109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An Expedient Three-component Synthesis of Novel Pyrido-pyrimidine Derivatives: Antimicrobial Activity, Molecular Docking, and ADME Studies

, , , , &
Pages 2752-2774 | Received 13 Jun 2022, Accepted 01 Jun 2023, Published online: 10 Jun 2023

References

  • S. Prasad, V. Radhakrishna, and T.K. Ravi, “Synthesis, Spectroscopic and Antibacterial Studies of Some Schiff Bases of 4-(4-Bromophenyl)-6-(4-Chlorophenyl)-2-Aminopyrimidine,” Arabian Journal of Chemistry 12, no. 8 (2019): 3943–7. doi:10.1016/j.arabjc.2016.03.003
  • K. Bush, P. Courvalin, G. Dantas, J. Davies, B. Eisenstein, P. Huovinen, G.A. Jacoby, R. Kishony, B.N. Kreiswirth, E. Kutter, et al. “Tackling Antibiotic Resistance,” Nature Reviews. Microbiology 9, no. 12 (2011): 894–6. doi:10.1038/nrmicro2693
  • S.B. Levy and B. Marshall, “Antibacterial Resistance Worldwide: Causes, Challenges and Responses,” Nature Medicine 10, no. 12 Suppl (2004): S122–S9. doi:10.1038/nm1145
  • G. Chandradhish and J. Haldar, “Membrane‐Active Small Molecules: Designs Inspired by Antimicrobial Peptides,”ChemMedChem. 10, no. 10 (2015): 1606–24. doi:10.1002/cmdc.201500299
  • C. Li, M.B. Sridhara, K.P. Rakesh, H.K. Vivek, H.M. Manukumar, C.S. Shantharam, and H.L. Qin, “Multi-targeted Dihydrazones as Potent Biotherapeutics,” Bioorganic Chemistry 81 (2018): 389–95. doi:10.1016/j.bioorg.2018.08.024
  • L. Ravindar, S.N.A. Bukhari, K.P. Rakesh, H.M. Manukumar, H.K. Vivek, N. Mallesha, Z.Z. Xie, and H.L. Qin, “Aryl Fluorosulfate Analogues as Potent Antimicrobial Agents: SAR, Cytotoxicity and Docking Studies,” Bioorganic Chemistry 81 (2018): 107–18. doi:10.1016/j.bioorg.2018.08.001
  • A.K. Verma, A. Bishnoi, S. Fatma, H. Parveen, and V. Singh, “Discovery of Novel Thiazol-2-Amines and Their Analogues as Bioactive Molecules: Design, Synthesis, Docking and Biological Evaluation,” Drug Research 68, no. 4 (2018): 222–31. doi:10.1055/s-0043-120660
  • M. Shokoohian, N. Hazeri, M.T. Maghsoodlou, and M. Lashkari, “Design and Synthesis, Antimicrobial Activities of 1, 2, 4-Triazine Derivatives as Representation of a New Hetrocyclic System,” Polycyclic Aromatic Compounds 42, no. 1 (2022): 1–12. doi:10.1080/10406638.2020.1712439
  • Z. Xu, M. Ayaz, A.A. Cappelli, and C. Hulme, “General One-pot, Two-step Protocol Accessing a Range of Novel Polycyclic Heterocycles with High Skeletal Diversity,” ACS Combinatorial Science 14, no. 8 (2012): 460–4. doi:10.1021/co300046r
  • A. Bishnoi, S. Singh, A.K. Tiwari, A. Rani, S. Jain, and C.K.M. Tripathi, “Synthesis and Antimicrobial Activity of Some New 1,2,4-Triazine and Benzimidazole Derivatives,” Indian Journal of Chemistry 53B, no. 3 (2014): 325–33.
  • K.M. Elattar, R. Rabie, and M.M. Hammouda, “Recent Developments in the Chemistry of Bicyclic 6-6 Systems: Chemistry of Pyrido[1,2-c]Pyrimidines,” Synthetic Communications 46, no. 18 (2016): 1477–98. doi:10.1080/00397911.2016.1211702
  • M. Monier, D.A. Latif, A.E. Mekabaty, B.D. Mert, and K.M. Elattar, “Advances in the Chemistry of 6-6 Bicyclic Systems: Chemistry of Pyrido[3,4-d]Pyrimidines,” Current Organic Synthesis 16, no. 6 (2019): 812–54. doi:10.2174/1570179416666190704113647
  • D. Kumbhar, D. Chandam, R. Patil, S. Jadhav, D. Patil, A. Patravale, and M. Deshmukh, “Synthesis and Antimicrobial Activity of Novel Derivatives of 7‐Aryl‐10‐Thioxo‐7,10,11,12–Tertahydro‐9H‐Benzo[H]Pyrimido[4,5‐b]Quinoline‐8‐One,” Journal of Heterocyclic Chemistry 55, no. 3 (2018): 692–8. doi:10.1002/jhet.3089
  • M. Andaloussi, H.D. Lim, T.V.D. Meer, M. Sijm, C.B.M. Poulie, I.J.P.D. Esch, R. Leurs, and R.A. Smits, “A Novel Series of Histamine H4 Receptor Antagonists Based on the Pyrido[3,2-d]Pyrimidine Scaffold: Comparison of hERG Binding and Target Residence Time with PF-3893787,” Bioorganic & Medicinal Chemistry Letters 23, no. 9 (2013): 2663–70. doi:10.1016/j.bmcl.2013.02.091
  • M.M. Hammouda, M.M. Rashed, K.M. Elattar, and A.M. Osman, “Synthetic Strategies of Heterocycle-integrated Pyridopyrimidine Scaffolds Supported by Nano-catalysts,” RSC Advances 13, no. 17 (2023): 11600–34. doi:10.1039/d3ra00922j
  • M.M. Hammouda, K.M. Elattar, A.Y. El-Khateeb, S.E. Hamed, and A.M.A. Osman, “Developments of Pyridodipyrimidine Heterocycles and Their Biological Activities,” Molecular Diversity (2023). doi:10.1007/s11030-023-10623-9
  • S. Rai, A. Bishnoi, P. Devi, and N. Afza, “Computational and Experimental Investigations of 7-(4-Nitrophenyl)Benzo[6,7]Chromeno[3,2-e]Pyrido[1,2-a]Pyrimidin-6(7H)-One,” Letters in Organic Chemistry 19, no. 9 (2022): 784–94. doi:10.2174/1570178619666220113112355
  • U.R. Mane, D. Mohanakrishnan, D. Sahal, P.R. Murumkar, R. Giridhar, and M.R. Yadav, “Synthesis and Biological Evaluation of Some Novel Pyrido[1,2-a]Pyrimidin-4-Ones as Antimalarial Agents,” European Journal of Medicinal Chemistry 79 (2014): 422–35. doi:10.1016/j.ejmech.2014.04.031
  • M. Fares, S.M. Abou-Seri, H.A. Abdel-Aziz, S.E.S. Abbas, M.M. Youssef, and R.A. Eladwy, “Synthesis and Antitumor Activity of Pyrido[2,3-d]Pyrimidine and Pyrido[2,3-d][1,2,4]Triazolo[4,3-a] Pyrimidine Derivatives That Induce Apoptosis through G1 Cell-cycle Arrest,” European Journal of Medicinal Chemistry 83 (2014): 155–66. doi:10.1016/j.ejmech.2014.06.027
  • H.J. Zhang, S.B. Wang, X. Wen, J.Z. Li, and Z.S. Quan, “Design, Synthesis, and Evaluation of the Anticonvulsant and Antidepressant Activities of Pyrido[2,3-d] Pyrimidine Derivatives,” Medicinal Chemistry Research 25, no. 7 (2016): 1287–98. doi:10.1007/s00044-016-1559-1
  • S.E.S. Abbas, R.F. George, E.M. Samir, M.M.A. Aref, and H.A.A. Aziz, “Synthesis and Anticancer Activity of Some Pyrido[2,3-d]Pyrimidine Derivatives as Apoptosis Inducers and Cyclin-dependent Kinase Inhibitors,” Future Medicinal Chemistry 11, no. 18 (2019): 2395–414. doi:10.4155/fmc-2019-0050
  • R. Patil, D. Kumbhar, P. Mohire, S. Jadhav, A. Patravale, and M. Deshmukh, “DBN Catalyzed One-pot Efficient Synthesis and Antioxidant Activity of Pyrano[2,3-d] Pyrimidine Derivatives,” Chemical Science Review and Letters 4, no. 16 (2015): 979–84.
  • A. Bishnoi, S. Singh, A.K. Tiwari, K. Srivastava, R. Raghuvir, and C.M. Tripathi, “Synthesis, Characterization and Biological Activity of New Cyclization Products of 3-(4-Substituted Benzylidene)-2H-Pyrido [1,2-a] Pyrimidine 2, 4-(3H)-Diones,” Journal of Chemical Sciences 125, no. 2 (2013): 305–12. doi:10.1007/s12039-013-0367-0
  • D.A. DeGoey, D.A. Betebenner, D.J. Grampovnik, D. Liu, J.K. Pratt, M.D. Tufano, W. He, P. Krishnan, T.J. Pilot-Matias, K.C. Marsh, et al. “Discovery of Pyrido[2,3-d]Pyrimidine-based Inhibitors of HCV NS5A,” Bioorganic & Medicinal Chemistry Letters 23, no. 12 (2013): 3627–30. doi:10.1016/j.bmcl.2013.04.009
  • A.W.-H. Cheung, B. Banner, J. Bose, K. Kim, S. Li, N. Marcopulos, L. Orzechowski, J.A. Sergi, K.C. Thakkar, B.-B. Wang, et al. “7-Phenyl-Pyrido[2,3-d]Pyrimidine-2,4-Diamines: Novel and Highly Selective Protein Tyrosine Phosphatase 1B Inhibitors,” Bioorganic & Medicinal Chemistry Letters 22, no. 24 (2012): 7518–22. doi:10.1016/j.bmcl.2012.10.035
  • D.A. Ibrahim and N.S.M. Ismail, “Design, Synthesis and Biological Study of Novel Pyrido[2,3-d]Pyrimidine as anti-Proliferative CDK2 Inhibitors,” European Journal of Medicinal Chemistry 46, no. 12 (2011): 5825–32. doi:10.1016/j.ejmech.2011.09.041
  • K. Malagu, H. Duggan, K. Menear, M. Hummersone, S. Gomez, C. Bailey, P. Edwards, J. Drzewiecki, F. Leroux, M.J. Quesada, et al. “The Discovery and Optimisation of Pyrido[2,3-d]Pyrimidine-2,4-Diamines as Potent and Selective Inhibitors of mTOR Kinase,” Bioorganic & Medicinal Chemistry Letters 19, no. 20 (2009): 5950–53. doi:10.1016/j.bmcl.2009.08.038
  • R.L. Smith, R.J. Barrett, and E.S. Bush, “Neurochemical and Behavioral Evidence That Quipazine-ketanserin Discrimination Is Mediated by serotonin2A Receptor,” Journal of Pharmacology and Experimental Therapeutics 275, no. 2 (1995): 1050–7.
  • F. Awouters, J. Vermeire, F. Smeyers, P. Vermote, R.V. Beek, and C.J.E. Niemegeers, “Oral Antiallergic Activity in Ascaris Hypersensitive Dogs: A Study of Known Antihistamines and of the New Compounds Ramastine (R 57 959) and Levocabastine (R 50 547),” Drug Development Research 8, no. 1-4 (1986): 95–102. doi:10.1002/ddr.430080112
  • P. Devi, A. Bishnoi, and V. Singh, “A Multicomponent Synthesis of 4H-Pyrido[1,2-a] Pyrimidine-2-Hydroxy-4-One Derivatives and Assessment of Their Antimicrobial Activity,” Russian Journal of Organic Chemistry 57, no. 2 (2021): 265–71. doi:10.1134/S1070428021020184
  • B.H. Rotstein, S. Zaretsky, V. Rai, and A.K. Yudin, “Small Heterocycles in Multicomponent Reactions,” Chemical Reviews 114, no. 16 (2014): 8323–59. doi:10.1021/cr400615v
  • H.R.M. Rashdan, S.M. Gomha, M.S.E. Gendey, M.A.E. Hashash, and A.M.M. Soliman, “Eco-friendly One-pot Synthesis of Some New Pyrazolo[1,2-b] Phthalazinediones with Antiproliferative Efficacy on Human Hepatic Cancer Cell Lines,” Green Chemistry Letters and Reviews 11, no. 3 (2018): 264–74. doi:10.1080/17518253.2018.1474270
  • S. Yu, R. Hua, X. Fu, G. Liu, D. Zhang, S. Jia, H. Qiu, and W. Hu, “Asymmetric Multicomponent Reactions for Efficient Construction of Homopropargyl Amine Carboxylic Esters,” Organic Letters 21, no. 14 (2019): 5737–41. doi:10.1021/acs.orglett.9b02139
  • J. Wiemann, L. Fischer, J. Kessler, D. Ströhl, and R. Csuk, “Ugi Multicomponent-reaction: Syntheses of Cytotoxic Dehydroabietylamine Derivatives,” Bioorganic Chemistry 81 (2018): 567–76. doi:10.1016/j.bioorg.2018.09.014
  • A.R. Sayed, S.M. Gomha, E.A. Taher, Z.A. Muhammad, H.R.E. Seedi, H.M. Gaber, and M.M. Ahmed, “One-pot Synthesis of Novel Thiazoles as Potential Anti-cancer Agents,” Drug Design, Development and Therapy 14 (2020): 1363–75. doi:10.2147/DDDT.S221263
  • G. Bosica, F. Cachia, R.D. Nittis, and N. Mariotti, “Efficent One-pot Synthesis of 3,4-Dihydropyrimidine-2(1H)-Ones via a Three-component Biginelli Reaction,” Molecules 26, no. 12 (2021): 3753. doi:10.3390/molecules26123753
  • P. Devi, A. Bishnoi, V. Singh, S. Shukla, and S. Rai, “A Compact Synthesis and Biological Evaluation of Biginilli Products of 1,3-Bis(3-Chlorophenyl)-2-Thioxodihydropyrimidine-4,6(1H,5H)-Dione,” PAC 43, no. 1 (2021): 131-140. https://doi.org/10.1080/10406638.2021.2009524
  • G.R. Lappin, Q.R. Petersen, and C.E. Wheeler, “Cyclization of 2-Aminopyridine Derivatives. ii. the Reaction of Substituted 2-Aminopyridines with Ethyl Malonate1,” The Journal of Organic Chemistry 15, no. 2 (1950): 377–80. doi:10.1021/jo01148a023
  • M. Shur and S.S. Israelstam, “The Reaction of Aminoheterocycles with Reactive Esters. I. Aminopyridines,” The Journal of Organic Chemistry 33, no. 8 (1968): 3015–20. doi:10.1021/jo01272a002
  • V. Singh, S. Haque, S. Khare, A.K. Tiwari, D. Katiyar, B. Banerjee, K. Kumari, and C.K.M. Tripathi, “Isolation and Purification of Antibacterial Compound from Streptomyces levis Collected from Soil Sample of North India,” PLoS One 13, no. 7 (2018): e0200500. doi:10.1371/journal.pone.0200500
  • A. Vipra, S.N. Desai, R.P. Junjappa, P. Roy, N. Poonacha, P. Ravinder, B. Sriram, and S. Padmanabhan, “Determining the Minimum Inhibitory Concentration of Bacteriophages: Potential Advantages,” Advances in Microbiology 03, no. 02 (2013): 181–90. doi:10.4236/aim.2013.32028
  • K.P. Rakesh, H.K. Kumara, B.J. Ullas, J. Shivakumara, and D.C. Gowda, “Amino Acids Conjugated Quinazolinone-Schiff’s Bases as Potential Antimicrobial Agents: Synthesis, SAR and Molecular Docking Studies,” Bioorganic Chemistry 90 (2019): 103093. doi:10.1016/j.bioorg.2019.103093
  • A. Kumar, A.K. Srivastava, S. Gangwar, N. Misra, A. Mondal, and G. Brahmachari, “Combined Experimental (FT-IR, UV–Visible Spectra, NMR) and Theoretical Studies on the Molecular Structure, Vibrational Spectra, HOMO, LUMO, MESP Surfaces, Reactivity Descriptor and Molecular Docking of Phomarin,” Journal of Molecular Structure 1096 (2015): 94–101. doi:10.1016/j.molstruc.2015.04.031
  • R. Huey, G.M. Morris, A.J. Olson, and D.S. Goodsell, “A Semiempirical Free Energy Force Field with Charge-based Desolvation,” Journal of Computational Chemistry 28, no. 6 (2007): 1145–52. doi:10.1002/jcc.20634
  • O. Trott and A.J. Olson, “AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–61.
  • S. Khanapure, M. Jagadale, P. Bansode, P. Choudhari, and G. Rashinkar, “Anticancer Activity of Ruthenocenyl Chalcones and Their Molecular Docking Studies,” Journal of Molecular Structure 1173 (2018): 142–7. doi:10.1016/j.molstruc.2018.06.091
  • S.R. Kamat, R.S. Salunkhe, P.B. Choudhari, R.P. Dhavale, A.H. Mane, and T.R. Lohar, “Efficient Synthesis of Chromeno[2,3-c]Pyrazolyl-Pyrazolol (s) in Hydrotropic Solution and Their Anti-infective Potential,” Research on Chemical Intermediates 44, no. 2 (2018): 1351–62. doi:10.1007/s11164-017-3171-5
  • Y.K. Abhale, A.D. Shinde, K.K. Deshmukh, L. Nawale, D. Sarkar, P.B. Choudhari, S.S. Kumbhar, and P.C. Mhaske, “Synthesis, Antimycobacterial Screening and Molecular Docking Studies of 4-Aryl-4′-Methyl-2′-Aryl-2, 5′-Bisthiazole Derivatives,” Medicinal Chemistry Research 26, no. 11 (2017): 2889–99. doi:10.1007/s00044-017-1988-5
  • B. Kramer, M. Rarey, and T. Lengauer, “Evaluation of the FLEXX Incremental Construction Algorithm for Proteineligand Docking,” Proteins: Structure, Function, and Genetics 37, no. 2 (1999): 228–41. doi:10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8
  • A. Daina, O. Michielin, and V. Zoete, “iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach,” Journal of Chemical Information and Modeling 54, no. 12 (2014): 3284–301. doi:10.1021/ci500467k
  • A. Daina and V. Zoete, “A Boiled-egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules,” ChemMedChem 11, no. 11 (2016): 1117–121. doi:10.1002/cmdc.201600182
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, “Experimental and Computational Approaches to Estimate Solubility, and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 64 (2012): 4–17. doi:10.1016/j.addr.2012.09.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.