304
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Surface Functionalization of Sulflower with Superhalogens Doping to Achieve Robustly Large Nonlinear Optical Response: Interactive Design Computation of New NLO Materials for Modern Electro-Optic Applications

, , , , &
Pages 2576-2597 | Received 03 Apr 2023, Accepted 23 May 2023, Published online: 08 Jun 2023

References

  • M. Stępień, E. Gońka, M. Żyła, and N. Sprutta, “Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications,” Chemical Reviews 117, no. 4 (2017): 3479–3716. doi:10.1021/acs.chemrev.6b00076
  • K.Y. Chernichenko, E.S. Balenkova, and V.G. Nenajdenko, “From Thiophene to Sulflower,” Mendeleev Communications 18, no. 4 (2008): 171–179. doi:10.1016/j.mencom.2008.07.001
  • M. Gingras, A. Pinchart, C. Dallaire, T. Mallah, and E. Levillain, “Star‐Shaped Nanomolecules Based on p‐Phenylene Sulfide Asterisks with a Persulfurated Coronene Core,” Chemistry – A European Journal 10, no. 12 (2004): 2895–2904. doi:10.1002/chem.200305605
  • N.S. Abdel-Kader, S.A. Abdel-Latif, A.L. El-Ansary, and A.G. Sayed, “Spectroscopic Studies, Density Functional Theory Calculations, Non-Linear Optical Properties, Biological Activity of 1-Hydroxy-4-((4-(N-(Pyrimidin-2-yl) Sulfamoyl) Phenyl) Diazenyl)-2-Naphthoic Acid and Its Chelates with Nickel (II), Copper (II), Zinc (II) and Palladium (II) Metal Ions,” Journal of Molecular Structure 1223 (2021): 129203. doi:10.1016/j.molstruc.2020.129203
  • K.Y. Chernichenko, V.V. Sumerin, R.V. Shpanchenko, E.S. Balenkova, and V.G. Nenajdenko, “Sulflower”: a New Form of Carbon Sulfide,” Angewandte Chemie 118, no. 44 (2006): 7527–7530. doi:10.1002/ange.200602190
  • A. Datta, and S.K. Pati, “Computational Design of High Hydrogen Adsorption Efficiency in Molecular “Sulflower,” The Journal of Physical Chemistry C 111, no. 12 (2007): 4487–4490. doi:10.1021/jp070609n
  • R. Dong, M. Pfeffermann, D. Skidin, F. Wang, Y. Fu, A. Narita, M. Tommasini, F. Moresco, G. Cuniberti, R. Berger, et al. “Persulfurated Coronene: A New Generation of “Sulflower,” Journal of the American Chemical Society 139, no. 6 (2017): 2168–2171. doi:10.1021/jacs.6b12630
  • M.G. Abd El‐Nasser, and S.A. Abdel‐Latif, “Ligational Behavior of Bidentate Nitrogen–Oxygen Donor 8‐Quinolinolazodye toward Ni2+ and Zn2+ Ions: Preparation, Spectral, Thermal, Experimental, Theoretical, and Docking Studies,” Applied Organometallic Chemistry 37, no. 3 (2023): E 6998. doi:10.1002/aoc.6998
  • N.S. Abdel-Kader, S.A. Abdel-Latif, A.L. El-Ansary, and A.G. Sayed, “Combined Experimental, DFT Theoretical Calculations and Biological Activity of Sulfaclozine Azo Dye with 1-Hydroxy-2-Naphthoic Acid and Its Complexes with Some Metal Ions,” New Journal of Chemistry 43, no. 44 (2019): 17466–17485. doi:10.1039/C9NJ04594E
  • S.A. Abdel-Latif, and A.A. Mohamed, “Novel Zn (II) Complexes of 1, 3-Diphenyl-4-(Arylazo) Pyrazol-5-One Derivatives: Synthesis, Spectroscopic Properties, DFT Calculations and First Order Nonlinear Optical Properties,” Journal of Molecular Structure 1156 (2018): 712–725. doi:10.1016/j.molstruc.2017.12.028
  • S.A. Abdel‐Latif, and H. Moustafa, “Synthesis, Spectroscopic Properties, Density Functional Theory Calculations and Nonlinear Optical Properties of Novel Complexes of 5‐Hydroxy‐4, 7‐Dimethyl‐6‐(Phenylazo) Coumarin with Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) Metal Ions,” Applied Organometallic Chemistry 32, no. 4 (2018): e4269. doi:10.1002/aoc.4269
  • X. Xu, C.-L. Hu, F. Kong, J.-H. Zhang, J.-G. Mao, and J. Sun, “Cs2GeB4O9: A New Second-Order Nonlinear-Optical Crystal,” Inorganic Chemistry 52, no. 10 (2013): 5831–5837. doi:10.1021/ic302774h
  • O. Maury, L. Viau, K. Sénéchal, B. Corre, J.-P. Guégan, T. Renouard, I. Ledoux, J. Zyss, and H. Le Bozec, “Synthesis, Linear, and Quadratic‐Nonlinear Optical Properties of Octupolar D3 and D2d Bipyridyl Metal Complexes,” Chemistry 10, no. 18 (2004): 4454–4466. doi:10.1002/chem.200400012
  • T.-G. Zhang, Y. Zhao, I. Asselberghs, A. Persoons, K. Clays, and M.J. Therien, “Design, Synthesis, Linear, and Nonlinear Optical Properties of Conjugated (Porphinato) Zinc (II)-Based Donor − Acceptor Chromophores Featuring Nitrothiophenyl and Nitrooligothiophenyl Electron-Accepting Moieties,” Journal of the American Chemical Society 127, no. 27 (2005): 9710–9720. doi:10.1021/ja0402553
  • N. Tancrez, C. Feuvrie, I. Ledoux, J. Zyss, L. Toupet, H. Le Bozec, and O. Maury, “Lanthanide Complexes for Second Order Nonlinear Optics: evidence for the Direct Contribution of f Electrons to the Quadratic Hyperpolarizability,” Journal of the American Chemical Society 127, no. 39 (2005): 13474–13475. doi:10.1021/ja054065j
  • S.H. Lee, J.R. Park, M.-Y. Jeong, H.M. Kim, S. Li, J. Song, S. Ham, S.-J. Jeon, and B.R. Cho, “First Hyperpolarizabilities of 1, 3, 5‐Tricyanobenzene Derivatives: Origin of Larger β Values for the Octupoles than for the Dipoles,” Chemphyschem 7, no. 1 (2006): 206–212. doi:10.1002/cphc.200500274
  • D. Xiao, F.A. Bulat, W. Yang, and D.N. Beratan, “A Donor − Nanotube Paradigm for Nonlinear Optical Materials,” Nano Letters 8, no. 9 (2008): 2814–2818. doi:10.1021/nl801388z
  • C.-G. Liu, W. Guan, P. Song, L.-K. Yan, and Z.-M. Su, “Redox-Switchable Second-Order Nonlinear Optical Responses of Push − Pull Monotetrathiafulvalene-Metalloporphyrins,” Inorganic Chemistry 48, no. 14 (2009): 6548–6554. doi:10.1021/ic9004906
  • B.J. Coe, J. Fielden, S.P. Foxon, I. Asselberghs, K. Clays, and B.S. Brunschwig, “Two-Dimensional, Pyrazine-Based Nonlinear Optical Chromophores with Ruthenium (II) Ammine Electron Donors,” Inorganic Chemistry 49, no. 22 (2010): 10718–10726. doi:10.1021/ic1019197
  • S.M. LeCours, H.-W. Guan, S. G. DiMagno, C.H. Wang, and M.J. Therien, “Push − Pull Arylethynyl Porphyrins: New Chromophores That Exhibit Large Molecular First-Order Hyperpolarizabilities,” Journal of the American Chemical Society 118, no. 6 (1996): 1497–1503. doi:10.1021/ja953610l
  • M. Schulz, S. Tretiak, V. Chernyak, and S. Mukamel, “Size Scaling of Third-Order off-Resonant Polarizabilities. Electronic Coherence in Organic Oligomers,” Journal of the American Chemical Society 122, no. 3 (2000): 452–459. doi:10.1021/ja991074h
  • F. Begum, Y. Namihira, S.M.A. Razzak, S. Kaijage, N.H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel Broadband Dispersion Compensating Photonic Crystal Fibers: Applications in High-Speed Transmission Systems,” Optics & Laser Technology 41, no. 6 (2009): 679–686. doi:10.1016/j.optlastec.2009.02.001
  • I.P. Ilchishin, and E.A. Tikhonov, “Dye-Doped Cholesteric Lasers: Distributed Feedback and Photonic Bandgap Lasing Models,” Progress in Quantum Electronics 41 (2015): 1–22. doi:10.1016/j.pquantelec.2015.02.001
  • B. Clough, J. Dai, and X.-C. Zhang, “Laser Air Photonics: Beyond the Terahertz Gap,” Materials Today 15, no. 1–2 (2012): 50–58. doi:10.1016/S1369-7021(12)70020-2
  • Q. Yue, K. Li, F. Kong, J. Zhao, and M. Liu, “Analysis on the Effect of Amorphous Photonic Crystals on Light Extraction Efficiency Enhancement for GaN-Based Thin-Film-Flip-Chip Light-Emitting Diodes,” Optics Communications 367 (2016): 72–79. doi:10.1016/j.optcom.2015.12.072
  • R.D. Peterson, B.T. Cunningham, and J.E. Andrade, “A Photonic Crystal Biosensor Assay for Ferritin Utilizing Iron-Oxide Nanoparticles,” Biosensors & Bioelectronics 56 (2014): 320–327. doi:10.1016/j.bios.2014.01.022
  • S. Palmer, S.G. Sokolovski, E. Rafailov, and G. Nabi, “Technologic Developments in the Field of Photonics for the Detection of Urinary Bladder Cancer,” Clinical Genitourinary Cancer 11, no. 4 (2013): 390–396. doi:10.1016/j.clgc.2013.04.016
  • M. Noori, M. Soroosh, and H. Baghban, “Highly Efficient Self-Collimation Based Waveguide for Mid-IR Applications,” Photonics and Nanostructures - Fundamentals and Applications 19 (2016): 1–11. doi:10.1016/j.photonics.2016.01.005
  • M. Nakano, T. Nitta, K. Yamaguchi, B. Champagne, and E. Botek, “Spin Multiplicity Effects on the Second Hyperpolarizability of an Open-Shell Neutral π-Conjugated System,” The Journal of Physical Chemistry A 108, no. 18 (2004): 4105–4111. doi:10.1021/jp049637l
  • T. Vijayakumar, I. Hubert Joe, C.P. Reghunadhan Nair, and V.S. Jayakumar, “Efficient π Electrons Delocalization in Prospective Push–Pull Non-Linear Optical Chromophore 4-[N, N-Dimethylamino]-4′-Nitro Stilbene (DANS): A Vibrational Spectroscopic Study,” Chemical Physics 343, no. 1 (2008): 83–99. doi:10.1016/j.chemphys.2007.10.033
  • I.D. Albert, T.J. Marks, and M.A. Ratner, “Rational Design of Molecules with Large Hyperpolarizabilities. Electric Field, Solvent Polarity, and Bond Length Alternation Effects on Merocyanine Dye Linear and Nonlinear Optical Properties,” The Journal of Physical Chemistry 100, no. 23 (1996): 9714–9725. doi:10.1021/jp960860v
  • E. Cariati, X. Liu, Y. Geng, A. Forni, E. Lucenti, S. Righetto, S. Decurtins, and S.-X. Liu, “Stimuli-Responsive NLO Properties of Tetrathiafulvalene-Fused Donor–Acceptor Chromophores,” Physical Chemistry Chemical Physics : PCCP 19, no. 33 (2017): 22573–22579. doi:10.1039/c7cp04687a
  • M.U. Khan, M. Ibrahim, M. Khalid, M.S. Qureshi, T. Gulzar, K.M. Zia, A.A. Al-Saadi, and M.R.S.A. Janjua, “First Theoretical Probe for Efficient Enhancement of Nonlinear Optical Properties of Quinacridone Based Compounds through Various Modifications,” Chemical Physics Letters 715 (2019): 222–230. doi:10.1016/j.cplett.2018.11.051
  • M. Yang, D. Jacquemin, and B. Champagne, “Intramolecular Charge Transfer and First-Order Hyperpolarizability of Planar and Twisted Sesquifulvalenes,” Physical Chemistry Chemical Physics 4, no. 22 (2002): 5566–5571. doi:10.1039/b207514h
  • M. Planells, M. Pizzotti, G.S. Nichol, F. Tessore, and N. Robertson, “Effect of Torsional Twist on 2nd Order Non-Linear Optical Activity of Anthracene and Pyrene Tricyanofuran Derivatives,” Physical Chemistry Chemical Physics 16, no. 42 (2014): 23404–23411. doi:10.1039/c4cp03509g
  • B. Li, C. Xu, X. Xu, C. Zhu, and F.L. Gu, “Remarkable Nonlinear Optical Response of Excess Electron Compounds: Theoretically Designed Alkali-Doped Aziridine M–(C 2 NH 5) n,” Physical Chemistry Chemical Physics 19, no. 35 (2017): 23951–23959. doi:10.1039/c7cp04764a
  • M.R.S.A. Janjua, M. Amin, M. Ali, B. Bashir, M.U. Khan, M.A. Iqbal, W. Guan, L. Yan, and Z.‐M. Su, “A DFT Study on the Two‐Dimensional Second‐Order Nonlinear Optical (NLO) Response of Terpyridine‐Substituted Hexamolybdates: Physical Insight on 2D Inorganic–Organic Hybrid Functional Materials,” European Journal of Inorganic Chemistry 2012, no. 4 (2012): 705–711. doi:10.1002/ejic.201101092
  • A. Umar, J. Yaqoob, M.U. Khan, R. Hussain, A. Alhadhrami, A.S.A. Almalki, and M.R.S.A. Janjua, “Doping of Superalkali and Superhalogen on Graphene Quantum Dot Surfaces to Enhance Nonlinear Optical Response: An Efficient Strategy for Fabricating Novel Electro-Optical Materials,” Journal of Physics and Chemistry of Solids 169 (2022): 110859. doi:10.1016/j.jpcs.2022.110859
  • Y. Arshad, S. Khan, M.A. Hashmi, and K. Ayub, “Transition Metal Doping: A New and Effective Approach for Remarkably High Nonlinear Optical Response in Aluminum Nitride Nanocages,” New Journal of Chemistry 42, no. 9 (2018): 6976–6989. doi:10.1039/C7NJ04971D
  • M.A. Gilani, S. Tabassum, U. Gul, T. Mahmood, A.I. Alharthi, M.A. Alotaibi, M. Geesi, R. Sheikh, and K. Ayub, “Copper-Doped Al12N12 Nano-Cages: Potential Candidates for Nonlinear Optical Materials,” Applied Physics A 124, no. 1 (2018): 1–9. doi:10.1007/s00339-017-1425-0
  • J. Iqbal, and K. Ayub Maria, “Enhanced Electronic and Non-Linear Optical Properties of Alkali Metal (Li, Na, K) Doped Boron Nitride Nano-Cages,” Journal of Alloys and Compounds 687 (2016): 976–983. doi:10.1016/j.jallcom.2016.06.121
  • Z.-J. Li, Z.-R. Li, F.-F. Wang, C. Luo, F. Ma, D. Wu, Q. Wang, and X.-R. Huang, “A Dependence on the Petal Number of the Static and Dynamic First Hyperpolarizability for Electride Molecules: Many-Petal-Shaped Li-Doped Cyclic Polyamines,” The Journal of Physical Chemistry A 113, no. 12 (2009): 2961–2966. doi:10.1021/jp8109012
  • W.-M. Sun, L.-T. Fan, Y. Li, J.-Y. Liu, D. Wu, and Z.-R. Li, “On the Potential Application of Superalkali Clusters in Designing Novel Alkalides with Large Nonlinear Optical Properties,” Inorganic Chemistry 53, no. 12 (2014): 6170–6178. doi:10.1021/ic500655s
  • N. Kosar, H. Tahir, K. Ayub, M.A. Gilani, and T. Mahmood, “Theoretical Modification of C24 Fullerene with Single and Multiple Alkaline Earth Metal Atoms for Their Potential Use as NLO Materials,” Journal of Physics and Chemistry of Solids 152 (2021): 109972. doi:10.1016/j.jpcs.2021.109972
  • W.-M. Sun, X.-H. Li, J. Wu, J.-M. Lan, C.-Y. Li, D. Wu, Y. Li, and Z.-R. Li, “Can Coinage Metal Atoms Be Capable of Serving as an Excess Electron Source of Alkalides with Considerable Nonlinear Optical Responses?,” Inorganic Chemistry 56, no. 8 (2017): 4594–4600. doi:10.1021/acs.inorgchem.7b00183
  • J. Mai, S. Gong, N. Li, Q. Luo, and Z. Li, “A Novel Class of Compounds—Superalkalides: M+(en) 3 M 3′ O−(M, M′= Li, Na, and K; en = Ethylenediamine)—with Excellent Nonlinear Optical Properties and High Stabilities,” Physical Chemistry Chemical Physics 17, no. 43 (2015): 28754–28764. doi:10.1039/c5cp03635f
  • N. Bano, I.A. Bhatti, Q. Ul-Ain, M. Mohsin, R.A. Shehzad, and J. Iqbal, “A DFT Study of Nonlinear Optical Response of Supersalt (Al (BH4) 3) Doped Boron Nitride,” Journal of Taibah University for Science 16, no. 1 (2022): 621–631. doi:10.1080/16583655.2022.2093092
  • F. Ullah, N. Kosar, K. Ayub, M.A. Gilani, and T. Mahmood, “Theoretical Study on a Boron Phosphide Nanocage Doped with Superalkalis: Novel Electrides Having Significant Nonlinear Optical Response,” New Journal of Chemistry 43, no. 15 (2019): 5727–5736. doi:10.1039/C9NJ00225A
  • F. Ullah, N. Kosar, K. Ayub, and T. Mahmood, “Superalkalis as a Source of Diffuse Excess Electrons in Newly Designed Inorganic Electrides with Remarkable Nonlinear Response and Deep Ultraviolet Transparency: A DFT Study,” Applied Surface Science 483 (2019): 1118–1128. doi:10.1016/j.apsusc.2019.04.042
  • F.-Y. Zhang, H.-L. Xu, and Z.-M. Su, “Superatoms-Induced Effects of Phenalenyl π-Dimer on NICS and NLO Properties: Not Always Enhancement,” The Journal of Physical Chemistry C 121, no. 37 (2017): 20419–20425. doi:10.1021/acs.jpcc.7b05234
  • S.-J. Wang, Y. Li, Y.-F. Wang, D. Wu, and Z.-R. Li, “Structures and Nonlinear Optical Properties of the Endohedral Metallofullerene-Superhalogen Compounds Li@ C 60–BX 4 (X = F, Cl, Br),” Physical Chemistry Chemical Physics 15, no. 31 (2013): 12903–12910. doi:10.1039/c3cp51443a
  • A.K. Srivastava, A. Kumar, and N. Misra, “Structure and Properties of Li@ C60–PF6 Endofullerene Complex,” Physica E: Low-Dimensional Systems and Nanostructures 84 (2016): 524–529. doi:10.1016/j.physe.2016.06.021
  • A.K. Srivastava, S.K. Pandey, and N. Misra, “BO2-Functionalized B3N3C54 Heterofullerene as a Possible Candidate for Molecular Spintronics and Nonlinear Optics,” Materials Research Express 3, no. 4 (2016): 045008. doi:10.1088/2053-1591/3/4/045008
  • G.L. Gutsev, K.G. Belay, C.A. Weatherford, B.R. Ramachandran, L.G. Gutsev, and P. Jena, “Structure and Properties of Polyfluoride F n–Clusters (n = 3–29),” The Journal of Physical Chemistry A 119, no. 24 (2015): 6483–6492. doi:10.1021/acs.jpca.5b02431
  • A.U. Khan, S. Muhammad, R.A. Khera, R.A. Shehzad, K. Ayub, and J. Iqbal, “DFT Study of Superhalogen (AlF4) Doped Boron Nitride for Tuning Their Nonlinear Optical Properties,” Optik 231 (2021): 166464. doi:10.1016/j.ijleo.2021.166464
  • M. Ishaq, R.A. Shehzad, M. Yaseen, S. Iqbal, K. Ayub, and J. Iqbal, “DFT Study of Superhalogen-Doped Borophene with Enhanced Nonlinear Optical Properties,” Journal of Molecular Modeling 27, no. 6 (2021): 1–11. doi:10.1007/s00894-021-04791-4
  • R.A. Shehzad, J. Iqbal, K. Ayub, F. Nawaz, S. Muhammad, A.R. Ayub, and S. Iqbal, “Enhanced Linear and Nonlinear Optical Response of Superhalogen (Al7) Doped Graphitic Carbon Nitride (g-C3N4),” Optik 226 (2021): 165923. doi:10.1016/j.ijleo.2020.165923
  • D. Li, Y. Niu, H. Zhao, C. Liang, and Z. He, “Electronic and Magnetic Properties of 3d-Metal Trioxides Superhalogen Cluster-Doped Monolayer MoS2: A First-Principles Study,” Physics Letters A 378, no. 22–23 (2014): 1651–1656. doi:10.1016/j.physleta.2014.04.008
  • D. Li, C. Wang, Y. Niu, H. Zhao, and C. Liang, “Structural and Electronic Properties of MnO3 (4) Superhalogen Clusters Embedded in Graphene,” Chemical Physics Letters 601 (2014): 16–20. doi:10.1016/j.cplett.2014.03.068
  • A.K. Srivastava, and N. Misra, “Ab Initio Investigations on Lithium–Superhalogen (Li–X) Complexes (X = LiF2, BeF3, BF4 and PF6): Competition between s-Block and p-Block Anions,” Molecular Physics 113, no. 8 (2015): 866–870. doi:10.1080/00268976.2014.985278
  • S. Chen, S.-L. Sun, H.-Q. Wu, H.-L. Xu, L. Zhao, and Z.-M. Su, “Superatoms (Li 3 O and BeF 3) Induce Phenalenyl Radical π-Dimer: Fascinating Interlayer Charge-Transfer and Large NLO Responses,” Dalton Transactions 43, no. 33 (2014): 12657–12662. doi:10.1039/c4dt01240b
  • Y. Li, D. Wu, and Z.-R. Li, “Compounds of Superatom Clusters: Preferred Structures and Significant Nonlinear Optical Properties of the BLi6-X (X = F, LiF2, BeF3, BF4) Motifs,” Inorganic Chemistry 47, no. 21 (2008): 9773–9778. doi:10.1021/ic800184z
  • F.-F. Wang, Z.-R. Li, D. Wu, X.-Y. Sun, W. Chen, Y. Li, and C.-C. Sun, “Novel Superalkali Superhalogen Compounds (Li3)+(SH)−(SH = LiF2, BeF3, and BF4) with Aromaticity: New Electrides and Alkalides,” Chemphyschem 7, no. 5 (2006): 1136–1141. doi:10.1002/cphc.200600014
  • H. Sajid, F. Ullah, M. Yar, K. Ayub, and T. Mahmood, “Superhalogen Doping: A New and Effective Approach to Design Materials with Excellent Static and Dynamic NLO Responses,” New Journal of Chemistry 44, no. 38 (2020): 16358–16369. doi:10.1039/D0NJ02291H
  • A. Asif, G. Mustafa, J. Yaqoob, M.U. Khan, M.A. Assiri, and M. Imran, “Designing Superalkali Metals-Doped Sumanene-Based Highly Efficient Nonlinear Optical Materials for Cutting-Edge Optoelectronic Applications,” Journal of Computational Biophysics and Chemistry 22, no. 02 (2023): 123–145. doi:10.1142/S2737416523500047
  • E. Shakerzadeh, F. Kazemimoghadam, and E.C. Anota, “How Does Lithiation Affect Electro-Optical Features of Corannulene (C 20 H 10) and Quadrannulene (C 16 H 8) Buckybowls?,” Journal of Electronic Materials 47, no. 4 (2018): 2348–2358. doi:10.1007/s11664-018-6069-0
  • F. Kazemimoghadam, and E. Shakerzadeh, “Computational Evaluation of the Remarkable Electro-Optical Responses of the Multilithiated Pristine and Heterosubstituted Sumanenes,” Chemical Physics Letters 678 (2017): 51–58. doi:10.1016/j.cplett.2017.04.027
  • E. Shakerzadeh, “Tailoring C24S12 and C16S8 Sulflowers with Lithium Atom for the Remarkable First Hyperpolarizability,” Chemical Physics Letters 709 (2018): 33–40. doi:10.1016/j.cplett.2018.08.039
  • L.H. Nguyen, “A Computational Study of the Electronic Properties of Heterocirculenes: Oxiflowers and Sulflowers,” ACS Omega 6, no. 44 (2021): 30085–30092. doi:10.1021/acsomega.1c04882
  • R. Dennington, T. Keith, and J. Millam, GaussView 5.0 (Wallingford: Gaussian. Inc., 2008), 20.
  • M. Frisch, Gaussian 09, Revision D. 01. 2009, Gaussian, Inc., Wallingford CT.
  • A.D. Becke, S.G. Dale, and E.R. Johnson, “Communication: Correct Charge Transfer in CT Complexes from the Becke’05 Density Functional,” The Journal of Chemical Physics 148, no. 21 (2018): 211101. doi:10.1063/1.5039742
  • C. Lee, W. Yang, and R.G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B 37, no. 2 (1988): 785–789. doi:10.1103/physrevb.37.785
  • S. Armaković, S.J. Armaković, J.P. Šetrajčić, and V. Holodkov, “Aromaticity, Response, and Nonlinear Optical Properties of Sumanene Modified with Boron and Nitrogen Atoms,” Journal of Molecular Modeling 20, no. 12 (2014): 1–13. doi:10.1007/s00894-014-2538-4
  • S. Kamalinahad, M. Solimannejad, and E. Shakerzadeh, “Nonlinear Optical (NLO) Response of Pristine and Functionalized Dodecadehydrotribenzo [18] Annulene ([18] DBA): a Theoretical Study,” Bulletin of the Chemical Society of Japan 89, no. 6 (2016): 692–699. doi:10.1246/bcsj.20160006
  • Y. Jiang, Z. Liu, H. Liu, W. Cui, N. Wang, D. Liu, and X. Ge, “DFT Study on Nonlinear Optical Properties of Lithium-Doped Corannulene,” Chinese Science Bulletin 57, no. 34 (2012): 4448–4452. doi:10.1007/s11434-012-5437-z
  • H. Sajid, K. Ayub, M. Arshad, and T. Mahmood, “Highly Selective Acridinium Based Cyanine Dyes for the Detection of DNA Base Pairs (Adenine, Cytosine, Guanine and Thymine),” Computational and Theoretical Chemistry 1163 (2019): 112509. doi:10.1016/j.comptc.2019.112509
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–592. doi:10.1002/jcc.22885
  • Y. Ha, W.S. Kwon, and S.J. Lennon, “Online Visual Merchandising (VMD) of Apparel Web Sites,” Journal of Fashion Marketing and Management 11, no. 4 (2007): 477–493. doi:10.1108/13612020710824553
  • N. Okulik, and A.H. Jubert, “Theoretical Analysis of the Reactive Sites of Non-Steroidal anti-Inflammatory Drugs,” Internet Electronic Journal of Molecular Design 4, no. 1 (2005): 17–30.
  • S. Hussain, R. Hussain, M.Y. Mehboob, S.A.S. Chatha, A.I. Hussain, A. Umar, M.U. Khan, M. Ahmed, M. Adnan, K. Ayub, et al. “Adsorption of Phosgene Gas on Pristine and Copper-Decorated B12N12 Nanocages: A Comparative DFT Study,” ACS Omega 5, no. 13 (2020): 7641–7650. doi:10.1021/acsomega.0c00507
  • E. Kavitha, N. Sundaraganesan, S. Sebastian, and M. Kurt, “Molecular Structure, Anharmonic Vibrational Frequencies and NBO Analysis of Naphthalene Acetic Acid by Density Functional Theory Calculations,” Spectrochimica Acta Part A 77, no. 3 (2010): 612–619. doi:10.1016/j.saa.2010.06.034
  • S. S. Amiri, “Theoretical Studies and Spectroscopic Characterization of Novel 4-Methyl-5-((5-Phenyl-1, 3, 4-Oxadiazol-2-yl) Thio) Benzene-1, 2-Diol,” Journal of Molecular Structure 1119 (2016): 18–24.
  • K. Ayub, “Are Phosphide Nano-Cages Better than Nitride Nano-Cages? A Kinetic, Thermodynamic and Non-Linear Optical Properties Study of Alkali Metal Encapsulated X 12 Y 12 Nano-Cages,” Journal of Materials Chemistry C 4, no. 46 (2016): 10919–10934. doi:10.1039/C6TC04456E
  • M. Yar, M. A. Hashmi, and K. Ayub, “The C 2 N Surface as a Highly Selective Sensor for the Detection of Nitrogen Iodide from a Mixture of NX 3 (X = Cl, Br, I) Explosives,” RSC Advances 10, no. 53 (2020): 31997–32010. doi:10.1039/d0ra04930a
  • H. Sajid, K. Ayub, and T. Mahmood, “Exceptionally High NLO Response and Deep Ultraviolet Transparency of Superalkali Doped Macrocyclic Oligofuran Rings,” New Journal of Chemistry 44, no. 6 (2020): 2609–2618. doi:10.1039/C9NJ05065E
  • S. Muhammad, H. Xu, Z. Su, K. Fukuda, R. Kishi, Y. Shigeta, and M. Nakano, “A New Type of Organic–Inorganic Hybrid NLO-Phore with Large off-Diagonal First Hyperpolarizability Tensors: A Two-Dimensional Approach,” Dalton Transactions 42, no. 42 (2013): 15053–15062. doi:10.1039/c3dt51331a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.