70
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The Diels–Alder Reaction between Euparin and Dimethyl Acetylenedicarboxylate; a Joint Experimental and Density Functional Theory Study

, , , , &
Pages 2077-2089 | Received 20 Apr 2022, Accepted 02 May 2023, Published online: 21 May 2023

References

  • M. Breugst, and H.U. Reissig, “The Huisgen Reaction: Milestones of the 1, 3-Dipolar Cycloaddition,” Angewandte Chemie (International Ed. in English) 59, no. 30 (2020): 12293–307. ‏ doi:10.1002/anie.202003115
  • L.L. Fluegel, and T.R. Hoye, “Hexadehydro-Diels–Alder Reaction: Benzyne Generation via Cycloisomerization of Tethered Triynes,” Chemical Reviews 121, no. 4 (2021): 2413–44. ‏ doi:10.1021/acs.chemrev.0c00825
  • (a) M. Liu, A. Grinberg Dana, M.S. Johnson, M.J. Goldman, A. Jocher, A.M. Payne, C.A. Grambow, K. Han, N.W. Yee, E.J. Mazeau, et al, “Reaction Mechanism Generator v3. 0: Advances in Automatic Mechanism Generation,” Journal of Chemical Information and Modeling 61, no. 6 (2021): 2686–96. doi:10.1021/acs.jcim.0c01480. (b) S.A. Siadati, S. Davoudi, M. Soheilizad, L. Firoozpour, M. Payab, S. Bagherpour, and S. Kolivand, “The Synthesis and the Mechanism of a Five-Membered Ring Formation between an Isothiocyanate and an Amide Leading to the Yield of Enzalutamide Anticancer API; a Joint Experimental and Theoretical Study,” Journal of Molecular Structure 1280 (2023): 135057.
  • (a) K.N. Houk, F. Liu, Z. Yang, and J.I. Seeman, “Evolution of the Diels–Alder Reaction Mechanism since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions,” Angewandte Chemie International Edition 60, no. 23 (2021): 12660–81. doi:10.1002/anie.202001654. (b) A. Dadras, M.A. Rezvanfar, A. Beheshti, S.S. Naeimi, and S.A. Siadati, “An Urgent Industrial Scheme Both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an anti-Viral API for Treatment of COVID-19,” Combinatorial Chemistry & High Throughput Screening 25, no. 5 (2022): 838–46.
  • S. Chen, T. Hu, and K.N. Houk, “Energy of Concert and Origins of Regioselectivity for 1, 3-Dipolar Cycloadditions of Diazomethane,” The Journal of Organic Chemistry 86, no. 9 (2021): 6840–6. ‏ doi:10.1021/acs.joc.1c00743
  • Y. Yu, Z. Yang, and K.N. Houk, “Molecular Dynamics of the Intramolecular 1, 3-Dipolar Ene Reaction of a Nitrile Oxide and an Alkene: Non-Statistical Behavior of a Reaction Involving a Diradical Intermediate,” Molecular Physics 117, no. 9–12 (2019): 1360–6. ‏ doi:10.1080/00268976.2018.1549338
  • (a) R. Jasiński, “A Stepwise, Zwitterionic Mechanism for the 1, 3-Dipolar Cycloaddition between (Z)-C-4-methoxyphenyl-N-Phenylnitrone and Gem-Chloronitroethene Catalysed by 1-Butyl-3-Methylimidazolium Ionic Liquid Cations,” Tetrahedron Letters 56, no. 3 (2015): 532–5. doi:10.1016/j.tetlet.2014.12.007. (b) S.A. Siadati, N. Nami, and M.R. Zardoost, “A DFT Study of Solvent Effects on the Cycloaddition of Norbornadiene and 3, 4–Dihydroisoquinoline-N-Oxide. Progress in Reaction Kinetics and Mechanism, 36(3), 252–258. (c) ‏ Siadati, A. (2016). a Theoretical Study on the Possibility of Functionalization of C20 Fullerene via Its Diels-Alder Reaction with 1, 3-Butadiene,” Tetrahedron Letters 13, no. 1 (2015): 2–6. ‏
  • (a) Y. Lan, and K.N. Houk, “Mechanism and Stereoselectivity of the Stepwise 1, 3-Dipolar Cycloadditions between a Thiocarbonyl Ylide and Electron-Deficient Dipolarophiles: A Computational Investigation,” Journal of the American Chemical Society 132, no. 50 (2010): 17921–7. doi:10.1021/ja108432b. (b) S.A. Siadati, “A Theoretical Study on Stepwise-and Concertedness of the Mechanism of 1, 3-Dipolar Cycloaddition Reaction between Tetra Amino Ethylene and Trifluoro Methyl Azide,” Combinatorial Chemistry & High Throughput Screening 19, no. 2 (2016): 170–5. (c) B. Mohtat, S.A. Siadati, M.A. Khalilzadeh, and D. Zareyee, “The Concern of Emergence of Multi-Station Reaction Pathways That Might Make Stepwise the Mechanism of the 1, 3-Dipolar Cycloadditions of Azides and Alkynes,” Journal of Molecular Structure 1155 (2018): 58–64. ‏
  • (a) S.A. Siadati, “An Example of a Stepwise Mechanism for the Catalyst-Free 1, 3-Dipolar Cycloaddition between a Nitrile Oxide and an Electron Rich Alkene,” Tetrahedron Letters 56, no. 34 (2015): 4857–63. doi:10.1016/j.tetlet.2015.06.048. (b) S.A. Siadati, “The Effect of Position Replacement of Functional Groups on the Stepwise Character of 1, 3-Dipolar Reaction of a Nitrile Oxide and an Alkene,” Helvetica Chimica Acta 99, no. 4 (2016): 273–80. (c) B. Mohtat, S.A. Siadati, and M.A. Khalilzadeh, “Understanding the Mechanism of the 1, 3-Dipolar Cycloaddition Reaction between a Thioformaldehyde S-Oxide and Cyclobutadiene: Competition between the Stepwise and Concerted Routes,” Tetrahedron Letters 44, no. 3 (2019): 213–21. ‏
  • (a) G. Mlostoń, M. Celeda, R. Jasiński, and H. Heimgartner, “Experimental and Computational Studies on Stepwise [3 + 2]-Cycloadditions of Diaryldiazomethanes with Electron-Deficient Dimethyl (E)-and (Z)-2, 3-Dicyanobutenedioates,” European Journal of Organic Chemistry 2019, no. 2–3 (2019): 422–31. 2019doi:10.1002/ejoc.201800837. (b) S.A. Siadati, “Effect of Steric Congestion on the Stepwise Character and Synchronicity of a 1, 3-Dipolar Reaction of a Nitrile Ylide and an Olefin,” Journal of Chemical Research 39, no. 11 (2015): 640–4. (c) S.A. Siadati, and S. Rezazadeh, “The Extraordinary Gravity of Three Atom 4π-Components and 1, 3-Dienes to C20-nXn Fullerenes; a New Gate to the Future of Nano Technology,” European Journal of Organic Chemistry 01, no. 01 (2022): 46–68.
  • (a) A. Darù, D. Roca-López, T. Tejero, and P. Merino, “Revealing Stepwise Mechanisms in Dipolar Cycloaddition Reactions: Computational Study of the Reaction between Nitrones and Isocyanates,” The Journal of Organic Chemistry 81, no. 2 (2016): 673–80. doi:10.1021/acs.joc.5b02645. (b) S.A. Siadati, and S. Rezazadeh, “The Extraordinary Gravity of Three Atom 4π-Components and 1, 3-Dienes to C20-nXn Fullerenes; a New Gate to the Future of Nano Technology,” Scientiae Radices 01, no. 01 (2022): 46–68. (c) ‏P. Shiri, “An Overview on the Copper-Promoted Synthesis of Five-Membered Heterocyclic Systems,” Applied Organometallic Chemistry 34, no. 5 (2020): e5600.
  • (a) R.A. Firestone, “The Low Energy of Concert in Many Symmetry-Allowed Cycloadditions Supports a Stepwise-Diradical Mechanism,” International Journal of Chemical Kinetics 45, no. 7 (2013): 415–28. doi:10.1002/kin.20776. (b) R. Jasiński, and E. Dresler, “On the Question of Zwitterionic Intermediates in the [3 + 2] Cycloaddition Reactions: A Critical Review,” Organics 1, no. 1 (2020): 49–69. (c) H. ‏Sharghi, P. Shiri, and M. Aberi, “Five-Membered N-Heterocycles Synthesis Catalyzed by Nano-Silica Supported Copper (II)–2-Imino-1, 2-Diphenylethan-1-ol Complex,” Catalysis Letters 147, no. 11 (2017): 2844–62.
  • (a) S.A. Siadati, “Beyond the Alternatives That Switch the Mechanism of the 1, 3-Dipolar Cycloadditions from Concerted to Stepwise or Vice Versa: A Literature Review,” Progress in Reaction Kinetics and Mechanism 41, no. 4 (2016): 331–44. doi:10.3184/146867816X14719552202168. (b) S.A. ‏Siadati, and M. Alinezhad, “A Theoretical Study on the Functionalisation Process of C18NB Fullerene through Its Open [5, 5] Cycloaddition with 4-Pyridine Nitrile Oxide,” Progress in Reaction Kinetics and Mechanism 40, no. 2 (2015): 169–76.
  • G. Haberhauer, R. Gleiter, and S. Woitschetzki, “Anti-Diradical Formation in 1, 3-Dipolar Cycloadditions of Nitrile Oxides to Acetylenes,” The Journal of Organic Chemistry 80, no. 24 (2015): 12321–32. ‏ doi:10.1021/acs.joc.5b02230
  • R.G. Fiorot, F.D.S. Vilhena, and J. W. D. M. Carneiro, “Diradical-Singlet Character of 1, 3-Dipoles Affects Reactivity of 1, 3-Dipolar Cycloaddition Reactions and Intramolecular Cyclization,” Journal of Molecular Modeling 25, no. 10 (2019): 1–8. ‏ doi:10.1007/s00894-019-4162-9
  • M.S. Reddy, L.R. Chowhan, N.S. Kumar, P. Ramesh, and S.B. Mukkamala, “An Expedient Regio and Diastereoselective Synthesis of Novel Spiropyrrolidinylindenoquinoxalines via 1,3-Dipolar Cycloaddition Reaction,” Tetrahedron Letters 59, no. 14 (2018): 1366–71. ‏ doi:10.1016/j.tetlet.2018.02.044
  • K.N. Houk, F. Liu, Z. Yang, and J.I. Seeman, “Evolution of the Diels–Alder Reaction Mechanism since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions,” Angewandte Chemie (International Ed. in English) 60, no. 23 (2021): 12660–81. ‏ doi:10.1002/anie.202001654
  • M.J. Dewar, S. Olivella, and J.J. Stewart, “Mechanism of the Diels-Alder Reaction: Reactions of Butadiene with Ethylene and Cyanoethylenes,” Journal of the American Chemical Society 108, no. 19 (1986): 5771–9. ‏ doi:10.1021/ja00279a018
  • M. Linder, A.J. Johansson, and T. Brinck, “Mechanistic Insights into the Stepwise Diels–Alder Reaction of 4, 6-Dinitrobenzofuroxan,” Organic Letters 14, no. 1 (2012): 118–21. ‏ doi:10.1021/ol202913w
  • T. Wang, D. Niu, and T.R. Hoye, “The Hexadehydro-Diels–Alder Cycloisomerization Reaction Proceeds by a Stepwise Mechanism,” Journal of the American Chemical Society 138, no. 25 (2016): 7832–5. ‏ doi:10.1021/jacs.6b03786
  • R. Shimizu, Y. Okada, and K. Chiba, “Stepwise Radical Cation Diels–Alder Reaction via Multiple Pathways,” Beilstein Journal of Organic Chemistry 14, no. 1 (2018): 704–8. ‏ doi:10.3762/bjoc.14.59
  • S. Sakai, “Theoretical Analysis of Concerted and Stepwise Mechanisms of the Hetero-Diels–Alder Reaction of Butadiene with Formaldehyde and Thioformaldehyde,” Journal of Molecular Structure: Theochem 630, no. 1–3 (2003): 177–85. ‏ doi:10.1016/S0166-1280(03)00153-2
  • (a) L.R. Domingo, R.A. Jones, M.T. Picher, and J. Sepúlveda-Arques, “Theoretical Study of the Reaction of Dimethyl Acetylenedicarboxylate with 1-Methyl-2-(1-Substituted Vinyl) Pyrroles,” Tetrahedron 51, no. 32 (1995): 8739–48. doi:10.1016/0040-4020(95)00490-Y. (b) G. Mlostoń, K. Urbaniak, M. Sobiecka, H. Heimgartner, E.U. Würthwein, R. Zimmer, D. Lentz, and H.U. Reissig, “Hetero-Diels-Alder Reactions of in Situ-Generated Azoalkenes with Thioketones; Experimental and Theoretical Studies,” Tetrahedron 26, no. 9 (2021): 2544.
  • (a) L.R. Domingo, R.A. Jones, M.T. Picher, and J. Sepúlveda-Arques, “Theoretical Study of the Reactions of 1-Methyl-2-Vinylpyrrole with Methyl Propiolate and with Dimethyl Acetylenedicarboxylate,” Journal of Molecular Structure: Theochem 362, no. 2 (1996): 209–13. doi:10.1016/0166-1280(95)04392-6. (b) D.V. Steglenko, M.E. Kletsky, S.V. Kurbatov, A.V. Tatarov, V.I. Minkin, R. Goumont, and F. Terrier, “A Theoretical and Experimental Study of the Polar Diels–Alder Cycloaddition of Cyclopentadiene with Nitrobenzodifuroxan,” Journal of Molecular Structure: Theochem 22, no. 4 (2009): 298–307.
  • (a) L.R. Domingo, M.T. Picher, J. Andrés, V. Moliner, and V.S. Safont, “Theoretical Study of the Solvent Effects on the Mechanisms of Addition of Dimethyl Acetylenedicarboxylate to 1-Methyl-2-Vinylpyrrole,” Tetrahedron 52, no. 32 (1996): 10693–704. doi:10.1016/0040-4020(96)00591-1. (b) M. De Rosa, and D. Arnold, “Electronic and Steric Effects on the Mechanism of the Inverse Electron Demand Diels − Alder Reaction of 2-Aminopyrroles with 1, 3, 5-Triazines: Identification of Five Intermediates by 1H, 13C, 15N, and 19F NMR Spectroscopy,” The Journal of Organic Chemistry 74, no. 1 (2009): 319–28.
  • L.R. Domingo, M. Arnó, and J. Andres, “Influence of Reactant Polarity on the Course of the Inverse-Electron-Demand Diels − Alder Reaction. A DFT Study of Regio-and Stereoselectivity, Presence of Lewis Acid Catalyst, and Inclusion of Solvent Effects in the Reaction between Nitroethene and Substituted Ethenes,” The Journal of Organic Chemistry 64, no. 16 (1999): 5867–75. ‏ doi:10.1021/jo990331y
  • L.R. Domingo, M.T. Picher, and M. José Aurell, “A DFT Characterization of the Mechanism for the Cycloaddition Reaction between 2-Methylfuran and Acetylenedicarboxylic Acid,” The Journal of Physical Chemistry A 103, no. 51 (1999): 11425–30. ‏ doi:10.1021/jp992579x
  • L.R. Domingo, and M.J. Aurell, “Density Functional Theory Study of the Cycloaddition Reaction of Furan Derivatives with Masked o-Benzoquinones. Does the Furan Act as a Dienophile in the Cycloaddition Reaction,” The Journal of Organic Chemistry 67, no. 3 (2002): 959–65. ‏ doi:10.1021/jo011003c
  • L.R. Domingo, M.T. Picher, and R.J. Zaragozá, “Toward an Understanding of the Molecular Mechanism of the Reaction between 1-Methylpyrrole and Dimethyl Acetylenedicarboxylate. An ab Initio Study,” The Journal of Organic Chemistry 63, no. 25 (1998): 9183–9. ‏ doi:10.1021/jo980036y
  • L.R. Domingo, and J.A. Sáez, “Understanding the Mechanism of Polar Diels–Alder Reactions,” Organic & Biomolecular Chemistry 7, no. 17 (2009): 3576–83. ‏ doi:10.1039/b909611f
  • (a) M.A. Khalilzadeh, S. Hosseini, A.S. Rad, and R.A. Venditti, “Synthesis of Grafted Nanofibrillated Cellulose-Based Hydrogel and Study of Its Thermodynamic, Kinetic, and Electronic Properties,” Journal of Agricultural and Food Chemistry 68, no. 32 (2020): 8710–9. doi:10.1021/acs.jafc.0c03500. (b) L.R. Domingo, M. Ríos-Gutiérrez, and P. Pérez, “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity,” Molecules 21, no. 6 (2016): 748. ‏
  • L.R. Domingo, M. Ríos-Gutiérrez, B. Silvi, and P. Pérez, “The Mysticism of Pericyclic Reactions: A Contemporary Rationalisation of Organic Reactivity Based on Electron Density Analysis,” European Journal of Organic Chemistry 2018, no. 9 (2018): 1107–20. ‏ doi:10.1002/ejoc.201701350
  • M. Ríos-Gutiérrez, and L.R. Domingo, “Unravelling the Mysteries of the [3 + 2] Cycloaddition Reactions,” European Journal of Organic Chemistry 2019, no. 2–3 (2019): 267–82. ‏ doi:10.1002/ejoc.201800916
  • (a) T. Salavati-Fard, S. Caratzoulas, and D.J. Doren, “DFT Study of Solvent Effects in Acid-Catalyzed Diels–Alder Cycloadditions of 2, 5-Dimethylfuran and Maleic Anhydride,” The Journal of Physical Chemistry A 119, no. 38 (2015): 9834–43. doi:10.1021/acs.jpca.5b05060. (b) R.E. Patet, W. Fan, D.G. Vlachos, and S. Caratzoulas, “Tandem Diels–Alder Reaction of Dimethylfuran and Ethylene and Dehydration to Para-Xylene Catalyzed by Zeotypic Lewis Acids,” Chemcatchem 9, no. 13 (2017): 2523–35.
  • N. Nikbin, P.T. Do, S. Caratzoulas, R.F. Lobo, P.J. Dauenhauer, and D.G. Vlachos, “A DFT Study of the Acid-Catalyzed Conversion of 2, 5-Dimethylfuran and Ethylene to p-Xylene,” Journal of Catalysis 297 (2013): 35–43. doi:10.1016/j.jcat.2012.09.017
  • (a) F. Khaleghi, L.B. Din, F.R. Charati, W.A. Yaacob, M.A. Khalilzadeh, B. Skelton, and M. Makha, “A New Bioactive Compound from the Roots of Petasites Hybridus,” Phytochemistry Letters 4, no. 3 (2011): 254–8. doi:10.1016/j.phytol.2011.04.009. (b) P. Dastoorani, M.T. Maghsoodlou, M.A. Khalilzadeh, and E. Sarina, “Synthesis of New Dibenzofuran Derivatives via Diels–Alder Reaction of Euparin with Activated Acetylenic Esters,” Tetrahedron Letters 57, no. 3 (2016): 314–6. (c)‏ P. Dastoorani, M.T. Maghsoodlou, M.A. Khalilzadeh, S. García-Granda, L. Torre-Fernández, and E. Sarina, “Diastereoselective Synthesis of Novel Benzofuran Derivatives by Euparin as a Natural Compound with DMAD in the Presence of Trialkyl Phosphite,” Heteroatom Chemistry 27, no. 2 (2016): 102–7.
  • (a) G. Zarrinzadeh, M. Tajbakhsh, R. Hosseinzadeh, M.A. Khalilzadeh, and M. Hosseinzadeh, “Biological Evaluation and Molecular Docking Study of Euparin and Its Maleic Anhydride and Semicarbazide Derivatives,” Polycyclic Aromatic Compounds 43, no. 1 (2023): 409–20. doi:10.1080/10406638.2021.2015405. (b) P. Dastoorani, M.A. Khalilzadeh, F. Khaleghi, M.T. Maghsoodlou, W. Kaminsky, and A.S. Rad, “Experimental and Computational Studies on the Synthesis of Diastereoselective Natural-Based Meldrum Spiro Dibenzofuran Derivatives,” New Journal of Chemistry 43, no. 17 (2019): 6615–21. (c) R. Rostamian, M.A. Khalilzadeh, , and D. Zareyee, “Wood Ash Biocatalyst as a Novel Green Catalyst and Its Application for the Synthesis of Benzochromene Derivatives,” Scientific Reports 12, no. 1 (2022): 1145.
  • M.J. Frisch, Gaussian 98. Revision A. 9. (1998).‏
  • A.D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Physical Review A, General Physics 38, no. 6 (1988): 3098–100. ‏ doi:10.1103/physreva.38.3098
  • C. Lee, W. Yang, and R.G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Condensed Matter 37, no. 2 (1988): 785–9. ‏ doi:10.1103/physrevb.37.785
  • A.D. McLean, and G.S. Chandler, “Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z= 11–18,” The Journal of Chemical Physics 72, no. 10 (1980): 5639–48. ‏ doi:10.1063/1.438980
  • R. McWeeny, “Perturbation Theory for the Fock-Dirac Density Matrix,” Physical Review 126, no. 3 (1962): 1028–34. ‏ doi:10.1103/PhysRev.126.1028
  • R. Ditchfield, “Self-Consistent Perturbation Theory of Diamagnetism: I. A Gauge-Invariant LCAO Method for NMR Chemical Shifts,” Molecular Physics 27, no. 4 (1974): 789–807. ‏ doi:10.1080/00268977400100711
  • H.B. Schlegel, “Geometry Optimization,” WIREs Computational Molecular Science 1, no. 5 (2011): 790–809. ‏ doi:10.1002/wcms.34
  • T. Vreven, K. Morokuma, Ö. Farkas, H.B. Schlegel, and M.J. Frisch, “Geometry Optimization with QM/MM, ONIOM, and Other Combined Methods. I. Microiterations and Constraints,” Journal of Computational Chemistry 24, no. 6 (2003): 760–9. ‏ doi:10.1002/jcc.10156
  • F. Weinhold, C.R. Landis, and E.D. Glendening, “What is NBO Analysis and How is It Useful,” International Reviews in Physical Chemistry 35, no. 3 (2016): 399–440. ‏ doi:10.1080/0144235X.2016.1192262
  • E.D. Glendening, C.R. Landis, and F. Weinhold, “NBO 6.0: Natural Bond Orbital Analysis Program,” Journal of Computational Chemistry 34, no. 16 (2013): 1429–37. ‏ doi:10.1002/jcc.23266
  • L.R. Domingo, “A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density,” RSC Advances 4, no. 61 (2014): 32415–28. doi:10.1039/C4RA04280H
  • J. Tomasi, B. Mennucci, and R. Cammi, “Quantum Mechanical Continuum Solvation Models,” Chemical Reviews 105, no. 8 (2005): 2999–3093. ‏ doi:10.1021/cr9904009
  • R.G. Parr, L.V. Szentpály, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121, no. 9 (1999): 1922–4. doi:10.1021/ja983494x
  • S.A. Siadati, M. Soheilizad, L. Firoozpour, M. Samadi, M. Payab, S. Bagherpour, and S.M. Mousavi, “An Industrial Approach to Production of Tofacitinib Citrate (TFC) as an anti-COVID-19 Agent: A Joint Experimental and Theoretical Study,” Journal of Chemistry 2022 (2022): 1–11. doi:10.1155/2022/8759235
  • L.R. Domingo, E. Chamorro, and P. Pérez, “Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study,” The Journal of Organic Chemistry 73, no. 12 (2008): 4615–24. doi:10.1021/jo800572a
  • L.R. Domingo, M. Ríos-Gutiérrez, and P. Pérez, “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity,” Molecules 21, no. 6 (2016): 748. doi:10.3390/molecules21060748

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.