64
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical Analysis of the Properties of Monocarbonyl Curcumin Analogs

, &
Pages 1918-1936 | Received 31 Jan 2023, Accepted 24 Apr 2023, Published online: 11 May 2023

References

  • Y.S. Fu, T.H. Chen, L. Weng, L. Huang, D. Lai, and C.F. Weng, “Pharmacological Properties and Underlying Mechanisms of Curcumin and Prospects in Medicinal Potential,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 141 (2021): 111888.
  • L. Singh, S. Sharma, S. Xu, D. Tewari, and J. Fang, “Curcumin as a Natural Remedy for Atherosclerosis: A Pharmacological Review,” Molecules 26, no. 13 (2021): 4036.
  • V. Zoi, V. Galani, G.D. Lianos, S. Voulgaris, A.P. Kyritsis, and G.A. Alexiou, “The Role of Curcumin in Cancer Treatment,” Biomedicines 9, no. 9 (2021): 1086.
  • S. Benreka, F.-Z. Zradni, F. Madi, G. Kirsch, and S. Kasmi-Mir, “Synthesis of Thiazolylidenethiazoloquinazolinone Hybrids from Monocarbonyl Curcumin Analogues. Characterization, Bio-Evaluation and DFT Study,” Journal of Sulfur Chemistry 43, no. 1 (2022): 53–77.
  • Y. Li, M.A. Qaria, S. Sethupathy, J. Sun, and D. Zhu, “Curcumin Production and Bioavailability: A Comprehensive Review of Curcumin Extraction, Synthesis, Biotransformation and Delivery Systems,” Industrial Crops and Products 172 (2021): 114050.
  • D. B. Xiang, K. Q. Zhang, Y. L. Zeng, “Curcumin from a Controversial “Panacea” to Effective Antineoplastic Products,” Journal of Medicine 99 (2020): 18647. doi:10.1097/MD.0000000000018467
  • G. Liang, S. Yang, L. Jiang, Y. Zhao, L. Shao, J. Xiao, F. Ye, Y. Li, and X. Li, “Synthesis and anti-Bacterial Properties of Mono-Carbonyl Analogues of Curcumin,” Chemical & Pharmaceutical Bulletin 56, no. 2 (2008): 162–7.
  • A. Singh, J.V. Singh, A. Rana, K. Bhagat, H.K. Gulati, R. Kumar, R. Salwan, K. Bhagat, G. Kaur, N. Singh, et al., “Monocarbonyl Curcumin-Based Molecular Hybrids as Potent Antibacterial Agents,” ACS Omega 4, no. 7 (2019): 11673–84.
  • G. Liang, L. Shao, Y. Wang, C. Zhao, Y. Chu, J. Xiao, Y. Zhao, X. Li, and S. Yang, “Exploration and Synthesis of Curcumin Analogues with Improvedstructural Stability Both in Vitro and in Vivo as Cytotoxic Agents, Journal of,” Bioorganic & Medicinal Chemistry 17, no. 6 (2009): 2623–31.
  • C. Zhao, Z. Liu, and G. Liang, “Promising Curcumin-Based Drug Design: Mono-Carbonyl Analogues of Curcumin (MACs), Journal of,” Current Pharmaceutical Design 19, no. 11 (2013): 2114–35.
  • J.R. Fuchs, B. Pandit, D. Bhasin, J.P. Etter, N. Regan, D. Abdelhamid, C. Li, J. Lin, and P.K. Li, “Structure–Activity Relationship Studies of Curcumin Analogues, Journal of,” Bioorganic & Medicinal Chemistry Letters 19, no. 7 (2009): 2065–9.
  • P. Panagiota, F. Veronika, M. Dimitris, B. Mavroidi, F. Perperopoulou, A.C. Papageorgiou, M. Sagnou, U. Bren, M. Pelecanou, and N. E. Labrou, “Monocarbonyl Curcumin Analogues as Potent Inhibitors against Human Glutathione Transferase P1-1,” Journal of Antioxidants 12 (2022): 63.
  • C. Marta, M. Vanda, V. João, S. Awam, M.B. Afonso, M.J. Perry, and C.M.P. Rodrigues, “Monocarbonyl Analogs of Curcumin with Potential to Treat Colorectal Cancer,” Journal of Chem Biodivers 20 (2023): E 202300222.
  • D.Y. Zhou, S.Q. Zhao, Z. Zheng, Z.Y. Zhang, “Synthesis and Anticancer Activity Study of Curcumin-Related Compounds Containing Benzyl Piperidone,” Journal of Chinese Pharmaceutical Sciences 8 (2015): 524–9.
  • S. Omidi and A. Kakanejadifard, “A Review on Biological Activities of Schiff Base, Hydrazone, and Oxime Derivatives of Curcumin,” RSC Advances 10, no. 50 (2020): 30186–202.
  • C.R. Polaquini, B.C. Marques, G.M. Ayusso, L.G. Morão, J.C.O. Sardi, D.L. Campos, I.C. Silva, L.B. Cavalca, D.J. Scheffers, P.L. Rosalen, et al., “Antibacterial Activity of a New Monocarbonyl Analog of Curcumin MAC 4 is Associated with Divisome Disruption,” Bioorganic Chemistry 109 (2021): 104668.
  • S. Venkateswarlu, M.S. Ramachandra, and G.V. Subbaraju, “Synthesis and Biological Evaluation of Polyhydroxycurcuminoids,” Journal of Bioorganic & Medicinal Chemistry 13, no. 23 (2005): 6374–80.
  • (a) R.F.W. Bader, Atoms in Molecule: A Quantum Theory (England‎: Clarendon Press, 1990); (b) R. Bader and H.J. Essen, “The Characterization of Atomic Interactions,” The Journal of Chemical Physics 80, no. 5 (1984): 1943–60.
  • A.D. Becke and K.E. Edgecombe, “Edgecombe, a Simple Measure of Electron Localization in Atomic and Molecular Systems,” The Journal of Chemical Physics 92, no. 9 (1990): 5397–403.
  • B. Silvi and A. Savin, “Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions,” Nature 371, no. 6499 (1994): 683–6.
  • H.L. Schmide and A.D. Becke, “Chemical Content of the Kinetic Energy Density,” Journal of Molecular Structure: Theochem 527, no. 1–3 (2000): 51–61.
  • J. Contreras-García, E.R. Johnson, S. Keinan, R. Chaudret, J.P. Piquemal, D.N. Beratan, W. Yang, “NCIPLOT: A Program for Plotting Non-Covalent Interaction Regions,” Journal of Chemical Theory and Computation 7, no. 3 (2011): 625–32.
  • M. Muthukkumar, T. Bhuvaneswari, G. Venkatesh, C. Kamal, P. Vennila, S. Armaković, S.J. Armaković, Y. Sheena Mary, C. Yohannan Panicker, “Synthesis, Characterization and Computational Studies of Semicarbazide Derivative,” Journal of Molecular Liquids 272 (2018): 481–95.
  • G. Venkatesh, C. Kamal, P. Vennila, M. Govindaraju, Y.S. Mary, S. Armakovic, S.J. Armakovic, S. Kaya, C.Y. Panicker, “Molecular Dynamic Simulations, ALIE Surface, Fukui Functions Geometrical, Molecular Docking and Vibrational Spectra Studies of Tetra Chloro p and m-Xylene,” Journal of Molecular Structure 1171 (2018): 253–67.
  • K. Periyasamy, P. Sakthivel, P. Vennila, P.M. Anbarasan, G. Venkatesh, Y. Sheena Mary, “Novel D-π-a Phenothiazine and Dibenzofuran Organic Dyes with Simple Structures for Efficient Dye-Sensitized Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry 413 (2021): 113269.
  • P. Vennila, J.S. Al-Otaibi, G. Venkatesh, Y. Sheena Mary, V. Raj, N. Acharjee, P. Tamilselvi, “Structural, Spectral, Molecular Docking, and Molecular Dynamics Simulations of Phenylthiophene-2-Carboxylate Compounds as Potential Anticancer Agents,” Journal of Polycyclic Aromatic Compounds 43(2023): 1–23.
  • G. Venkatesh, Y. Sixto-López, P. Vennila, Y.S. Mary, J. Correa-Basurto, Y.S. Mary, and A. Manikandan, “An Investigation on the Molecular Structure, Interaction with Metal Clusters, anti-Covid-19 Ability of 2-deoxy-D-Glucose: DFT Calculations, MD and Docking Simulations,” Journal of Molecular Structure 1258 (2022): 132678.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, et al. GAUSSIAN 16, Revision C.01 (Wallingford CT: Gaussian, Inc., 2019).
  • S. Pérez, C. Meyer, and A. Imberty, “Practical tools for molecular modeling of complex carbohydrates and their interactions with proteins,” Molecular Engineering 5(1995): 271–300. http://www.tripos.com.
  • A.D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Physical Review A, General Physics 38, no. 6 (1988): 3098–100.
  • C.T. Lee, W.T. Yang, and R.G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Condensed Matter 37, no. 2 (1988): 785–9.
  • K. Chattaraj, Chemical Reactivity Theory: A Density Functional View (Boca Raton, FL: CRC Press, 2009).
  • T. Lu and F.W. Chen, “Multiwfn: A Multifunctional Wave Function Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92.
  • T. Lu and F. Chen, “Quantitative Analysis of Molecular Surface Based on Improved Marching Tetrahedra Algorithm,” Journal of Molecular Graphics & Modelling 38 (2012): 314–23.
  • J. Zhang and T. Lu, “Efficient Evaluation of Electrostatic Potential with Computerized Optimized Code,” Physical Chemistry Chemical Physics 23, no. 36 (2021): 20323–8.
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual Molecular Dynamics,” Journal of Molecular Graphics 14, no. 1 (1996): 33. doi: 10.1016/0263-7855(96)00018-5
  • P.R. Schleyer, M. Manoharan, Z.X. Wang, B. Kiran, H. Jiao, R. Puchta, and N.J.R. van Eikema Hommes, “Dissected Nucleus-Independent Chemical Shift Analysis of n-Aromaticity and Antiaromaticity,” Journal of Organic Letters 3, no. 16 (2001): 2465–8.
  • G. Lessene, P.E. Czabotar, B.E. Sleebs, K. Zobel, K.N. Lowes, J.M. Adams, J.B. Baell, P.M. Colman, K. Deshayes, W.J. Fairbrother, et al., “Structure-Guided Design of a Selective BCL-X(L) inhibitor,” Nature Chemical Biology 9, no. 6 (2013): 390–7.
  • S. Sudha, N. Sundaraganesan, K. Vanchinathan, K. Muthu, and S.P. Meenakshisundaram, “Spectroscopic (FTIR, FT-Raman, NMR and UV) and Molecular Structure Investigations of 1,5-Diphenylpenta-1,4-Dien-3-One: A Combine Dexperimental and Theoretical Study,” Journal of Molecular Structure 1030 (2012): 191–203.
  • R.J. Butcher, J.P. Jasinski, H.S. Yathirajan, S. Bindya, B. Narayana, and B.K. Sarojini, “1,5-bis (3,4-Dimethoxyphenyl) Penta-1,4- Dien-3-One,” Acta Crystallographica Section E Structure Reports Online 63, no. 7 (2007): o3115–o3115.
  • P. Geerlings, F.D. Proft, and W. Langenaeker, “Conceptual Density Functional Theory,” Journal of Chemical Reviews 103, no. 5 (2003): 1793–873.
  • R.G. Parr, L.V. Szentpály, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121, no. 9 (1999): 1922–4.
  • L.R. Domingo, M. Ríos-Gutiérrez, and P. Pérez, “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity,” Molecules 21, no. 6 (2016): 748.
  • L.R. Domingo, M.J. Aurell, P. Pérez, and R. Contreras, “Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels-Alder Reactions,” Tetrahedron 58, no. 22 (2002): 4417–23.
  • L.R. Domingo, E. Chamorro, and P. Pérez, “Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study,” The Journal of Organic Chemistry 73, no. 12 (2008): 4615–24.
  • J.S. Murray and P. Politzer, “Electrostatic Potentials: Chemical Applications,” Journal of Encyclopedia of Computational Chemistry 2 (2002): 912–20.
  • R.D. Vargas-Sánchez, A.M. Mendoza-Wilson, R.R. Balandrán-Quintana, G.R. Torrescano Urrutia, and A. Sánchez-Escalante, “Study of the Molecular Structure and Chemical Reactivity of Pinocembrin by DFT Calculations,” Computational and Theoretical Chemistry 1058 (2015): 21–7.
  • Z. Liu, T. Lu, and Q. Chen, “Intermolecular Interaction Characteristics of the All-Carboatomic Ring, Cyclo[18]Carbon: Focusing on Molecular Adsorption and Stacking,” Carbon 171 (2021): 514–23.
  • T. Lu, “Multiwfn Manual, Version 3.7, Section 3.15.1,” http://sobereva.com/multiwfn.
  • M.H. Vakarelska-Popovska and Z.A. Velkov, “Structure of Flavones and Flavonols. Part II: Role of Position on the O-H Bond Dissociation Enthalpy,” Journal of Computational Chemistry 02, no. 01 (2014): 1–5.
  • S. Cimino, G. Sortino, V. Favilla, T. Castelli, M. Madonia, S. Sansalone, G.I. Russo, and G. Morgia, “Polyphenols: Key Issues Involved in Chemoprevention of Prostate Cancer,” Oxidative Medicine and Cellular Longevity 2012 (2012): 632959.
  • J. Ravindran, S. Prasad, and B.B. Aggarwal, “Curcumin and Cancer Cells: How Many Ways Can Curry Kill Tumor Cells Selectively,” The AAPS Journal 11, no. 3 (2009): 495–510.
  • S. Armaković and S.J. Armaković, “Atomistica. Online-Web Application for Generating Input Files for ORCA Molecular Modelling Package Made with the Anvil Platform,” Molecular Simulation 49, no. 1 (2023): 117–23.
  • S. Martel, F. Gillerat, E. Carosati, D. Maiarelli, I.V. Tetko, R. Mannhold, and P.A. Carrupt, “Large, Chemically Diverse Dataset of logP Measurements for Benchmarking Studies,” European Journal of Pharmaceutical Sciences 48, no. 1–2 (2013): 21–9.
  • P. Ertl, B. Rohde, and P. Selzer, “Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Basedcontributions and Its Application to the Prediction of Drug Transport Properties,” Journal of Medicinal Chemistry 43, no. 20 (2000): 3714–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.