71
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design and Synthesis of 1,2,3-Triazole Incorporated Isoflavone Derivatives as Anticancer Agents

, , , , &
Pages 2659-2674 | Received 15 Sep 2022, Accepted 28 May 2023, Published online: 18 Jun 2023

References

  • T. A. Farghaly, H. G. Abdulwahab, H. Y. Medrasi, M. A. Al-Sheikh, D. F. Katowah, and A. M. R. Alsaedi, “Novel 6,7,8-Trihydrobenzo[6',7']Cyclohepta[2',1'-e]Pyrazolo[2,3-a]Pyrimidine Derivatives as Topo IIα Inhibitors with Potential Cytotoxic Activity,” Bioorganic Chemistry 128 (2022): 106043. doi:10.1016/j.bioorg.2022.106043
  • T. A. Farghaly, A. M. R. Alsaedi, N. A. Alenazi, and M. F. Harras, “Anti-Viral Activity of Thiazole Derivatives: An Updated Patent Review,” Expert Opinion on Therapeutic Patents 32, no. 7 (2022): 791–815. doi:10.1080/13543776.2022.2067477
  • Mona A. Alhasani, Thoraya A. Farghaly, and Hoda A. El-Ghamry, “Mono- and Bimetallic Complexes of Pyrazolone Based Ligand: Synthesis, Characterization, Antitumor and Molecular Docking Studies,” Journal of Molecular Structure. 1249 (2022): 131607. doi:10.1016/j.molstruc.2021.131607
  • D. F. Katowah, H. M. E. Hassaneen, and T. A. Farghaly, “Novel Spiro-pyrrolizidine-Oxindole and Spiropyrrolidine-Oxindoles: Green Synthesis under Classical, Ultrasonic, and Microwave Conditions and Molecular Docking Simulation for Antitumor and Type 2 Diabetes,” Arabian Journal of Chemistry. 15, no. 7 (2022): 103930. doi:10.1016/j.arabjc.2022.103930
  • Peter B. Kaufman, James A. Duke, Harry Brielmann, John Boik, and James E. Hoyt, “A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health,” The Journal of Alternative and Complementary Medicine 3, no. 1 (1997): 7–12. doi:10.1089/acm.1997.3.7
  • G. M. Boland, and D. M. X. Donnelly, Natural Product Reports 15, (1998): 241–260.
  • K. A. Kang, R. Zhang, M. J. Piao, D. O. Ko, Z. H. Wang, B. J. Kim, J. W. Park, H. S. Kim, D. H. Kim, and J. W. Hyun, “Protective Effect of Irisolidone, a Metabolite of Kakkalide, against Hydrogen Peroxide Induced Cell Damage via Antioxidant Effect,” Bioorganic & Medicinal Chemistry 16, no. 3 (2008): 1133–1141. doi:10.1016/j.bmc.2007.10.085
  • X. C. Li, A. S. Joshi, H. N. ElSohly, S. I. Khan, M. R. Jacob, Z. Zhang, I. A. Khan, D. Ferreira, L. A. Walker, S. E. Broedel, Jr, et al. “Fatty Acid Synthase Inhibitors from Plants: Isolation, Structure Elucidation, and SAR Studies,” Journal of Natural Products 65, no. 12 (2002): 1909–1914. doi:10.1021/np020289t
  • S. F. Wang, Q. Jiang, Y. H. Ye, Y. Li, and R. X. Tan, “Genistein Derivatives as Selective Estrogen Receptor Modulators: Sonochemical Synthesis and in Vivo anti-Osteoporotic Action,” Bioorganic & Medicinal Chemistry 13, no. 16 (2005): 4880–4890. doi:10.1016/j.bmc.2005.04.082
  • P. Laupattarakasem, P. J. Houghton, and J. R. S. Hoult, “Anti-Inflammatory Isoflavonoids from the Stems of Derris Scandens,” Planta Medica 70, no. 6 (2004): 496–501. doi:10.1055/s-2004-827147
  • C. X. Qin, X. Chen, R. A. Hughes, S. J. Williams, and O. L. Woodman, “Understanding the Cardioprotective Effects of Flavonols: Discovery of Relaxant Flavonols without Antioxidant Activity,” Journal of Medicinal Chemistry 51, no. 6 (2008): 1874–1884. doi:10.1021/jm070352h
  • D. Arthan, J. Svasti, P. Kittakoop, D. Pittayakhachonwut, M. Tanticharoen, and Y. Thebtaranonth, “Antiviral Isoflavonoid Sulfate and Steroidal Glycosides from the Fruits of Solanum Torvum,” Phytochemistry 59, no. 4 (2002): 459–463. doi:10.1016/s0031-9422(01)00417-4
  • J. C. Hackett, Y. W. Kim, B. Su, and R. W. Brueggemeier, “Synthesis and Characterization of Azole Isoflavone Inhibitors of Aromatase,” Bioorganic & Medicinal Chemistry 13, no. 12 (2005): 4063–4070. doi:10.1016/j.bmc.2005.03.050
  • T. C. Wang, Y. L. Zhao, and S. S. Liou, “Synthesis and Cytotoxic Evaluation of Potential Bis-Intercalators: Tetramethylenebis(Oxy)- and Hexamethylenebis(Oxy)-Linked Assemblies Consisting of Flavone, Xanthone, Anthraquinone, and Dibenzofuran,” Helvetica Chimica Acta 85, no. 5 (2002): 1382. doi:10.1002/1522-2675(200205)85:5<1382::AID-HLCA1382>3.0.CO;2-Y
  • S. Jin, Q. Y. Zhang, X. M. Kang, J. X. Wang, and W. H. Zhao, “Daidzein Induces MCF-7 Breast Cancer Cell Apoptosis via the Mitochondrial Pathway,” Annals of Oncology: official Journal of the European Society for Medical Oncology 21, no. 2 (2010): 263–268. doi:10.1093/annonc/mdp499
  • H. J. Park, Y. K. Jeon, D. H. You, and M. J. Nam, “Daidzein Causes Cytochrome c-Mediated Apoptosis via the Bcl-2 Family in Human Hepatic Cancer Cells,” Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 60 (2013): 542–549. doi:10.1016/j.fct.2013.08.022
  • X. M. Wang, J. Xu, Y. P. Li, H. Li, C. S. Jiang, G. D. Yang, S. M. Lu, and S. Q. Zhang, “Synthesis and Anticancer Activity Evaluation of a Series of [1,2,4]Triazolo[1,5-a]Pyridinylpyridines in Vitro and in Vivo,” European Journal of Medicinal Chemistry 67 (2013): 243–251. doi:10.1016/j.ejmech.2013.06.052
  • R. E. Khidre, A. A. Abu-Hashem, and M. El-Shazly, “Synthesis and anti-Microbial Activity of Some 1- Substituted Amino-4,6-Dimethyl-2-Oxo-Pyridine-3-Carbonitrile Derivatives,” European Journal of Medicinal Chemistry 46, no. 10 (2011): 5057–5064. doi:10.1016/j.ejmech.2011.08.018
  • G. Prasanthi, K. V. Prasad, and K. Bharathi, “Synthesis, Anticonvulsant Activity and Molecular Properties Prediction of Dialkyl 1-(di(Ethoxycarbonyl)Methyl)-2,6-Dimethyl-4-Substituted-1,4-Dihydropyridine-3,5-Dicarboxylates,” European Journal of Medicinal Chemistry 73 (2014): 97–104. doi:10.1016/j.ejmech.2013.12.001
  • L. V. Frolova, I. Malik, P. Y. Uglinskii, S. Rogelj, A. Kornienko, and I. V. Magedov, “Multicomponent Synthesis of 2,3-Dihydrochromeno[4,3-d]Pyrazolo[3,4-b]Pyridine-1,6-Diones: A Novel Heterocyclic Scaffold with Antibacterial Activity,” Tetrahedron Letters 52, no. 49 (2011): 6643–6645. doi:10.1016/j.tetlet.2011.10.012
  • P. Brun, A. Dean, V. Di Marco, P. Surajit, I. Castagliuolo, D. Carta, and M. G. Ferlin, “Peroxisome Proliferator-Activated Receptor-γ Mediates the anti-Inflammatory Effect of 3-Hydroxy-4-Pyridinecarboxylic Acid Derivatives: Synthesis and Biological Evaluation,” European Journal of Medicinal Chemistry 62 (2013): 486–497. doi:10.1016/j.ejmech.2013.01.024
  • Y. Jiao, B. T. Xin, Y. Zhang, J. Wu, X. Lu, Y. Zheng, W. Tang, and X. Zhou, “Design, Synthesis and Evaluation of Novel 2-(1H-Imidazol-2-yl) Pyridine Sorafenib Derivatives as Potential BRAF Inhibitors and anti-Tumor Agents,” European Journal of Medicinal Chemistry 90 (2015): 170–183. doi:10.1016/j.ejmech.2014.11.008
  • Sungsik Cho, Sangtae Oh, Yumi Um, Ji-Hee Jung, Jungyeob Ham, Woon-Seob Shin, and Seokjoon Lee, “Synthesis of 10-Substituted Triazolyl Artemisinins Possessing Anticancer Activity via Huisgen 1,3-Dipolar Cylcoaddition,” Bioorganic & Medicinal Chemistry Letters 19, no. 2 (2009): 382–385. doi:10.1016/j.bmcl.2008.11.067
  • E. Bokor, T. Docsa, P. Gergely, and L. Somsak, “Synthesis of 1-(D-Glucopyranosyl)-1,2,3-Triazoles and Their Evaluation as Glycogen Phosphorylase Inhibitors,” Bioorganic & Medicinal Chemistry 18, no. 3 (2010): 1171–1180. doi:10.1016/j.bmc.2009.12.043
  • K. Kumar, B. Pradines, M. Madamet, R. Amalvict, and V. Kumar, “1H-1,2,3-Triazole Tethered Mono- and Bis-Ferrocenylchalcone-β-Lactam Conjugates: Synthesis and Antimalarial Evaluation,” European Journal of Medicinal Chemistry 86 (2014): 113–121. doi:10.1016/j.ejmech.2014.08.053
  • M. S. Costa, N. Boechat, E. A. Rangel, F. D. Da Silva, A. M. T. de Souza, C. R. Rodrigues, H. C. Castro, I. N. Junior, M. C. S. Lourenco, S. Wardell, et al. “Synthesis, Tuberculosis Inhibitory Activity, and SAR Study of N-Substituted-Phenyl-1,2,3-Triazole Derivatives,” Bioorganic & Medicinal Chemistry 14, no. 24 (2006): 8644–8653. doi:10.1016/j.bmc.2006.08.019
  • K. K. Kumar, S. P. Seenivasan, V. Kumar, and T. M. Das, “Synthesis of Quinoline Coupled [1,2,3]-Triazoles as a Promising Class of anti-Tuberculosis Agents,” Carbohydrate Research 346, no. 14 (2011): 2084–2090. doi:10.1016/j.carres.2011.06.028
  • N. A. Al-Masoudi, and Y. A. Al-Soud, “Synthesis of 1′-β-d-Glucopyranosyl-1,2,3-Triazole-4,5-Dimethanol-4,5-Bis(Isopropylcarbamate) as Potential Antineoplastic Agent,” Tetrahedron Letters. 43, no. 22 (2002): 4021–4022. doi:10.1016/S0040-4039(02)00733-5
  • F. D. da Silva, M. C. B. V. de Souza, I. I. P. Frugulhetti, H. C. Castro, S. L. D. Souza, T. M. L. de Souza, D. Q. Rodrigues, A. M. T. Souza, P. A. Abreu, F. Passamani, et al. “Synthesis, HIV-RT Inhibitory Activity and SAR of 1-Benzyl-1H-1,2,3-Triazole Derivatives of Carbohydrates,” European Journal of Medicinal Chemistry 44, no. 1 (2009): 373–383. doi:10.1016/j.ejmech.2008.02.047
  • Lal, K., Kaushik, C. P., Kumar, A. “Antimicrobial Evaluation, QSAR and Docking Studies of Amide-Linked 1,4-Disubstituted 1,2,3-Bistriazoles,” Medicinal Chemistry Research 24, no. 8 (2015): 3258–3271. doi:10.1007/s00044-015-1378-9
  • J. F. Lutz, Nanotechnology for Life Science Research Group. “1,3-dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science,” Angewandte Chemie (International ed. in English) 46, no. 7 (2007): 1018–1025. doi:10.1002/anie.200604050
  • J. E. Hein, and V. V. Fokin, “Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) and beyond: New Reactivity of Copper(I) acetylides,” Chemical Society Reviews 39, no. 4 (2010): 1302–1315. doi:10.1039/b904091a
  • R. Huisgen, and A. Padwa, 1,3-Dipolar Cycloaddition Chemistry, (New York: Wiley, 1984).
  • C. Sheng, and W. Zhang, “New Lead Structures in Antifungal Drug Discovery,” Current Medicinal Chemistry 18, no. 5 (2011): 733–766. doi:10.2174/092986711794480113
  • O. Trott, and A. J. Olson, “AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–461.
  • François Nique, Séverine Hebbe, Christophe Peixoto, Denis Annoot, Jean-Michel Lefrançois, Eric Duval, Laurence Michoux, Nicolas Triballeau, Jean-Michel Lemoullec, Patrick Mollat, et al. “Discovery of Diarylhydantoins as New Selective Androgen Receptor Modulators,” Journal of Medicinal Chemistry 55, no. 19 (2012): 8225–8235.,. doi:10.1021/jm300249m
  • W. Gao, and J. T. Dalton, “Expanding the Therapeutic Use of Androgens via Selective Androgen Receptor Modulators (SARMs),” Drug Discovery Today 12, no. 5–6 (2007): 241–248. doi:10.1016/j.drudis.2007.01.003
  • Z. J. Solomon, J. R. Mirabal, D. J. Mazur, T. P. Kohn, L. I. Lipshultz, and A. W. Pastuszak, “Selective Androgen Receptor Modulators: Current Knowledge and Clinical Applications,” Sexual Medicine Reviews 7, no. 1 (2019): 84–94. doi:10.1016/j.sxmr.2018.09.006
  • D. Srinivasan, J. Sims, and R. Plattner, “Aggressive Breast Cancer Cells Are Dependent on Activated Abl Kinases for Proliferation, Anchorage-Independent Growth and Survival,” Oncogene 27, no. 8 (2008): 1095–1105. doi:10.1038/sj.onc.1210714
  • G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan, and A. L. Hopkins, “Quantifying the Chemical Beauty of Drugs,” Nature Chemistry 4, no. 2 (2012): 90–98. doi:10.1038/nchem.1243
  • P. Schyman, R. Liu, V. Desai, and A. Wallqvist, “vNN Web Server for ADMET Predictions,” Frontiers in Pharmacology 8 (2017): 889. doi:10.3389/fphar.2017.00889

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.