101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Activated Carbon and Zeolite Promoted Removing Aromatic Antibiotic Such as Cefixime and Amoxicillin from Aqueous Environment: Synthesis of Pyrrol Derivatives Using Amoxicillin

, , , &
Pages 2535-2552 | Received 01 Dec 2022, Accepted 24 May 2023, Published online: 08 Jun 2023

References

  • N. Le-Minh, S. J. Khan, J. E. Drewes, and R. M. Stuetz, “Fate of Antibiotics during Municipal Water Recycling Treatment Processes,” Water Research 44, no. 15 (2010): 4295–4323. doi:10.1016/j.watres.2010.06.020
  • D. Fuoco, “Classification Framework and Chemical Biology of Tetracycline-Structure-Based Drugs,” Antibiotics (Basel, Switzerland) 1, no. 1 (2012): 1–13. doi:10.3390/antibiotics1010001
  • S. C. Jung, “Establishment of Control System of Antibiotics for Livestock,” Annual Report Korea Food Drug Administration 7 (2003): 1113–1114.
  • J. C. Chee-Sanford, R. I. Aminov, I. J. Krapac, N. Garrigues-Jeanjean, and R. I. Mackie, “Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons and Groundwater Underlying Two Swine Production Facilities,” Applied and Environmental Microbiology 67, no. 4 (2001): 1494–1502. doi:10.1128/AEM.67.4.1494-1502.2001
  • J. L. Martinez, “Environmental Pollution by Antibiotics and by Antibiotic Resistance Determinants,” Environmental Pollution 157, no. 11 (2009): 2893–2902. doi:10.1016/j.envpol.2009.05.051
  • K. Kümmerer, “Antibiotics in the Aquatic Environment–A Review–Part I,” Chemosphere 75 (2009): 417–434.
  • H. Schmitt, K. Stoob, G. Hamscher, E. Smit, and W. Seinen, “Tetracyclines and Tetracycline Resistance in Agricultural Soils: Microcosm and Field Studies,” Microbial Ecology 51, no. 3 (2006): 267–276. doi:10.1007/s00248-006-9035-y
  • S. Young, A. Juhl, and G. D. O’Mullan, “Antibiotic-Resistant Bacteria in the Hudson River Estuary Linked to Wet Weather Sewage Contamination,” Journal of Water and Health 11, no. 2 (2013): 297–310. doi:10.2166/wh.2013.131
  • F. Baquero, J. L. Martinez, and R. Cantón, “Antibiotics and Antibiotic Resistance in Water Environments,” Current Opinion in Biotechnology 19, no. 3 (2008): 260–265. doi:10.1016/j.copbio.2008.05.006
  • R. Wise, T. Hart, O. Cars, M. Streulens, R. Helmuth, P. Huovinen, and M. Sprenger, “Antimicrobial Resistance Is a Major Threat to Public Health,” BMJ (Clinical Research ed.) 317, no. 7159 (1998): 609–610. doi:10.1136/bmj.317.7159.609
  • K. Košutić, D. Dolar, D. Ašperger, and B. Kunst, “Removal of Antibiotics from a Model Wastewater by RO/NF Membranes,” Separation and Purification Technology 53, no. 3 (2007): 244–249. doi:10.1016/j.seppur.2006.07.015
  • A. J. Watkinson, E. J. Murby, and S. D. Costanzo, “Removal of Antibiotics in Conventional and Advanced Wastewater Treatment: Implications for Environmental Discharge and Wastewater Recycling,” Water Research 41, no. 18 (2007): 4164–4176. doi:10.1016/j.watres.2007.04.005
  • S. Kim, P. Eichhorn, J. N. Jensen, A. S. Weber, and D. S. Aga, “Removal of Antibiotics in Wastewater: Effect of Hydraulic and Solid Retention Times on the Fate of Tetracycline in the Activated Sludge Process,” Environmental Science & Technology 39, no. 15 (2005): 5816–5823. doi:10.1021/es050006u
  • I. Belghadr, G. Shams Khorramabadi, H. Godini, and M. Almasian, “The Removal of the CFX Antibiotic from Aqueous Solution Using an Advanced Oxidation Process (UV/H2O2),” Desalination and Water Treatment 58 (2014): 1–8.
  • M. H. Rasoulifard, S. Khanmohammadi, and A. Heidari, “Adsorption of Cefexime from Aqueous Solutions Using Modified Hardened Paste of Portland Cement by Perlite; Optimization by Taguchi Method,” Water Science and Technology: A Journal of the International Association on Water Pollution Research 74, no. 5 (2016): 1069–1078. doi:10.2166/wst.2016.230
  • R. Khazaei, A. Rahmani, A. Seidmohammadi, J. Fardmal, and M. Leili, “Evaluation of the Efficiency of Photocatalytic UV/Peroxy Monosulfate Process in the Removal of Cefixime Antibiotic from Aqueous Solutions,” Journal of Kurdistan University of Medical Sciences 102 (2019): 22–40.
  • M. Abbas, M. Adil, S. Ehtisham-Ul-Haque, B. Munir, M. Yameen, A. Ghaffar, G. A. Shar, M. Asif Tahir, and M. Iqbal, “Vibrio fischeri Bioluminescence Inhibition Assay to Toxicity Assessment: A Review,” The Science of the Total Environment 626 (2018): 1295–1309. doi:10.1016/j.scitotenv.2018.01.066
  • S. D. Baere and P. D. Backer, “Quantitative Determination of Amoxicillin in Animal Feed Using Liquid Chromatography with Tandem Mass Spectrometric Detection,” Analytica Chimica Acta 586, no. 1–2 (2007): 319–325.
  • M. Dousa and R. Hosmanova, “Rapid Determination of Amoxicillin in Premixes by HPLC,” Journal of Pharmaceutical and Biomedical Analysis 37, no. 2 (2005): 373–377. doi:10.1016/j.jpba.2004.10.010
  • Z. Aksu and O. Tunc, “Application of Biosorption for Penicillin G Removal: Comparison with Activated Carbon,” Process Biochemistry 40, no. 2 (2005): 831–847. doi:10.1016/j.procbio.2004.02.014
  • R. Andreozzi, M. Canterino, R. Marotta, and N. Paxeus, “Antibiotic Removal from Wastewaters: The Ozonation of Amoxicillin,” Journal of Hazardous Materials 122, no. 3 (2005): 243–250. doi:10.1016/j.jhazmat.2005.03.004
  • C. C. Jara, D. Fino, V. Specchia, G. Saracco, and P. Spinelli, “Electrochemical Removal of Antibiotic from Wastewaters,” Applied Catalysis B: Environmental 70, no. 1–4 (2007): 479–487. doi:10.1016/j.apcatb.2005.11.035
  • W. S. Adriano, V. Veredas, C. C. Santana, and L. R. B. Goncalves, “Adsorption of Amoxicillin on Chitosan Beads: Kinetics, Equilibrium and Validation of Finite Batch Models,” Biochemical Engineering Journal 27, no. 2 (2005): 132–137. doi:10.1016/j.bej.2005.08.010
  • J. Gao and J. A. Pedersen, “Adsorption of Sulfonamide Antimicrobial Agents to Clay Minerals,” Environmental Science & Technology 39, no. 24 (2005): 9509–9516. doi:10.1021/es050644c
  • K. Saleh, L. M. Mortada, and M. El-Khawas, “The Uptake of Ampicillin and Amoxicillin by Some Adsorbent,” International Journal of Pharmaceutics 18, no. 1–2 (1984): 157–167. doi:10.1016/0378-5173(84)90116-9
  • H. Zhang and C. Huang, “Adsorption and Oxidation of Fluoroquinolone Antibacterial Agents and Structurally Related Amines with Goethite,” Chemosphere 66, no. 8 (2007): 1502–1512. doi:10.1016/j.chemosphere.2006.08.024
  • X. Zhang, W. Guo, H. H. Ngo, H. Wen, N. Li, and W. Wu, “Performance Evaluation of Powdered Activated Carbon for Removing 28 Types of Antibiotics from Water,” Journal of Environmental Management 172 (2016): 193–200. doi:10.1016/j.jenvman.2016.02.038
  • K. Jafari, M. Heidari, and O. Rahmanian, “Wastewater Treatment for Amoxicillin Removal Using Magnetic Adsorbent Synthesized by Ultrasound Process,” Ultrasonics Sonochemistry 45 (2018): 248–256. doi:10.1016/j.ultsonch.2018.03.018
  • R. Khosravi, A. Zarei, M. Heidari, A. Ahmadfazeli, M. Vosughi, and M. Fazlzadeh, “Application of ZnO and TiO2 Nanoparticles Coated onto Montmorillonite in the Presence of H2O2 for Efficient Removal of Cephalexin from Aqueous Solutions,” Korean Journal of Chemical Engineering 35, no. 4 (2018): 1000–1008. doi:10.1007/s11814-018-0005-0
  • J. Wang and S. Wang, “Removal of Pharmaceuticals and Personal Care Products (PPCPs) from Wastewater: A Review,” Journal of Environmental Management 182 (2016): 620–640. doi:10.1016/j.jenvman.2016.07.049
  • V. K. Gupta and S. Sharma, “Removal of Zinc from Aqueous Solutions Using Bagasse Fly Ash–A Low Cost Adsorbent,” Industrial & Engineering Chemistry Research 42, no. 25 (2003): 6619–6624. doi:10.1021/ie0303146
  • V. K. Gupta, A. Rastogi, and A. Nayak, “Adsorption Studies on the Removal of Hexavalent Chromium from Aqueous Solution Using a Low Cost Fertilizer Industry Waste Material,” Journal of Colloid and Interface Science 342, no. 1 (2010): 135–141. doi:10.1016/j.jcis.2009.09.065
  • S. Y. Hwang, M. H. Han, and J. Y. Cho, “Mobility Characteristics of Veterinary Antibiotics in Soil Column,” Journal of Applied Biological Chemistry 55, no. 4 (2012): 241–246. doi:10.3839/jabc.2012.038
  • V. K. Gupta, A. Mittal, L. Kurup, and J. Mittal, “Adsorption of a Hazardous Dye, Erythrosine, over Hen Feathers,” Journal of Colloid and Interface Science 304, no. 1 (2006): 52–57. doi:10.1016/j.jcis.2006.08.032
  • B. N. Bhadra, P. W. Seo, and S. H. Jhung, “Adsorption of Diclofenac Sodium from Water Using Oxidized Activated Carbon,” Chemical Engineering Journal and the Biochemical Engineering Journal 301 (2016): 27–34. doi:10.1016/j.cej.2016.04.143
  • M. A. Chayid and M. J. Ahmed, “Amoxicillin Adsorption on Microwave Prepared Activated Carbon from Arundo Donax Linn: Isotherms, Kinetics, and Thermodynamics Studies,” Journal of Environmental Chemical Engineering 3, no. 3 (2015): 1592–1601.
  • Y. Sun, H. Li, G. Li, B. Gao, Q. Yue, and X. Li, “Characterization and Ciprofloxacin Adsorption Properties of Activated Carbons Prepared from Biomass Wastes by H3PO4 Activation,” Bioresource Technology 217 (2016): 239–244. doi:10.1016/j.biortech.2016.03.047
  • M. E. Fernandez, B. Ledesma, S. Román, P. R. Bonelli, and A. L. Cukierman, “Development and Characterization of Activated Hydrochars from Orange Peels as Potential Adsorbents for Emerging Organic Contaminants,” Bioresource Technology 183 (2015): 221–228. doi:10.1016/j.biortech.2015.02.035
  • H. Sayğılı and F. Güzel, “Effective Removal of Tetracycline from Aqueous Solution Using Activated Carbon Prepared from Tomato (Lycopersicon esculentum Mill.) Industrial Processing Waste,” Ecotoxicology and Environmental Safety 131 (2016): 22–29. doi:10.1016/j.ecoenv.2016.05.001
  • A. C. Martins, O. Pezoti, A. L. Cazetta, K. C. Bedin, D. A. S. Yamazaki, G. F. G. Bandoch, T. Asefa, J. V. Visentainer, and V. C. Almeida, “Removal of Tetracycline by NaOH-Activated Carbon Produced from Macadamia Nut Shells: Kinetic and Equilibrium Studies,” Chemical Engineering Journal and the Biochemical Engineering Journal 260 (2015): 291–299. doi:10.1016/j.cej.2014.09.017
  • P. Nowicki, J. Kazmierczak-Razna, and R. Pietrzak, “Physicochemical and Adsorption Properties of Carbonaceous Sorbents Prepared by Activation of Tropical Fruit Skins with Potassium Carbonate,” Materials and Design 90 (2016): 579–585. doi:10.1016/j.matdes.2015.11.004
  • M. Song, B. Jin, R. Xiao, L. Yang, Y. Wu, Z. Zhong, and Y. Huang, “The Comparison of Two Activation Techniques to Prepare Activated Carbon from Corn Cob,” Biomass and Bioenergy 48 (2013): 250–256. doi:10.1016/j.biombioe.2012.11.007
  • M. Danish, R. Hashim, M. N. M. Ibrahim, and O. Sulaiman, “Optimized Preparation for Large Surface Area Activated Carbon from Date (Phoenix dactylifera L.) Stone Biomass,” Biomass and Bioenergy 61 (2014): 167–178. 2013.12.008. doi:10.1016/j.biombioe.2013.12.008
  • N. Boudechiche, M. Fares, S. Ouyahia, H. Yazid, M. Trari, and Z. Sadaoui, “Comparative Study on Removal of Two Basic Dyes in Aqueous Medium by Adsorption Using Activated Carbon from Ziziphus Lotus Stones,” Microchemical Journal 146 (2019): 1010–1018. doi:10.1016/j.microc.2019.02.010
  • L. Ding, B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang, and Y. Liu, “Adsorption of Rhodamine-B from Aqueous Solution Using Treated Rice Husk-Based Activated Carbon,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 446 (2014): 1–7. doi:10.1016/j.colsurfa.2014.01.030
  • (a) Y. Ma, C. Yan, A. Alshameri, X. Qiu, C. Zhou, and D. Li, “Synthesis and Characterization of 13X Zeolite from Low-Grade Natural Kaolin,” Advanced Powder Technology 25, no. 2 (2014): 495–499. doi:10.1016/j.apt.2013.08.002 (b) M. M. Abdul Hassan, S. S. Hassan, and A. K. Hassan, “Green and Chemical Synthesis of Bimetallic Nanoparticles (Fe/Ni) Supported by Zeolite 5A as Aheterogeneous Fenton-like Catalyst and Study of Kinetic and Thermodynamic Reaction for Decolorization of Reactive Red 120 Dye from Aqueous Pollution,” Eurasian Chemical Communications 4 (2022): 1062–1086. (c) M. S. Kazem and A. M. Abbas, “Study of Inorganic Doping of Kaolin Clay, a Kinetic Study of Adsorption of Methyl Green Dye from Its Aqueous Solutions,” Eurasian Chemical Communications 4 (2022): 1218–1227.
  • (a) Z. A. Messaoudi, D. Lahcene, T. Benaissa, M. Messaoudi, B. Zahraoui, M. Belhachemi, and A. Choukchou-Braham, “Adsorption and Photocatalytic Degradation of Crystal Violet Dye Under Sunlight Irradiation Using Natural and Modified Clays by Zinc Oxide,” Chemical Methodologies 6 (2022): 661–676. (b) R. Tayebee, M. Jarrahi, B. Maleki, M. Kargar Razi, Z. B. Mokhtari, and S. M. Baghbanian, “A New Method for the Preparation of 1,3,5-Triarylbenzenes Catalyzed by Nanoclinoptilolite/HDTMA,” RSC Advances 5, no. 15 (2015): 10869–10877. doi:10.1039/C4RA11216D (c) O. Oluwafemi, A. Emeka, J. Johnson, O. Ilesanmi, and O. Oluwatosin, “Adsorptive Removal of Doxycycline from Aqueous Solutions by Unactivated Carbon and Acid Activated Carbon Brewery Waste Grain,” Eurasian Chemical Communications 4 (2022): 997–1011. (d) M. M. Ahmed, A. B. Dekhyl, and L. H. Alwan, “Preparation and Characterization of Nano-Carbon as an Adsorbent for Industrial Water Treatment,” Eurasian Chemical Communications 4 (2022): 852–862.
  • (a) M. Pirgheibi, M. Mohammadi, and A. Khanmohammadi, “Density Functional Theory Study of the Interplay between Cation–π and Intramolecular Hydrogen Bonding Interactions in Complexes Involving Methyl Salicylate with Li+, Na+, K+,” Computational and Theoretical Chemistry 1198 (2021): 113172. doi:10.1016/j.comptc.2021.113172 (b) M. A. Poor, A. Darehkordi, M. Anary-Abbasinejad, and M. Mohammadi, “Gabapentin-Base Synthesis and Theoretical Studies of Biologically Active Compounds: N-Cyclohexyl-3-Oxo-2-(3-Oxo-2-Azaspiro [4.5] Decan-2-yl)-3-Arylpropanamides,” Journal of Molecular Structure 1152 (2018): 44–52. doi:10.1016/j.molstruc.2017.09.061 (c) M. Masoudi, M. Anary-Abbasinejad, and M. Mohammadi, “An Efficient One-Pot Synthesis of Polyfunctionalized 2H-Pyrroline Derivatives by Reaction of β-Enaminocarbonyls, Arylglyoxals and Amines,” Journal of the Iranian Chemical Society 13, no. 2 (2016): 315–321. doi:10.1007/s13738-015-0739-0 (d) M. Mohammadi and A. Khanmohammadi, “Theoretical Investigation on the Non-Covalent Interactions of Acetaminophen Complex in Different Solvents: Study of the Enhancing Effect of the Cation–π Interaction on the Intramolecular Hydrogen Bond,” Theoretical Chemistry Accounts 139, no. 8 (2020): 141. doi:10.1007/s00214-020-02650-8 (e) M. Mohammadi and A. Khanmohammadi, “Molecular Structure, QTAIM and Bonding Character of Cation–π Interactions of Mono- and Divalent Metal Cations (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) with Drug,” Theoretical Chemistry Accounts 138, no. 8 (2019): 101. doi:10.1007/s00214-019-2492-4
  • (a) R. Jalilian, E. Ezzatzadeh, and A. Taheri, “A Novel Self-Assembled Gold Nanoparticles-Molecularly Imprinted Modified Carbon Ionic Liquid Electrode with High Sensitivity and Selectivity for the Rapid Determination,” Journal of Environmental Chemical Engineering 9, no. 4 (2021): 105513. doi:10.1016/j.jece.2021.105513 (b) E. Ezzatzadeh, “Chemoselective Oxidation of Sulfides to Sulfoxides Using a Novel Zn-DABCO Functionalized Fe3O4 MNPs as Highly Effective Nanomagnetic Catalyst,” Asian Journal of Nanosciences and Materials 4 (2021): 125–136. (c) E. Ezzatzadeh and Z. S. Hossaini, “2D ZnO/Fe3O4 Nanocomposites as a Novel Catalyst‐Promoted Green Synthesis of Novel Quinazoline Phosphonate Derivatives,” Applied Organometallic Chemistry 34 (2020): e5596.
  • (a) K. Khandan-Barani, M. T. Maghsoodlou, N. Hazeri, and S. M. Habibi-Khorasani, “One-Pot, Three Component Reactions Between Isocyanides and Dialkyl Acetylenedicarboxylates in the Presence of Phenyl Isocyanate,” Arkivoc 11 (2011): 22–28. (b) M. Kangani, N. Hazeri, K. Khandan-Barani, M. Lashkari, and M. T. Maghsoodlou, “Lime Juice as an Efficient and Green Catalyst for the Synthesis of 6-Amino-4-Aryl-3-Methyl-1, 4-Dihydropyrano [2, 3-c] Pyrazole-5-Carbonitrile Derivatives,” Iranian Journal of Organic Chemistry 6 (2014): 1187–1192. (c) K. Khandan-Barani, M. Kangani, M. Mirbaluchzehi, and Z. Siroos, “Synthesis of Tetrahydrobenzo [b] Pyran and 3, 4-Dihydropyrimidinone Derivatives Using Glutamic Acid as an Efficient Catalyst,” Inorganic and Nano-Metal Chemistry 47, no. 5 (2017): 751–755. doi:10.1080/15533174.2016.1212233 (d) K. Khandan-Barani and A. Motamedi-Asl, “Lactic Acid, as an Efficient Catalyst for the One-Pot Three-Component Synthesis of 1-Amidoalkyl-2-Naphthols under Thermal Solvent-Free Conditions,” Iranian Journal of Catalysis 5 (2015): 339–343.
  • (a) N. Faal Hamedani, F. Zamani Hargalani, and F. Rostami-Charati, “Biosynthesis of Cu/KF/Clinoptilolite@ MWCNTs Nanocomposite and Its Application as a Recyclable Nanocatalyst for the Synthesis of New Schiff Base of Benzoxazine Derivatives,” Molecular Diversity 26, no. 4 (2022): 2069–2083. doi:10.1007/s11030-021-10316-1 (b) R. N. Mahmonir, V. Abdossi, Z. H. Fariba, and K. Larijani, “The Response of Hypericum perfpratum L. to the Application of Selenium and Nano-Selenium,” (2021). doi: 10.21203/rs.3.rs-708123/v1 (c) R. N. Mahmonir, A. Vahid, Z. H. Fariba, and L. Kambiz, “The Effect of Nano Selenium Foliar Application on Some Secondary Metabolites of Hypericum perforatum L.,” Journal of Medicinal Plants 21 (2022): 67–78. (d) E. Ezzatzadeh, F. Zamani Hargalani, and F. Shafaei, “Bio-Fe3O4-MNPs Promoted Green Synthesis of Pyrido[2,1-a]Isoquinolines and Pyrido[1,2-a]Quinolines: Study of Antioxidant and Antimicrobial Activity,” Polycyclic Aromatic Compounds 42, no. 7 (2021): 3908–3923.
  • (a) H. Boroumand, H. Alinezhad, B. Maleki, and S. Peiman, “Triethylenetetramine-Grafted Magnetic Graphene Oxide (Fe3O4@GO-NH2) as a Reusable Heterogeneous Catalyst for the One-Pot Synthesis of 2-Amino-4H-Benzopyran Derivatives,” Polycyclic Aromatic Compounds. doi:10.1080/10406638.2022.2140683 (b) S. Darvishy, H. Alinezhad, and M. Vafaeezadeh, and B. Maleki, “S-(+) Camphorsulfonic Acid Glycine (CSAG) as Surfactant-Likes Brønsted Acidic Ionic Liquid for One-Pot Synthesis of ß-Amino Carbonyl,” Polycyclic Aromatic Compounds. doi:10.1080/10406638.2022.2094419 (c) J. Taran and A. Ramazani, “Synthesis of Novel 2-(Alkyl/Arylamino)-2-Oxo-1-(Quinolin-4-yl)Ethyl Cinnamates through Three-Component Reaction between an Isocyanide, Quinoline-4-Carbaldehyde and Cinnamic Acid Derivatives,” Eurasian Chemical Communications 4 (2022): 319–329. (d) B. Baghernejad and M. Alikhani, “Nano-Cerium Oxide/Aluminum Oxide as an Efficient Catalyst for the Synthesis of Xanthene Derivatives as Potential Antiviral and anti-Inflammatory Agents,” Journal of Applied Organometallic Chemistry 2 (2022): 140–147.
  • (a) S. Gaikwad and M. V. B. Unnamatla, “Simple, Highly Efficient Synthesis 2-Amino-4-Phenyl-4,5,6,7-Tetrahydropyrano[3,2-c]Carbazole-3-Carbonitrile Derivatives Using Silica Supported Dodeca-Tungstophosphoric Acid DTP/SiO2,” Journal of Applied Organometallic Chemistry 2 (2022): 24–30. (b) H. R. Saadati-Moshtaghin, B. Maleki, R. Tayebee, S. Kahrobaei, and F. Abbasinohoji, “6-Methylguanamine-Supported CoFe2O4: An Efficient Catalyst for One-Pot Three-Component Synthesis of Isoxazol-5(4H)-One Derivatives,” Polycyclic Aromatic Compounds. 42, no. 3 (2022): 885-896. doi:10.1080/10406638.2020.1754865 (c) S. S. Karbasaki, G. Bagherzade, B. Maleki, and M. Ghani, “Magnetic Fe3O4@SiO2 Core–Shell Nanoparticles Functionalized with Sulfamic Acid Polyamidoamine (PAMAM) Dendrimer for the Multicomponent Synthesis of Polyhydroquinolines and Dihydro-1H-Indeno[1,2-b] Pyridines,” Organic Preparations and Procedures International. 53, no. 5, (2021): 498-508. doi:10.1080/00304948.2021.1957644 (d) S. S. Karbasaki, G. Bagherzade, B. Maleki, and M. Ghani, “Fabrication of Sulfamic Acid Functionalized Magnetic Nanoparticles with Denderimeric Linkers and Its Application for Microextraction Purposes, One-Pot Preparation of Pyrans Pigments and Removal of Malachite Green,” Journal of the Taiwan Institute of Chemical Engineers 118 (2021): 342–354. doi:10.1016/j.jtice.2020.12.025 (e) H. Alinezhad, M. Tajbakhsh, B. Maleki, and P. O. Fereshteh, “Acidic Ionic Liquid [H-NP]HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b]Pyridines and Polysubstituted Imidazoles,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1485–1500. doi:10.1080/10406638.2018.1557707
  • (a) N. Karami Hezarcheshmeh, F. Godarzbod, N. F. Hamedani, and S. Vaseghi, “Ag/CdO/Fe3O4 @MWCNTs Promoted Green Synthesis of Novel Triazinopyrrolothiazepine: Investigation of Antioxidant and Antimicrobial Activity,” Polycyclic Aromatic Compounds (2023): 1–23. doi:10.1080/10406638.2022.2162553 (b) N. Karami Hezarcheshmeh and J. Azizian, “Regioselective One-Pot Synthesis and Antioxidant Activity Study of Trichloro Isatins and Dichloro Isatins,” Polycyclic Aromatic Compounds 42, no. 10 (2022): 7686–7696. doi:10.1080/10406638.2021.2006250 (c) N. K. Hezarcheshmeh and J. Azizian, “Solvent-Free Synthesis of New Spiropyrroloindole Compounds Using Fe3O4/TiO2/MWCNTs MNCs via Multicomponent Reactions: Assessment of New Spiropyrroloindole Antioxidant Activity,” Molecular Diversity 26, no. 4 (2022): 2011–2024. doi:10.1007/s11030-021-10311-6
  • (a) S. Abdolmohammadi and Z. S. Hossaini, “Fe3O4 MNPs as a Green Catalyst for Syntheses of Functionalized [1,3]-Oxazole and 1H-Pyrrolo-[1,3]-Oxazole Derivatives and Evaluation of Their Antioxidant Activity,” Molecular Diversity 23, no. 4 (2019): 885–896. doi:10.1007/s11030-019-09916-9 (b) S. Rezayati, R. Hajinasiri, Z. S. Hossaini, and S. Abbaspour, “Chemoselective Synthesis of 1, 1-Diacetates (Acylals) Using 1, 1’-Butylenebispyridinium Hydrogen Sulfate as a New, Halogen-Free and Environmental-Friendly Catalyst under,” Asian Journal of Green Chemistry 2 (2018): 268–280. (c) I. Yavari, Z. S. Hossaini, and M. Sabbaghan, “Efficient Synthesis of Tetrasubstituted Thiophenes by Reaction of Benzoyl Isothiocyanates, Ethyl Bromopyruvate and Enaminones,” Tetrahedron Letters 49, no. 5 (2008): 844–846. doi:10.1016/j.tetlet.2007.11.174 (d) I. Yavari, Z. S. Hossaini, and E. Karimi, “A Synthesis of Dialkyl Phosphorylsuccinates from the Reaction of NH-Acids with Dialkyl Acetylenedicarboxylates in the Presence of Trialkyl (Aryl) Phosphites,” Monatshefte Für Chemie–Chemical Monthly 138, no. 12 (2007): 1267–1271. doi:10.1007/s00706-007-0711-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.