152
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Molecular Docking, and Biological Evaluation of Pyridin-3-yl-Pyrimidin-2-yl-Triazole Derivatives as Anti-cancer Agents

, , , , , , , & show all
Pages 2062-2076 | Received 09 Nov 2022, Accepted 04 May 2023, Published online: 17 May 2023

References

  • Douglas Hanahan and Robert A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell 144, no. 5 (2011): 646–74. doi:10.1016/j.cell.2011.02.013
  • Harold J. Burstein, Sarah Temin, Holly Anderson, Thomas A. Buchholz, Nancy E. Davidson, Karen E. Gelmon, Sharon H. Giordano, Clifford A. Hudis, Diana Rowden, Alexander J. Solky, et al., “ Adjuvant Endocrine Therapy for Women with Hormone Receptor-positive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Focused Update,” Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 32, no. 21 (2014): 2255–69. doi:10.1200/JCO.2013.54.2258
  • World Cancer Research Fund International. “Worldwide Data,” https://www.wcrf.org (accessed October 01, 2022).
  • Renaud Capdeville, Elisabeth Buchdunger, Juerg Zimmermann, and Alex Matter, “Glivec (STI571, Imatinib), a Rationally Developed, Targeted Anticancer Drug,” Nature Reviews Drug Discovery 1, no. 7 (2002): 493–502. doi:10.1038/nrd839
  • Hagop Kantarjian, Charles Sawyers, Andreas Hochhaus, Francois Guilhot, Charles Schiffer, Carlo Gambacorti-Passerini, Dietger Niederwieser, Debra Resta, Renaud Capdeville, Ulrike Zoellner, et al., “Hematologic and Cytogenetic Responses to Imatinib Mesylate in Chronic Myelogenous Leukemia,” The New England Journal of Medicine 346, no. 9 (2002): 645–52. doi:10.1056/NEJMoa011573
  • Bhushan Nagar, William G. Bornmann, Patricia Pellicena, Thomas Schindler, Darren R. Veach, W. Todd Miller, Bayard Clarkson, and John Kuriyan, “Crystal Structures of the Kinase Domain of c-Abl in Complex with the Small Molecule Inhibitors PD173955 and Imatinib (STI-571),” Cancer Research 62, no. 15 (2002): 4236–43.
  • Thomas Schindler, William Bornmann, Particia Pellicena, W. Todd Miller, Bayard Clarkson, and John Kuriyan, “Structural Mechanism for STI-571 Inhibition of Abelson Tyrosine Kinase,” Science (New York, N.Y.) 289, no. 5486 (2000): 1938–42. doi:10.1126/science.289.5486.1938
  • Naima Agouram, El Mestafa El Hadrami, and Abdeslem Bentama, “1,2,3-Triazoles as Biomimetics in Peptide Science,” Molecules 26, no. 10 (2021): 2937. doi:10.3390/molecules26102937
  • Hartmuth C. Kolb, M. G. Finn, and K. Barry Sharpless, “Click Chemistry: Diverse Chemical Function from a Few Good Reactions,” Angewandte Chemie International Edition 40, no. 11 (2001): 2004–21. doi:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  • Vsevolod V. Rostovtsev, Luke G. Green, Valery V. Fokin, and K. Barry Sharpless, “Stepwise Huisgen Cycloaddition Process: Copper (I) catalyzed Regioselective“Ligation” of Azide and Terminal Alkynes,” Angewandte Chemie International Edition 41, no. 14 (2002): 2596–9. doi:10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
  • Christian W. Tornøe, Caspar Christensen, and Morten Meldal, “Peptidotriazoles on Solid Phase: [1,2,3]-Triazole by Regiospecific Copper (I)-catalyzed 1,3-Dipolar Cycloaddition of Terminal Alkynes to Azide,” The Journal of Organic Chemistry 67, no. 9 (2002): 3057–64. doi:10.1021/jo011148j
  • Valentin O. Rodionov, Valery V. Fokin, and M. G. Finn, “Mechanism of the Ligation-free CuI-catalyzed Azide-alkyne Cycloaddition Reaction,” Angewandte Chemie (International ed. in English) 44, no. 15 (2005): 2210–5. doi:10.1002/anie.200461496
  • Xiangyi Jiang, Xia Hao, Lanlan Jing, Gaochan Wu, Dongwei Kang, Xinyong Liu, and Peng Zhan, “Recent Applications of Click Chemistry in Drug Discovery,” Expert Opinion on Drug Discovery 14, no. 8 (2019): 779–89. doi:10.1080/17460441.2019.1614910
  • Alisha Rani, Gurjaspreet Singh, Akshpreet Singh, Ubair Maqbool, Gurpreet Kaur, and Jandeep Singh, “CuAAC-ensembled 1,2,3-Triazole-linked Isosteres as Pharmacophores in Drug Discovery: Review,” Chemical Records 20, no. 4 (2020): 253–72.
  • Khurshed Bozorov, Jiangyu Zhao, and Haji A. Aisa, “1,2,3-Triazole-containing Hybrids as Leads in Medicinal Chemistry: A Recent Overview,” Bioorganic & Medicinal Chemistry 27, no. 16 (2019): 3511–31. doi:10.1016/j.bmc.2019.07.005
  • Bhavna Saroha, Gourav Kumar, Ramesh Kumar, Meena Kumari, and Suresh Kumar, “A Minireview of 1,2,3-Triazole Hybrids with O-Heterocycles as Leads in Medicinal Chemistry,” Chemical Biology & Drug Design 100, no. 6 (2021): 843–69. doi:10.1111/cbdd.13966
  • Ravi Varala, Hari Babu Bollikolla, and Chandra Mohan Kurmarayuni, “Synthesis of Pharmacological Relevant 1,2,3-Triazole and Its Analogues-A Review,” Current Organic Synthesis 18, no. 2 (2021): 101–24. doi:10.2174/1570179417666200914142229
  • Lian-Shun Feng, Man-Jie Zheng, Feng Zhao, and Duan Liu, “1,2,3-Triazole Hybrids with Anti-HIV-1 Activity,” Archiv Der Pharmazie 354, no. 1 (2021): e2000163. doi:10.1002/ardp.202000163
  • Zhi Xu, “1,2,3-Triazole-containing Hybrids with Potential Antibacterial Activity against Methicillin-resistant Staphylococcus aureus (MRSA),” European Journal of Medicinal Chemistry 206 (2020): 112686. doi:10.1016/j.ejmech.2020.112686
  • Ting Liang, Xiangyang Sun, Wenhong Li, Guihua Hou, and Feng Gao, “1,2,3-Triazole-containing Compounds as Anti-lung Cancer Agents: Current Developments, Mechanisms of Action, and Structure-activity Relationship,” Frontiers in Pharmacology 12 (2021): 661173. doi:10.3389/fphar.2021.661173
  • Mohammad Mahboob Alam, “1,2,3-Triazole Hybrids as Anticancer Agents: A Review,” Archiv Der Pharmazie 355, no. 1 (2022): e2100158. doi:10.1002/ardp.202100158
  • Bo Zhang, “Comprehensive Review on the Anti-bacterial Activity of 1,2,3-Triazole Hybrids,” European Journal of Medicinal Chemistry 168 (2019): 357–72. doi:10.1016/j.ejmech.2019.02.055
  • Nisha Poonia, Aman Kumar, Vijay Kumar, Monika Yadav, and Kashmiri Lal, “Recent Progress in 1H-1,2,3-Triazoles as Potential Antifungal Agents,” Current Topics in Medicinal Chemistry 21, no. 23 (2021): 2109–33. doi:10.2174/1568026621666210913122828
  • Pegah Nouraie, Shahram Moradi Dehaghi, and Alireza Foroumadi, “Coumarin-1,2,3-Triazole Hybrid Derivatives: Green Synthesis and DFT Calculations,” Synthetic Communications 49, no. 3 (2019): 386–94. doi:10.1080/00397911.2018.1557686
  • Setareh Moghimi, Somayeh Salarinejad, Mahsa Toolabi, Loghman Firoozpour, Seyed Esmaeil Sadat Ebrahimi, Fatemeh Safari, Fatemeh Madani-Qamsari, Somayeh Mojtabavi, Mohammad Ali Faramarzi, Saeed Karima, et al, “Synthesis, In-vitro Evaluation, Molecular Docking, and Kinetic Studies of Pyridazine-triazole Hybrid System as Novel α-Glucosidase Inhibitors,” Bioorganic Chemistry 109 (2021): 104670. doi:10.1016/j.bioorg.2021.104670
  • Sara Akrami, Loghman Firoozpour, Fereshteh Goli-Garmroodi, Setareh Moghimi, Mohammad Mahdavi, Afsaneh Zonouzi, and Alireza Foroumadi, “One-pot Synthesis of Oxoisoindoline-1, 2, 3-Triazole Hybrid by a Ugi–Click Reaction,” Synthetic Communications 46, no. 20 (2016): 1708–12. doi:10.1080/00397911.2016.1223313
  • Setareh Moghimi, Fereshteh Goli-Garmroodi, Hedieh Pilali, Mohammad Mahdavi, Loghman Firoozpour, Hamid Nadri, Alireza Moradi, Ali Asadipour, Abbas Shafiee, and Alireza Foroumadi, “Synthesis and Anti-acetylcholinesterase Activity of Benzotriazinone-triazole Systems,” Journal of Chemical Sciences 128, no. 9 (2016): 1445–9. doi:10.1007/s12039-016-1154-5
  • Ali Asadipour, Saeedeh Noushini, Setareh Moghimi, Mohammad Mahdavi, Hamid Nadri, Alireza Moradi, Shabnam Shabani, Loghman Firoozpour, and Alireza Foroumadi, “Synthesis and Biological Evaluation of Chalcone-triazole Hybrid Derivatives as 15-LOX Inhibitors,” Zeitschrift Für Naturforschung B 73, no. 2 (2018): 77–83. doi:10.1515/znb-2017-0115
  • Setareh Moghimi, Fereshteh Goli‐Garmroodi, Maryam Allahyari‐Devin, Hedieh Pilali, Malihe Hassanzadeh, Shabnam Mahernia, Mohammad Mahdavi, Loghman Firoozpour, Massoud Amanlou, and Alireza Foroumadi, “Synthesis, Evaluation, and Molecular Docking Studies of Aryl Urea‐Triazole‐Based Derivatives as Anti‐Urease Agents,” Archiv Der Pharmazie 351, no. 7 (2018): 1800005. doi:10.1002/ardp.201800005
  • Mehrdad Mehrazar, Mahdi Hassankalhori, Mahsa Toolabi, Fereshteh Goli, Setareh Moghimi, Hamid Nadri, Syed Nasir Abbas Bukhari, Loghman Firoozpour, and Alireza Foroumadi, “Design and Synthesis of Benzodiazepine-1, 2, 3-Triazole Hybrid Derivatives as Selective Butyrylcholinesterase Inhibitors,” Molecular Diversity 24, no. 4 (2020): 997–1013. doi:10.1007/s11030-019-10008-x
  • Daniel Moock, Tobias Wagener, Tianjiao Hu, Timothy Gallagher, and Frank Glorius, “Enantio- and Diastereoselective, Complete Hydrogenation of Benzofurans by Cascade Catalysis,” Angewandte Chemie (International ed. in English) 60, no. 24 (2021): 13677–81. doi:10.1002/anie.202103910
  • Vanesa Nozal, Alfonso García-Rubia, Eva P. Cuevas, Concepción Pérez, Carlota Tosat-Bitrián, Fernando Bartolomé, Eva Carro, David Ramírez, Valle Palomo, and Ana Martínez, “From Kinase Inhibitors to Multitarget Ligands as Powerful Drug Leads for Alzheimer’s Disease Using Protein-templated Synthesis,” Angewandte Chemie (International ed. in English) 60, no. 35 (2021): 19344–54. doi:10.1002/anie.202106295
  • Ji Jianxin, Jin Yi, Hu Xiaoyu, Guo Na, Du Fengtian, Zuo Chengsen, Zhang Qiang, and Li Bogang, “N-[4-Methyl-3-(4-Pyridin-3-Yl-Pyrimidin-2-Ylamino)Phenyl]Benzamide Derivatives, a Preparation Method and Use Synthesis of Imatinib Thereof,” WO2012022217A1.
  • Timothy U. Connell, Christine Schieber, Ilaria Proietti Silvestri, Jonathan M. White, Spencer J. Williams, and Paul S. Donnelly, “Copper and Silver Complexes of Tris(Triazole)Amine and Tris(Benzimidazole)Amine Ligands: Evidence That Catalysis of an Azide–Alkyne Cycloaddition (“Click”) Reaction by a Silver Tris(Triazole)Amine Complex Arises from Copper Impurities,” Inorganic Chemistry 53, no. 13 (2014): 6503–11. doi:10.1021/ic5008999
  • Rajavel Srinivasan, Lay Pheng Tan, Hao Wu, Peng-Yu Yang, Karunakaran A. Kalesh, and Shao Q. Yao, “High-throughput Synthesis of Azide Libraries Suitable for Direct “Click” Chemistry and in Situ Screening,” Organic & Biomolecular Chemistry 7, no. 9 (2009): 1821–8. doi:10.1039/b902338k
  • V. Akolkar, Amol A. Nagargoje, Vagolu S. Krishna, Dharmarajan Sriram, Jaiprakash N. Sangshetti, Manoj Damale, and Bapurao B. Shingate, “New N-Phenylacetamide-incorporated 1,2,3-Triazoles: [Et3NH][OAc]-mediated Efficient Synthesis and Biological Evaluation,” RSC Advances 9, no. 38 (2019): 22080–91. doi:10.1039/c9ra03425k
  • Trevor Ostlund, Faez Alotaibi, Jennifer Kyeremateng, Hossam Halaweish, Abigail Kasten, Surtaj Iram, and Fathi Halaweish, “Triazole-estradiol Analogs: A Potential Cancer Therapeutic Targeting Ovarian and Colorectal Cancer,” Steroids 177 (2022): 108950. doi:10.1016/j.steroids.2021.108950
  • Takayoshi Suzuki, Yuki Kasuya, Yukihiro Itoh, Yosuke Ota, Peng Zhan, Kaori Asamitsu, Hidehiko Nakagawa, Takashi Okamoto, and Naoki Miyata, “Identification of Highly Selective and Potent Histone Deacetylase 3 Inhibitors Using Click Chemistry-based Combinatorial Fragment Assembly,” PLoS One 8, no. 7 (2013): e68669. doi:10.1371/journal.pone.0068669
  • Pramod S. Phatak, Rajubai D. Bakale, Ravibhushan S. Kulkarni, Sambhaji T. Dhumal, Prashant P. Dixit, Vagolu Siva Krishna, Dharmarajan Sriram, Vijay M. Khedkar, and Kishan P. Haval, “Design and Synthesis of New Indanol-1,2,3-Triazole Derivatives as Potent Antitubercular and Antimicrobial Agents,” Bioorganic & Medicinal Chemistry Letters 30, no. 22 (2020): 127579. doi:10.1016/j.bmcl.2020.127579
  • K. A. Bhensdadia, N. H. Lalavani, and S. H. Baluja, “Synthesis of New Thieno[2,3-d]Pyrimidines Containing a 1,2,3-Triazole Ring and Their Therapeutic Response in NCI-60 Cell Line Panel,” Russian Journal of Organic Chemistry 57, no. 10 (2021): 1668–77. doi:10.1134/S107042802110016X
  • Mariana L. de Souza, Celso de Oliveira Rezende Junior, Rafaela S. Ferreira, Rocio Marisol Espinoza Chávez, Leonardo L. G. Ferreira, Brian W. Slafer, Luma G. Magalhães, Renata Krogh, Glaucius Oliva, Fabio Cardoso Cruz, et al., “Discovery of Potent, Reversible, and Competitive Cruzain Inhibitors with Trypanocidal Activity: A Structure-based Drug Design Approach,” Journal of Chemical Information and Modeling 60, no. 2 (2020): 1028–41. doi:10.1021/acs.jcim.9b00802
  • Bhumit L. Gondaliya and Khushal M. Kapadiya, “Efficient Green Chemistry Approach for the Synthesis of 1,2,3-Triazoles Using Click Chemistry through Cycloaddition Reaction: Synthesis and Cytotoxic Study,” Polycyclic Aromatic Compounds 43, no. 1 (2023): 686–98. doi:10.1080/10406638.2021.2019804
  • Fawzia Al-Blewi, Salma Akram Shaikh, Arshi Naqvi, Faizah Aljohani, Mohamed Reda Aouad, Saleh Ihmaid, and Nadjet Rezki, “Design and Synthesis of Novel Imidazole Derivatives Possessing Triazole Pharmacophore with Potent Anticancer Activity, and in Silico ADMET with GSK-3β Molecular Docking Investigations,” International Journal of Molecular Sciences 22, no. 3 (2021): 1162. doi:10.3390/ijms22031162
  • Nima Sepehri, Homa Azizian, Reza Ghadimi, Fahimeh Abedinifar, Somayeh Mojtabavi, Mohammad Ali Faramarzi, Ali Akbar Moghadamnia, Ebrahim Zabihi, Gholamhossein Mohebbi, Bagher Larijani, et al, “New 4,5-Diphenylimidazole-Acetamide-1,2,3-Triazole Hybrids as Potent α-Glucosidase Inhibitors: Synthesis, In Vitro and In Silico Enzymatic and Toxicity Evaluations,” Monatshefte Für Chemie - Chemical Monthly 152, no. 6 (2021): 679–93. doi:10.1007/s00706-021-02779-7
  • Ayse Tan and Zuleyha Almaz, “A Series of 1,2,3-Triazole Compounds: Synthesis, Characterization, and Investigation of the Cholinesterase Inhibitory Properties via In Vitro and In Silico Studies,” Journal of Molecular Structure 1277 (2023): 134854. doi:10.1016/j.molstruc.2022.134854
  • Paul J. Bow, Valentina Adami, Agostino Marasco, Gaute Grønnevik, Dean A. Rivers, Guiseppe Alvaro, and Patrick J. Riss, “A Direct Fixation of CO2 for Isotopic Labelling of Hydantoins Using Iodine–Phosphine Charge Transfer Complexes,” Chemical Communications 58, no. 54 (2022): 7546–9. doi:10.1039/d2cc01754g
  • Malla Reddy Gannarapu, Sathish Babu Vasamsetti, Nagender Punna, Srigiridhar Kotamraju, and Narsaiah Banda, “Synthesis of Novel 1-Substituted Triazole Linked 1,2-Benzothiazine 1,1-Dioxido Propenone Derivatives as Potent Anti-inflammatory Agents and Inhibitors of Monocyte-to-Macrophage Differentiation,” MedChemComm 6, no. 8 (2015): 1494–500. doi:10.1039/C5MD00171D
  • Mahsa Toolabi, Fatemeh Safari, Adileh Ayati, Parnian Fathi, Setareh Moghimi, Somayeh Salarinejad, Roham Foroumadi, Shima H. M. E. Ketabforoosh, and Alireza Foroumadi, “Synthesis of Novel 2-Acetamide-5-Phenylthio-1,3,4-Thiadiazole-containing Phenyl Urea Derivatives as Potential VEGFR-2 Inhibitors,” Archiv Der Pharmazie 355, no. 3 (2022): 2100397. doi:10.1002/ardp.202100397
  • Chunfeng Li, Yimin Wang, Hongfeng Zhang, Man Li, Ziyu Zhu, and Yingwei Xue, “An Investigation on the Cytotoxicity and Caspase-mediated Apoptotic Effect of Biologically Synthesized Gold Nanoparticles Using Cardiospermum Halicacabum on AGS Gastric Carcinoma Cells,” International Journal of Nanomedicine 14 (2019): 951–62. doi:10.2147/IJN.S193064
  • M. Abdulla Al-Mamun, Jamiatul Husna, Masuda Khatun, Rubait Hasan, M. Kamruzzaman, K. M. F. Hoque, M. Abu Reza, and Z. Ferdousi, “Assessment of Antioxidant, Anticancer and Antimicrobial Activity of Two Vegetable Species of Amaranthus in Bangladesh,” BMC Complementary and Alternative Medicine 16, no. 1 (2016): 1–11. doi:10.1186/s12906-016-1130-0
  • Sankar Pajaniradje, Kumaravel Mohankumar, Ramya Pamidimukkala, Srividya Subramanian, and Rukkumani Rajagopalan, “Antiproliferative and Apoptotic Effects of Sesbania Grandiflora Leaves in Human Cancer Cells,” BioMed Research International 2014 (2014): 474953. doi:10.1155/2014/474953
  • Zahra Rahmani and Fatemeh Safari, “Evaluating the In Vitro Therapeutic Effects of Human Amniotic Mesenchymal Stromal Cells on MiaPaca2 Pancreatic Cancer Cells Using 2D and 3D Cell Culture Model,” Tissue & Cell 68 (2021): 101479. doi:10.1016/j.tice.2020.101479
  • Li-Dong Wang, Qi Zhou, Jun-Ping Wei, Wan-Cai Yang, Xin Zhao, Li-Xia Wang, Jian-Xiang Zou, Shan-Shan Gao, Yong-Xin Li, and C. S. Yang, “Apoptosis and Its Relationship with Cell Proliferation, p53, Waf1p21, Bcl-2 and Cmyc in Esophageal Carcinogenesis Studied with a High Risk Population in Northern China,” World Journal of Gastroenterology 4, no. 4 (1998): 287–93. doi:10.3748/wjg.v4.i4.287
  • Christopher O. Bellamy, Roger D. Malcomson, David J. Harrison, and Andrew H. Wyllie, “Cell Death in Health and Disease: The Biology and Regulation of Apoptosis,” Seminars in Cancer Biology 6, no. 1 (1995): 3–16. doi:10.1006/scbi.1995.0002
  • Christine J. Hawkins and David L. Vaux, “Analysis of the Role of Bcl-2 in Apoptosis,” Immunological Reviews 142, no. 1 (1994): 127–39. doi:10.1111/j.1600-065x.1994.tb00886.x
  • Xiao-Min Wang, Xiaofu Wang, Jing Li, and B. Mark Evers, “Effects of 5-Azacytidine and Butyrate on Differentiation and Apoptosis of Hepatic Cancer Cell Lines,” Annals of Surgery 227, no. 6 (1998): 922–31. doi:10.1097/00000658-199806000-00016
  • Ramsey Foty, “A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids,” Journal of Visualized Experiments 51, no. 51 (2011): 2720. doi:10.3791/2720-v

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.