemistry 86, no. 11 (2008): 1019–25. doi:10.1139/v08-149
  • T.E. Youssef, Y.A. Alhamed, S.S. Al-Shahrani, and K.A. Ali, “Antitumor Activity of Tetra-Substituted Zinc Phthalocyanines Containing 4(3H)-Quinazolinone Derivatives,” Revista de Chimie (Bucharest) 65 (2014): 560–4.
  • M.L. Horng, J.A. Gardecki, A. Papazyan, and M. Maroncelli, “Synthesis, Photophysical Properties and DFT Study of Novel Polycarbo-Substituted Quinazolines Derived from the 2-Aryl-6-Bromo-4-Chloro-8-Iodoquinazolines,” Tetrahedron 72, no. 1 (2016): 123–33.
  • F. Cichos, A. Willert, U. Rempel, and C.V. Borczyskowski, “Solvation Dynamics in Mixtures of Polar and Nonpolar Solvents,” The Journal of Physical Chemistry A 101, no. 44 (1997): 8179–85. doi:10.1021/jp9716694
  • S. Saha, and A. Samanta, “Influence of the Structure of the Amino Group and Polarity of the Medium on the Photophysical Behavior of 4-Amino-1, 8-Naphthalimide Derivatives,” The Journal of Physical Chemistry A 106, no. 18 (2002): 4763–71. doi:10.1021/jp013287a
  • M.L. Horng, J.A. Gardecki, A. Papazyan, and M. Maroncelli, “Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited,” The Journal of Physical Chemistry 99, no. 48 (1995): 17311–37. doi:10.1021/j100048a004
  • A. Mallick, S. Maiti, B. Haldar, P. Purkayastha, and N. Chattopadhyay, “Photophysics of 3-Acetyl-4-Oxo-6,7-Dihydro-12H-Indolo-[2,3-a]Quinolizine: Emission from Two States,” Chemical Physics Letters 371, no. 5-6 (2003): 688–93. doi:10.1016/S0009-2614(03)00358-0
  • D.R. Roberts, “Turro N. J, Modern Molecular Photochemistry, Benjamin-Cummings, Menlo Park, CA (1978), 628 pp.; Price,£14.95,” 1983. 97–8.
  • T. Lai, and E.C. Lim, “Proximity Effect and Excited-State Dynamics of 9-Carbonyl-Substituted Anthracenes,” Journal of the American Chemical Society 107, no. 5 (1985): 1134–7. doi:10.1021/ja00291a008
  • A. Samanta, and G. Saroja, “Steady State and Time-Resolved Studies on the Redox Behaviour of 1,8-Naphthalimide in the Excited State,” Journal of Photochemistry and Photobiology A: Chemistry 84, no. 1 (1994): 19–26. doi:10.1016/1010-6030(94)03846-5
  • C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd, Revised and Enlarged Edition, (Wiley VCH, 1988).
  • S. Arulmozhiraja, M. Ehara, and H.J. Nakatsuji, “Electronic Transitions in Cis-and Trans-Dichloroethylenes and Tetrachloroethylene,” The Journal of Chemical Physics 129, no. 17 (2008): 174506. doi:10.1063/1.3002911
  • S. Dhar, S.S. Roy, D.K. Rana, S. Bhattacharya, S. Bhattacharya, and S.C. Bhattacharya, “Tunable Solvatochromic Response of Newly Synthesized Antioxidative Naphthalimide Derivatives: Intramolecular Charge Transfer Associated with Hydrogen Bonding Effect,” The Journal of Physical Chemistry. A 115, no. 11 (2011): 2216–24. doi:10.1021/jp1117773
  • S.S. Mati, S. Sarkar, P. Sarkar, and S.C. Bhattacharya, “Explicit Spectral Response of the Geometrical Isomers of a Bio-Active Pyrazoline Derivative Encapsulated in β-Cyclodextrin Nanocavity: A Photophysical and Quantum Chemical Analysis,” The Journal of Physical Chemistry. A 116, no. 42 (2012): 10371–82. doi:10.1021/jp307964z
  • J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (New York: Springer, 2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.