90
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Green Synthesis and Theoretical Study of New Azepinodiazepine Derivatives with Biological Activity: Application of Fe3O4/ZnO@MWCNT

, , & ORCID Icon
Pages 2508-2534 | Received 07 Nov 2022, Accepted 20 May 2023, Published online: 10 Jun 2023

References

  • (a) A. Domling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry†,” Chemical Reviews 106, no. 1 (2006): 17–89. (b) Ardeshir Khazaei, Ahmad Reza. Moosavi-Zare, Hadis Afshar-Hezarkhani, Vahid Khakyzadeh, “Knoevenagel-Michael-Cyclocondensation Reaction: Create out Pseudo Acridine Derivatives under Solvent Free Conditions,” Eurasian Chemical Communications 2 (2020): 27–34. (c) Ahmad Reza Moosavi-Zare, and Hadis Afshar-Hezarkhani, “Application of [Pyridine-1-SO3H-2-COOH]Cl as an Efficient Catalyst for the Preparation of Hexahyroquinolines,” Eurasian Chemical Communications 2 (2020) 465. doi:10.1021/cr0505728
  • (a) L. F. Tietze, and N. N. Rackelmann, “Domino Reactions in the Synthesis of Heterocyclic Natural Products and Analogs,” Pure and Applied Chemistry. 11 (2004): 1967 (b) Ahmad Reza Moosavi-Zare, Hamid Goudarziafshar, Zahra Jalilian, and Fatemeh Hosseinabadi, “Efficient Pseudo-Six-Component Synthesis of Tetrahydro-Pyrazolopyridines Using [Zn-2BSMP]Cl2,” Chemical Methodologies 6 (2022): 571–581. (c) Sami Sajjadifar, Issa Amini, Sepideh Habibzadeh, and Ghobad Mansouri, “Esfandeyar Ebadi Acidic Ionic Liquid Based Silica-Coated Fe3O4 Nanoparticles as a New Nanomagnetic Catalyst for Preparation of Aryl and Heteroaryl Thiocyanates,” Chemical Methodologies 4 (2020): 623–634. (d) Ardeshir Khazaei, Fatemeh Gohari-Ghalil, Mahsa Tavasoli, Mohammad Rezaei-Gohar, and Ahmad Reza Moosavi-Zare, “Fe3O4 Bonded Pyridinium-3-Carboxylic acid-N-Sulfonic Acid Chloride as an Efficient Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones,” Chemical Methodologies 4 (2020): 543–553
  • A. Domling, and I. Ugi, “Multicomponent Reactions with Isocyanides,” Angewandte Chemie 39, no. 18 (2000): 3168–3210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
  • J. Kolb, B. Beck, M. Almstetter, S. Heck, E. Herdtweck, and A. Domling, “New MCRs: The First 4-Component Reaction Leading to 2,4-Disubstituted Thiazoles,” Molecular Diversity 6, no. 3-4 (2003): 297–313. doi:10.1023/b:Modi.0000006827.35029.e4
  • A. Domling, I. Ugi, and B. Werner, “The Chemistry of Isocyanides, Their MultiComponent Reactions and Their Libraries,” Molecules 8, no. 1 (2003): 53–66. doi:10.3390/80100053
  • W. Fan, C. Verrier, L. Wang, M. Ahmar, J.-N. Tan, and F. Popowycz, Y. Queneau. 5-(Hydroxymethyl) Furfural and 5-(Glucosyloxymethyl) Furfural in Multicomponent Reactions,” in Recent trends in carbohydrate chemistry, (Amsterdam: Elsevier, 2020), 73–100.
  • F. Nouali, Z. Kibou, B. Boukoussa, N. Choukchou-Braham, A. Bengueddach, D. Villemin, and R. Hamacha, “E_Cient Multicomponent Synthesis of 2-Aminopyridines Catalysed by Basic Mesoporous Materials,” Research on Chemical Intermediates 46, no. 6 (2020): 3179–3191. doi:10.1007/s11164-020-04144-5
  • P. Wu, M. Givskov, and T. E. Nielsen, “Reactivity and Synthetic Applications of Multicomponent Petasis Reactions,” Chemical Reviews 119, no. 20 (2019): 11245–11290. doi:10.1021/acs.chemrev.9b00214
  • C. Szántay, H. Bölcskei, and E. Gács-Baitz, “Synthesis of Vinca Alkaloids and Related Compounds XLVIII Synthesis of (+)-Catharanthine and (±)-Allocatharanthine,” Tetrahedron 46, no. 5 (1990): 1711–1732. doi:10.1016/S0040-4020(01)81977-3
  • (a) S. Loison, M. Cottet, H. Orcel, H. Adihou, R. Rahmeh, L. Lamarque, E. Trinquet, E. Kellenberger, M. Hibert, T. Durroux, et al. Journal of Medicinal Chemistry. 21 (1978): 1105. (b) T. Kometani and S. J. Shiotani, Medicinal Chemistry. 21 (1978): 1105.
  • (a) A. Aoyama, K. Endo-Umeda, K. Kishida, K. Ohgane, T. Noguchi-Yachide, H. Aoyama, M. Ishikawa, H. Miyachi, M. Makishima, Y. Hashimoto, et al. European Journal of Pharmacology. 383 (1999): 275. (b) E. Acques and G. Di Chiara European Journal of Pharmacology. 383 (1999): 275.
  • A. Rosowsky, V. Cody, N. Galitsky, H. Fu, A. T. Papoulis, and S. F. Queener, “Structure-Based Design of Selective Inhibitors of Dihydrofolate Reductase: Synthesis and Antiparasitic Activity of 2, 4-Diaminopteridine Analogues with a Bridged Diarylamine Side Chain,” Journal of Medicinal Chemistry 42, no. 23 (1999): 4853–4860. doi:10.1021/jm990331q
  • I. Akritopoulou-Zanze, W. Braje, S. W. Djuric, N. S. Wilson, S. C. Turner, A. W. Kruger, A. L. Relo, S. Shekhar, D. S. Welch, and H. Y. Zhao, “US Patent Appl. Publ. US 20110118231 A1 20110519, 2011,” Chemical Abstracts 154 (2011): 615137.
  • Amit Kumar Jain, Narisetty Sunil Thomas, and Ramesh Panchagnula, “Transdermal Drug Delivery of Imipramine Hydrochloride. I. Effect of Terpenes,” Journal of Controlled Release: official Journal of the Controlled Release Society 79, no. 1-3 (2002): 93–101. doi:10.1016/s0168-3659(01)00524-7
  • J. W. Watthey, J. L. Stanton, M. Desai, J. E. Babiarz, and B. M. Finn, “Synthesis and Biological Properties of (Carboxyalkyl)Amino-Substituted Bicyclic Lactam Inhibitors of Angiotensin Converting Enzyme,” Journal of Medicinal Chemistry 28, no. 10 (1985): 1511–1516. doi:10.1021/jm00148a023
  • Y. L. Zhong, B. Pipik, J. Lee, Y. Kohmura, S. Okada, K. Igawa, C. Kadowaki, A. Takezawa, S. Kato, D. A. Conlon, et al. “Practical Synthesis of a HIV Integrase Inhibitor,” Organic Process Research & Development 12, no. 6 (2008): 1245–1252. doi:10.1021/op800153y
  • T. Ikemoto, T. Ito, A. Nishiguchi, S. Miura, and K. Tomimatsu, “Practical Synthesis of an Orally Active CCR5 Antagonist, 7-{4-[2-(Butoxy)- Ethoxy]Phenyl}- N -(4-{[Methyl(Tetrahydro-2 H -Pyran-4-yl)Amino]Methyl}Phenyl)-1-Propyl-2,3-Dihydro-1 H -1-Benzazepine-4-Carboxamide,” Organic Process Research & Development 9, no. 2 (2005): 168–173. doi:10.1021/op0497916
  • A. A. Protter, and S. Chakravarty, “Patent WO 2012112961 A1,” Chem. Abstr 157 (2012): 400665. (2012)
  • D. J. Brown, R. F. Evans, W. B. Cowden, and M. D. Fenn, The Chemistry of Heterocyclic Compounds, edited by Taylor, E. C. Vol. 52, (New York, Wiley, 1994), 49–238.
  • K. S. Jain, T. S. Chitre, P. B. Miniyar, M. K. Kathiravan, V. S. Bendre, V. S. Veer, S. H. Shahane, and C. J. Shishoo, Current Science 90 (2006): 793–803.
  • L. M. Acosta, J. Jurado, A. Palma, J. Cobo, and C. Glidewell, “Five Closely Related 4-Chloro-6,11-Dihydro-5H-Benzo[b]Pyrimido[5,4-f]Azepines: Similar Molecular Structures but Different Supramolecular Assemblies,” Acta Crystallographica. Section C, Structural Chemistry 71, no. Pt 12 (2015): 1062–1068. doi:10.1107/S2053229615020811
  • J.-P. Bouillon, V. Bouillon, C. Wynants, Z. Janousek, and H. G. Viehe, “Trifluoromethylated Pyrimidines Starting from b-Trifluoroacetyl-Lactams, -Lactone and -Cyclanone,” Heterocycles 37, no. 2 (1994): 915–932. doi:10.3987/COM-93-S84
  • D. Tsvelikhovsky, and S. L. Buchwald, “Synthesis of Heterocycles via Pd-Ligand Controlled Cyclization of 2-chloro-N-(2-Vinyl)Aniline: Preparation of Carbazoles, Indoles, Dibenzazepines, and Acridines,” Journal of the American Chemical Society 132, no. 40 (2010): 14048–14051. doi:10.1021/ja107511g
  • R. Vardanyan, and V. Hruby, Synthesis of essential drugs, (Amsterdam: Elsevier, 2006), 103–116.
  • J. Benes, A. Parada, A. A. Figueiredo, P. C. Alves, A. P. Freitas, D. A. Learmonth, R. A. Cunha, J. Garrett, and P. Soares-da-Silva, “Anticonvulsant and sodium channel-blocking properties of novel 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide derivatives,” Journal of Medicinal Chemistry. 42, (1999): 2582–2587.
  • R. Sahay, J. Sundaramurthy, P. Suresh Kumar, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna, “Synthesis and Characterization of CuO Nanofibers, and Investigation for Its Suitability as Blocking Layer in ZnO NPs Based Dye Sensitized Solar Cell and as Photocatalyst in Organic Dye Degradation,” Journal of Solid State Chemistry 186 (2012): 261–267. doi:10.1016/j.jssc.2011.12.013
  • (a) S. Khalilian, S. Abdolmohammadi, and F. Nematolahi, “An Eco-Friendly and Highly Efficient Synthesis of Pyrimidinones Using a TiO2-CNTs Nanocomposite Catalyst,” Letters in Organic Chemistry 14, no. 5 (2017): 361–367. (b) A. Samani, S. Abdolmohammadi, and A. Otaredi-Kashani, “Green Synthesis of Xanthenone Derivatives in Aqueous Media Using TiO2-CNTs Nanocomposite as an Eco-Friendly and Re-Usable Catalyst,” Combinatorial Chemistry & High Throughput Screening 21, no. 2 (2018):111–116. (c) S. Abdolmohammadi, “TiO2 NPs-Coated Carbone Nanotubes as a Green and Efficient Catalyst for the Synthesis of [1]Benzopyrano[b][1]Benzopyranones and Xanthenols in Water,” Combinatorial Chemistry & High Throughput Screening 21, no. 8 (2018): 594–601. (d) S. Abdolmohammadi, B. Mirza, and E. Vessally, “Immobilized TiO2 Nanoparticles on Carbon Nanotubes: An Efficient Heterogeneous Catalyst for the Synthesis of Chromeno[b]Pyridine Derivatives under Ultrasonic Irradiation,” RSC Advances 9, no. 71 (2019): 41868–41876. (e) S. Abdolmohammadi, S. R. Rasouli Nasrabadi, M. R. Dabiri, and S. M. Banihashemi Jozdani, “TiO2 Nanoparticles Immobilized on Carbon Nanotubes: An Efficient Heterogeneous Catalyst in Cyclocondensation Reaction of Isatins with Malononitrile and 4-Hydroxycoumarin or 3,4-Methylenedioxyphenol under Mild Reaction Conditions,” Applied Organometallic Chemistry 34, no. 4 (2020): e5462. doi:10.2174/1570178614666170321113926
  • (a) S. Fakheri-Vayeghan, S. Abdolmohammadi, and R. Kia-Kojoori, “An Expedient Synthesis of 6-Amino-5-[(4-Hydroxy-2-Oxo-2H-Chromen-3-yl)(Aryl)Methyl]-1,3-Dimethyl-2,4,6(1H,3H)-Pyrimidinedione Derivatives Using Fe3O4@TiO2 Nanocomposite as an Efficient, Magnetically Separable, and Reusable Catalyst,” Zeitschrift Für Naturforschung B 73, no. 8 (2018): 545–551. (b) A. Rabiei, S. Abdolmohammadi, and F. Shafaei, “A Green Approach for an Efficient Preparation of 2,4-Diamino-6-Aryl-5-Pyrimidinecarbonitriles Using a TiO2/SiO2 Nanocomposite Catalyst under Solvent-Free Conditions,” Zeitschrift Für Naturforschung B 72, no. 4 (2017): 241–247. doi:10.1515/znb-2018-0030
  • (a) F. Chaghari-Farahani, S. Abdolmohammadi, and R. Kia-Kojoori, “PANI-Fe3O4@ZnO Nanocomposite: A Magnetically Separable and Applicable Catalyst for the Synthesis of Chromeno-Pyrido[d]Pyrimidine Derivatives,” Molecular Diversity 26, no. 4 (2022): 1983–1993. (b) S. Abdolmohammadi, Z. Hossaini, and R. Poor Heravi, “PANI-Fe3O4@ZnO Nanocomposite as Magnetically Recoverable Organometallic Nanocatalyst Promoted Synthesis of New Azo Chromene Dyes and Evaluation of Their Antioxidant and Antimicrobial Activities,” Molecular Diversity 26, (2022): 1983–1993. doi:10.1007/s11030-021-10309-0
  • (a) S. Abdolmohammadi, and Z. Hossaini, “Fe3O4 MNPs as a Green Catalyst for Syntheses of Functionalized [1,3]-Oxazole and 1H-Pyrrolo-[1,3]-Oxazole Derivatives and Evaluation of Their Antioxidant Activity,” Molecular Diversity 23, no. 4 (2019): 885–896. (b) S. Abdolmohammadi, S. Shariati, N. Elmi Fard, and A. Samani, “Aqueous-Mediated Green Synthesis of Novel Spiro[Indole-Quinazoline] Derivatives Using Kit-6 Mesoporous Silica Coated Fe3O4 Nanoparticles as Catalyst,” Journal of Heterocyclic Chemistry 57, no. 7 (2020): 2729–2737. (c) S. Abdolmohammadi, S. Shariati, and B. Mirza, “Ultrasound Promoted and Kit-6 Mesoporous Silica Supported Fe3O4 MNPs Catalyzed Cyclocondensation Reaction of 4-Hydroxycoumarin, 3,4-Methylenedioxyphenol and Aromatic Aldehydes,” Applied Organometallic Chemistry 35, no. 3 (20210): e6117. doi:10.1007/s11030-019-09916-9
  • (a) Mahdi Keyhaniyan, Amir Khojastehnezhad, Hossein Eshghi, and Ali Shiri, “Magnetic covalently immobilized nickel complex: A new and efficient method for the Suzuki cross-coupling reaction,” Applied Organometallic Chemistry 35, (2021): e6158. (b) Farzaneh Tajfirooz, Abolghasem Davoodnia, Mehdi Pordel, Mahmoud Ebrahimi, and Amir Khojastehnezhad, “Novel CuFe2O4@SiO2-OP2O5H magnetic nanoparticles: Preparation, characterization and first catalytic application to the synthesis of 1,8-dioxo-octahydroxanthenes,” Applied Organometallic Chemistry 32, (2017): e3930. (c) Behrooz Maleki, Samaneh Barat Nam Chalakia, Samaneh Sedigh Ashrafia, Esmail Rezaee Sereshta, Farid Moeinpourb, Amir Khojastehnezhadc, and Reza Tayebee, “Caesium carbonate supported on hydroxyapatite-encapsulated Ni0.5Zn0.5Fe2O4 nanocrystallites as a novel magnetically basic catalyst for the one-pot synthesis of pyrazolo[1,2-b]phthalazine-5,10-diones,” Applied Organometallic Chemistry 29, (2015): 290–295.
  • (a) I. M. Banat, P. Nigam, D. Singh, and R. Marchant, “Responses of biomass briquetting and pelleting to water-involved pretreatments and subsequent enzymatic hydrolysis,” Bioresource Technology 151 (2014): 54–62. (b) C. A. Martinez-Huitle, and E. Brillas, “Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review,” Applied Catalysis B, 87 (2009) 105. (c) V. K. Vidhu, and D. Philip, "Catalytic degradation of organic dyes using biosynthesized silver nanoparticles," Micron, 56 (2014) 54–62.
  • (a) B. Manu, and S. Chaudhari, “Anaerobic Decolorisation of Simulated Textile Wastewater Containing Azo Dyes,” Bioresource Technology 82, no. 3 (2002): 225–231. (b) R. Patel, and S. Suresh, “Decolourization of azo dyes using magnesium–palladium system,” Journal of Hazardous Materials 137, (2006): 1729. (c) L. G. Devi, S. G. Kumar, K. M. Reddy, and C. Munikrishnappa, “Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism,” Journal of Hazardous Materials 164, (2009) 164.
  • A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man, “ZnO Nanostructures: Growth, Properties and Applications,” Journal of Materials Chemistry 22, no. 14 (2012): 6526–6535. doi:10.1039/c2jm15548f
  • (a) B. Halliwell, “Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning),” Free Radical Research 31, no. 4 (1999): 261–272. (b) F. Ahmadi, M. Kadivar, and M. Shahedi, Food Chemistry 105, (2007): 57–64. doi:10.1080/10715769900300841
  • Mark A. Babizhayev, Anatoly I. Deyev, Valentina N. Yermakova, Igor V. Brikman, and Johan Bours, “Lipid Peroxidation and Cataracts: N-Acetylcarnosine as a Therapeutic Tool to Manage Age-Related Cataracts in Human and in Canine Eyes,” Drugs in R&D 5, no. 3 (2004): 125–139. doi:10.2165/00126839-200405030-00001
  • L. Liu, and M. Meydani, Nutrition Reviews 60 (2002): 368–371.
  • (a) Sara Sahebnasagh, Javd Fadaee Kakhki, Mahmoud Ebrahimi, Mohammad Reza Bozorgmehr, Mohamad Reza Abedi, “Pre-Concentration and Determination of Fluoxetine in Hospital Wastewater and Human Hair Samples Using Solid-Phase µ-Extraction by Silver Nanoparticles Followed by Spectro-Fluorimetric,” Chemical Methodologies 5 (2021): 324–218. (b) Elham Haddadzadeh, Mohammad Kazem Mohammadi, “One-Pot Synthesize of Phenyl Phenanthro Imidazole Derivatives Catalyzed by Lewis Acid in the Presence of Ammonium Acetate,” Chemical Methodologies 4 (2020): 332. (c) Ali Moghimi, Milad Abniki, “The Dispersive Solid-Phase Extraction of Fluoxetine Drug from Biological Samples by the Amine-Functionalized Carbon Nanotubes with HPLC Method,” Chemical Methodologies 5 (2021): 250–258. (d) Raed M. Muhiebes, and Entesar O. Al-Tamimi, “Modification of Creatinine to Form New Oxazepane Ring and Study Their Antioxidant Activity,” Chemical Methodologies 5 (2021): 416–421. (e) A. Mohammadi, E. Heydari-Bafrooei, and M. M. Foroughi, “M MohammadiHeterostructured Au/MoS2-MWCNT Nanoflowers: A Highly Efficient Support for the Electrochemical Aptasensing of Solvated Mercuric Ion,” Microchemical Journal 158, (2020): 105154.
  • (a) I. Yavari, M. Sabbaghan, K. Porshamsian, M. Bagheri, S. Ali-Asgari, Z. S. Hossaini, “Efficient Synthesis of Alkyl 2-[2-(Arylcarbonylimino)-3-Aryl-4-Oxo-1, 3-Thiazolan-5-Ylidene]-Acetates,” Molecular Diversity 11, no. 2 (2007): 81–85. (b) M. Mohammadi, S. H. Hekmatara, R. S. Moghaddam, and A. Darehkordi, “Preparation and Optimization Photocatalytic Activity of Polymer-Grafted Ag@ AgO Core-Shell Quantum Dots,” Environmental Science and Pollution Research 26, (2019): 13401–13409. doi:10.1007/s11030-007-9061-9
  • (a) Thamer A. Rehan, and Naeemah. Al-Lami, “Noor Ali Khudhair Synthesis, Characterization and anti-Corrosion Activity of New Triazole, Thiadiazole and Thiazole Derivatives Containing Imidazo[1,2-a]Pyrimidine Moiety,” Chemical Methodologies 5, (2021): 285–295. (b) M. Z. Kassaee, Z. S. Hossaini, B. N. Haerizade, and S. Z. Sayyed-Alangi, “Ab Initio Study of Steric Effects Due to Dialkyl Substitutions on H2C3 Isomers,” Journal of Molecular Structure: THEOCHEM 681, no. 1-3 (2004): 129–135. doi:10.1016/j.theochem.2004.05.014
  • (a) K. Khandan-Barani, M. T. Maghsoodlou, A. Hassanabadi, “Synthesis of Maleate Derivatives in Isocyanide-Base MCRs: Reaction of 2-Mercaptobenzoxazole with Alkyl Isocyanides and Dialkyl Acetylenedicarboxylates,” Research on Chemical Intermediates 41, no. 5 (2015): 3011–3016. (b) Hassanabadi, A. Khandan-Barani, K. “Three-Component and One-Pot Reaction between Phenacyl Bromide and Primary Amines in the Presence of Carbon Disulfide,” Journal of Chemical Research 2013, (2013): 71–72. (c) H. R. Masoodi, S. Bagheri, M. Mohammadi, M. Zakarianezhad, B. Makiabadi, “The Influence of Cation–π and Anion–π Interactions on Some NMR Data of s-Triazine… HF Hydrogen Bonding: A Theoretical Study,” Chemical Physics Letters 588, (2013): 31–36. doi:10.1007/s11164-013-1409-4
  • (a) Maghsoodlou, M. T. Hazeri, N. Khandan‐Barani, K. Habibi‐Khorasani, S. M. “Synthesis of 1‐(Cyclohexylamino)‐2‐(Aryl) Pyrrolo [1, 2‐a] Quinoline‐3‐Carbonitrile Derivatives Using a Mild, Four‐Component Reaction,” Journal of Heterocyclic Chemistry 51, no. S1 (2014): E152–E155. (b) K. Khandan-Barani, M. T. Maghsoodlou, S. M. Habibi-Khorasani, and N. Hazeri, “Three-Component Reaction between Alkyl (Aryl) Isocyanides and Dialkyl Acetylenedicarboxylates in the Presence of Ethyl Trifluoroacetate,” Journal of Chemical Research 35, (2011): 231–233. doi:10.1002/jhet.1913
  • (a) S. Soleimani-Amiri, M. Arabkhazaeli, Z. S. Hossaini, “Synthesis of Chromene Derivatives via Three-Component Reaction of 4-Hydroxycumarin Catalyzed by Magnetic Fe3O4 Nanoparticles in Water,” Journal of Heterocyclic Chemistry 55, no. 1 (2018): 209–213. (b) S. Soleimani Amiri, M. Koohi, and B. Mirza, “Characterizations of B and N Heteroatoms as Substitutional Doping on Structure, Stability, and Aromaticity of Novel Heterofullerenes Evolved from the Smallest Fullerene Cage,” Journal of Physical Organic Chemistry 29, (2016): 514. (c) M. Koohi, S. Soleimani Amiri, and M. Shariati, “Silicon Impacts on Structure, Stability and Aromaticity of C20-nSin Heterofullerenes (n= 1–10): A Density Functional Perspective,” Journal of Molecular Structure 1127, (2017): 522–531. (d) H. Ghavidel, B. Mirza, and S. Soleimani-Amiri, “A Novel, Efficient, and Recoverable Basic Fe3O4@C Nano-Catalyst for Green Synthesis of 4H-Chromenes in Water via One-Pot Three Component Reactions,” Polycyclic Aromatic Compounds 41, (2021) 604–625. doi:10.1002/jhet.3028
  • (a) E. Ezzatzadeh, M. H. Farjam, A. Rustaiyan, “Comparative Evaluation of Antioxidant and Antimicrobial Activity of Crude Extract and Secondary Metabolites Isolated from Artemisia Kulbadica,” Asian Pacific Journal of Tropical Disease 2, (2012): S431–S434. (b) A. Rustaiyan, S. Masoudi, E. Ezzatzadeh, H. Akhlaghi, and J. Aboli, “Composition of the Aerial Part, Flower, Leaf and Stem Oils of Eremostachys Macrophylla Montbr. & Auch. and Eremostachys Labiosa Bunge. from Iran,” Journal of Essential Oil Bearing Plants 14, (2011) 84–88. (c) A. Rustaiyan, and and E. Ezzatzadeh, “Sesquiterpene Lactones and Penta Methoxylated Flavone from Artemisia Kulbadica,” Asian Journal of Chemistry 23, (2011): 1774–1776. doi:10.1016/S2222-1808(12)60198-4
  • (a) S. Salehi Borban, M. Gharachorloo, and F. Zamani Hargalani, “Check Amount of Heavy Metals in Muscle and Fish Oil Rutilus Frisii Kutum, Clupeonella Cultriventris and Liza Saliens,” Journal of Food Technology and Nutrition 6, (2017): 75–104. (b) F. Zamani Hargalani, A. Karbassi, S. M. Monavari, P. Abroomand Azar, “Origin and Partitioning of Heavy Metals in Sediments of the Anzali Wetland,” Environmental Sciences 11, (2013): 79–88. (c) N. F. Hamedani, F. Zamani Hargalani, F. Rostami-Charati, “Biosynthesis of Cu/KF/Clinoptilolite@ MWCNTs Nanocomposite and Its Application as a Recyclable Nanocatalyst for the Synthesis of New Schiff Base of Benzoxazine Derivatives and Reduction of Organic Pollutants,” Molecular Diversity 26, (2021), 2069–2083. (d) R. N. Mahmonir, V. Abdossi, F. Zamani Hargalani, and K. Larijani, (2021) The Response of Hypericum Perfpratum L. to the Application of Selenium and Nano-selenium.
  • (a) R. Hajinasiri, Z. S. Hossaini, F. Sheikholeslami-Farahani, “ZnO-Nanorods as the Catalyst for the Synthesis of 1, 3-Thiazole Derivatives via Multicomponent Reactions,” Combinatorial Chemistry & High Throughput Screening 18, no. 1 (2015): 42–47. doi:10.2174/1386207317666141203123133. (b) F. Sheikholeslami-Farahani, Z. S. Hossaini, and F. Rostami-Charati, “Solvent-Free Synthesis of Substituted Thiopyrans via Multicomponent Reactions of α-Haloketones,” Chinese Chemical Letters 25, (2014): 152–154. doi:10.1016/j.cclet.2013.10.016. (c) M. Ghazvini, F. Sheikholeslami-Farahani, S. Soleimani-Amiri, M. Salimifard, “Green Synthesis of Pyrido [2, 1-a] Isoquinolines and Pyrido [1, 2-a] Quinolines by Using ZnO Nanoparticles,” Synlett 29, (2018): 493–496. doi:10.1055/s-0036-1591509. (d) Z. S. Hossaini, F. Rostami-Charati, F. Sheikholeslami-Farahani, M. Ghasemian, “Synthesis of Functionalized Benzene Using Diels–Alder Reaction of Activated Acetylenes with Synthesized Phosphoryl-2-Oxo-2H-Pyran,” Zeitschrift Für Naturforschung B 70, (2015): 355–360.
  • (a) M. Ghashghaee, and M. Ghambarian, “Defect Engineering and Zinc Oxide Doping of Black Phosphorene for Nitrogen Dioxide Capture and Detection: Quantum-Chemical Calculations,” Applied Surface Science 523, (2020): 146527. doi:10.1016/j.apsusc.2020.146527. (b) M. Ghashghaee, M. Ghambarian, Z. Azizi, “Molecular-Level Insights into Furfural Hydrogenation Intermediates over Single-Atomic Cu Catalysts on Magnesia and Silica Nanoclusters,” Molecular Simulation 45, (2019): 154–163. doi:10.1080/08927022.2018.1547820. (c) Z. Azizi, M. Ghambarian, M. A. Rezaei, M. Ghashghaee, and N. Saturated, “X-Heterocyclic Carbenes (X = N, O, S, P, Si, C,: Stability, Nucleophilicity, and Basicity,” Australian Journal of Chemistry 68. (2015): 1438–1445. (d) M. Z. Kassaee, M. Ghambarian, and S. M. Musavi, “Halogen Switching of Azacarbenes C2NH Ground States at ab Initio and DFT Levels,” Heteroatom Chemistry: An International Journal of Main Group Elements 19, (2008): 377–388. doi:10.1002/hc.20442
  • (a) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Substitutional Doping of Black Phosphorene with Boron, Nitrogen, and Arsenic for Sulfur Trioxide Detection: A Theoretical Perspective,” Journal of Sulfur Chemistry 41, no. 4 (2020): 399–420. doi:10.1080/17415993.2020.1752692. (b) M. Ghambarian, Z. Azizi, and M. Ghashghaee, “Diversity of Monomeric Dioxo Chromium Species in Cr/Silicalite-2 Catalysts: A Hybrid Density Functional Study,” Computational Materials Science 118, (2016): 147–154. doi:10.1016/j.commatsci.2016.03.009. (c) M. Ghambarian, M. Ghashghaee, and Z Azizi,. “Coordination and Siting of Cu + Ion Adsorbed into Silicalite-2 Porous Structure: A Density Functional Theory Study,” Physical Chemistry Research 5, (2017): 135–152. (d) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Adsorption of Iron (II, III) Cations on Pristine Heptazine and Triazine Polymeric Carbon Nitride Quantum Dots of Buckled and Planar Structures: Theoretical Insights,” Adsorption 26, (2020): 429–442. doi:10.1007/s10450-019-00197-0
  • A. S. Shahvelayati, and Z. Esmaeeli, “Efficient Synthesis of S-Dipeptidothiouracil Derivatives via a One-Pot, Five-Component Reaction under Ionic Liquid Condition,” Journal of Sulfur Chemistry 33, no. 3 (2012): 319–325. doi:10.1080/17415993.2012.662982. (b) I. Yavari, M. Ghazvini, A. S. Shahvelayati, and M. M. Ghanbari, “A One-Pot Synthesis of Functionalized 2, 3-Dihydrothiazoles from Isothiocyanates, Primary Alkylamines, and Phenacyl Bromides,” Phosphorus, Sulfur, and Silicon 186, (2010): 134–139. (c) Yavari, I., A. S. Shahvelayati, M. Ghanbari, M. Ghazvini, M. Piltan, “One-Pot Synthesis of Functionalized α-Acyloxythioamides from N-Protected a-Amino Acids as an Acid Component in the Passerini Reaction in an Ionic Liquid,” Journal of the Iranian Chemical Society 8, (2011): 636–642. doi:10.1007/BF03245894. (d) M. Ghazvini, A. S. Shahvelayati, A. Sabri, F. Z. Nasrabadi, “Synthesis of Furan and Dihydrofuran Derivatives via Feist–Benary Reaction in the Presence of Ammonium Acetate in Aqueous Ethanol,” Chemistry of Heterocyclic Compounds 52, (2016): 161–164. doi:10.1007/s10593-016-1854-2
  • (a) F. Shafaei, S. E. Babaei, A. S. Shahvelayati, F. Honarmand Janatabadi, “Biosynthesis of Fe3O4-Magnetic Nanoparticles Using Clover Leaf Aqueous Extract: Green Synthesis of 1,3-Benzoxazole Derivatives,” Journal of the Chinese Chemical Society 67, no. 5 (2020): 891–897. . (b) F. Shafaei, and Sh. Sharafian, “Green Synthesis of Imidazole Derivatives via Fe3O4-MNPs as Reusable Catalyst,” Journal of Heterocyclic Chemistry 56, (2019): 2644–2650. (c) S. Soleimani-Amiri, F. Shafaei, A. Varasteh Moradi, F. Gholami-Orimi, and Z. Rostami, “A Novel Synthesis and Antioxidant Evaluation of Functionalized [1,3]-Oxazoles Using Fe3O4-Magnetic Nanoparticles,” Journal of Heterocyclic Chemistry 56, (2019): 2744–2752. doi:10.1002/jccs.201800489
  • (a) M. Balar, Z. Azizi, M. Ghashghaee, “Theoretical Identification of Structural Heterogeneities of Divalent Nickel Active Sites in NiMCM-41 Nanoporous Catalysts,” Journal of Nanostructure in Chemistry 6, no. 4 (2016): 365–372. (b) M. Ghambarian, Z. Azizi, and M. Ghashghaee, “Remarkable Improvement in Phosgene Detection with a Defect-Engineered Phosphorene Sensor: First-Principles Calculations,” Physical Chemistry Chemical Physics 22, (2020): 9677–9684. (c) M. Z. Kassaee, M. R. Momeni, F. A. Shakib, M. Ghambarian, S. M. Musavi, “Novel α-Spirocyclic (Alkyl)(Amino) Carbenes at the Theoretical Crossroad of Flexibility and Rigidity,” Structural Chemistry 21, (2010): 593–598. doi:10.1007/s40097-016-0208-z
  • (a) S. Seifi Mansour, E. Ezzatzadeh, R. Safarkar, “In Vitro Evaluation of Its Antimicrobial Effect of the Synthesized Fe3O4 Nanoparticles Using Persea Americana Extract as a Green Approach on Two Standard Strains,” Asian Journal of Green Chemistry 3, no. 2020 (2019): 353–365. (b) M. Ghashghaee, M. Ghambarian, and Z. Azizi, “Theoretical Insights into Sensing of Hexavalent Chromium on Buckled and Planar Polymeric Carbon Nitride Nanosheets of Heptazine and Triazine Structures,” Molecular Simulation 46, 54–61
  • (a) N. Karami Hezarcheshmeh, F. Godarzbod, N. Faal Hamedanii, and S. Vaseghi, Polycyclic Aromatic Compounds 42, no. 10 (2023): 1–23. (b) N. Karami Hezarcheshmeh, Journal Azizian Polycyclic Aromatic Compounds (2022): 7686–7696. (c) N. K. Hezarcheshmeh, and J. Azizian, Molecular Diversity 26, no. 4 (2022): 2011–2024.
  • S. P. Rajendran, and K. Sengodan, “Synthesis and Characterization of Zinc Oxide and Iron Oxide Nanoparticles Using Sesbania Grandiflora Leaf Extract as Reducing Agent,” Journal of Nanoscience 2017 (2017): 1–7. doi:10.1155/2017/8348507
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–948. doi:10.1021/jf00018a005
  • G. C. Yen, and P. D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–632. doi:10.1021/jf00039a005
  • A. Yildirim, A. Mavi, and A. A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–4089. doi:10.1021/jf0103572
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, and D. J. Fox, Gaussian 09 (Revision A.02), Gaussian, Wallingford, CT, 2009
  • P. Umadevi, and P. Lalitha, “Synthesis and Antimicrobial Evaluation of Amino Substituted 1, 3, 4 Oxo and Thiadiazoles,” International Journal of Pharmacy and Pharmaceutical Sciences 4 (2012): 523–527.
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–592. doi:10.1002/jcc.22885
  • A. M. Bidchol, A. Wilfred, P. Abhijna, R. Harish, “Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica Oleracea L. var. italica,” Food and Bioprocess Technology 4, no. 7 (2011): 1137–1143. doi:10.1007/s11947-009-0196-9
  • R. S. Mulliken, “Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I,” Journal of Chemical Physics. 23, no. 10 (1955): 1833–1840. doi:10.1063/1.1740588
  • G. Venkatesh, M. Govindaraju, P. Vennila, C. Kamal, “Molecular Structure, Vibrational Spectral Assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO–LUMO and NLO Properties of 2-Nitroacetophenone Based on DFT Calculations,” Journal of Theoretical and Computational Chemistry 15, no. 01 (2016): 1650007. doi:10.1142/S0219633616500073
  • A. C. Mebi, “DFT Study on Structure, Electronic Properties, and Reactivity of Cis¬Isomers of [(NC5H4¬S)2Fe (CO)2],” Journal of Chemical Sciences 123, no. 5 (2011): 727–731. doi:10.1007/s12039-011-0131-2
  • J. B. Foresman, and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Pittsburgh, PA: Gaussian, Inc, 1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.