68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green Synthesis and Study of Biological Activity of New Spiropyrrolooxindoles Using Ag@KF/Clinoptilolite Nanoparticles as Catalyst

, , & ORCID Icon
Pages 2833-2854 | Received 10 Apr 2023, Accepted 11 Jun 2023, Published online: 29 Jun 2023

References

  • J. L. Reymond, and M. Awale, “Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database,” ACS Chemical Neuroscience 3, no. 9 (2012): 649–657. doi:10.1021/cn3000422
  • Michael J. James, Peter O'Brien, Richard J. K. Taylor, and William P. Unsworth, “Synthesis of Spirocyclic Indolenines,” Chemistry 22, no. 9 (2016): 2856–2881. doi:10.1002/chem.201503835
  • M. E. Welsch, S. A. Snyder, and B. R. Stockwell, “Privileged Scaffolds for Library Design and Drug Discovery,” Current Opinion in Chemical Biology 14, no. 3 (2010): 347–361. doi:10.1016/j.cbpa.2010.02.018
  • P. N. Kalaria, S. C. Karad, and D. K. Raval, “A Review on Diverse Heterocyclic Compounds as the Privileged Scaffolds in Antimalarial Drug Discovery,” European Journal of Medicinal Chemistry 158 (2018): 917–936. doi:10.1016/j.ejmech.2018.08.040
  • N. Desai, A. Trivedi, U. Pandit, A. Dodiya, V. K. Rao, and P. Desai, “Hybrid Bioactive Heterocycles as Potential Antimicrobial Agents: A Review,” Mini Reviews in Medicinal Chemistry 16, no. 18 (2016): 1500–1526. doi:10.2174/1389557516666160609075620
  • M. M. Fouad, E. R. El-Bendary, G. M. Suddek, I. A. Shehata, and M. M. El-Kerdawy, “Synthesis and in Vitro Antitumor Evaluation of Some New Thiophenes and Thieno[2,3-d]Pyrimidine Derivatives,” Bioorganic Chemistry 81 (2018): 587–598. doi:10.1016/j.bioorg.2018.09.022
  • P. Martins, J. Jesus, S. Santos, L. R. Raposo, C. Roma-Rodrigues, P. V. Baptista, and A. R. Fernandes, “Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box,” Molecules 20, no. 9 (2015): 16852–16891. doi:10.3390/molecules200916852
  • Nadeem Siddiqui, Sandhya Bawa, Ruhi Ali, Obaid Afzal, M. Jawaid Akhtar, Bishmillah Azad, and Rajiv Kumar,  Andalip, “Antidepressant Potential of Nitrogen-Containing Heterocyclic Moieties: An Updated Review,” Journal of Pharmacy & Bioallied Sciences 3, no. 2 (2011): 194–212. doi:10.4103/0975-7406.80765
  • A. S. Sokolova, O. I. Yarovaya, N. I. Bormotov, L. N. Shishkina, and N. F. Salakhutdinov, “Synthesis and Antiviral Activity of Camphor-Based 1,3-Thiazolidin-4-One and Thiazole Derivatives as Orthopoxvirus-Reproduction Inhibitors,” MedChemComm 9, no. 10 (2018): 1746–1753. doi:10.1039/c8md00347e
  • A. Goel, N. Agarwal, F. V. Singh, A. Sharon, P. Tiwari, M. Dixit, R. Pratap, A. K. Srivastava, P. R. Maulik, and V. J. Ram, “Antihyperglycemic Activity of 2-Methyl-3,4,5-Triaryl-1H-Pyrroles in SLM and STZ Models,” Bioorganic & Medicinal Chemistry Letters 14, no. 5 (2004): 1089–1092. doi:10.1016/j.bmcl.2004.01.009
  • M. Amir, S. A. Javed, and H. Kumar, “Pyrimidine as Antiinflammatory Agent: A Review,” Indian Journal of Pharmaceutical Sciences 69, no. 3 (2007): 337. doi:10.4103/0250-474X.34540
  • W. Li, S. J. Zhao, F. Gao, Z. S. Lv, J. Y. Tu, and Z. Xu, “Synthesis and in Vitro anti-Tumor, anti-Mycobacterial and anti-HIV Activities of Diethylene-Glycol-Tethered Bis-Isatin Derivatives,” ChemistrySelect 3, no. 36 (2018): 10250–10254. doi:10.1002/slct.201802185
  • X. Zhao, S. T. Chaudhry, and J. Mei, “Heterocyclic Building Blocks for Organic Semiconductors,” Heterocyclic Chemistry in the 21st Century a Tribute to Alan Katritzky 121 (2017): 133.
  • T. A. Khattab, and M. A. Rehan, “A Review on Synthesis of Nitrogen-Containing Heterocyclic Dyes for Textile Fibers - Part 2: Fused Heterocycles,” Egyptian Journal of Chemistry. 61 (2018): 989.
  • C. Lamberth, and J. Dinges, Bioactive Heterocyclic Compound Classes: Agrochemicals. 2012, Wiley-VCH Verlag GmbH & Co, KGaA.
  • a) S. Zhi, X. Ma, and W. Zhang, “Consecutive Multicomponent Reactions for the Synthesis of Complex Molecules,” Organic & Biomolecular Chemistry 17, no. 33 (2019): 7632–7650. doi:10.1039/c9ob00772e; b) S. Abdolmohammadi, “Silica Supported Zr(HSO4)4 Catalysed Solvent-Free Synthesis of [1]Benzopyrano[4,3-b][1]Benzopyran-6-Ones and Xanthenones,” Letters in Organic Chemistry 11, no. 5 (2014): 350–355. doi:10.2174/1570178610666131212231709; c) S. Abdolmohammadi, “α-ZrP: A Highly Efficient Catalyst for Solvent-Free Synthesis of Pyrimido[5',4':5,6]Pyrido[2,3-d]Pyrimidinetetraone and 4-Arylacridinedione Derivatives,” Letters in Organic Chemistry 11, no. 6 (2014): 465–469. doi:10.2174/1570178611666140124002242; d) S. Abdolmohammadi, R. Ghiasi, and S. Ahmadzadeh-Vatani, “A Highly Efficient CuI Nanoparticles Catalyzed Synthesis of Tetrahydrochromenediones and Dihydropyrano[c]Chromenediones under Grinding,” Zeitschrift Für Naturforschung B 71, no. 7 (2016): 777–782. doi:10.1515/znb-2015-0195; e) S. Abdolmohammadi, S. Shariati, and B. Mirza, “Ultrasound Promoted and Kit-6 Mesoporous Silica Supported Fe3O4 MNPs Catalyzed Cyclocondensation Reaction of 4-Hydroxycoumarin, 3,4-Methylenedioxyphenol and Aromatic Aldehydes,” Applied Organometallic Chemistry 35, no. 3 (2021): e6117. doi:10.1002/aoc.6117
  • a) I. A. Ibarra, A. Islas-Jácome, and E. González-Zamora, “Synthesis of Polyheterocycles via Multicomponent Reactions,” Organic & Biomolecular Chemistry 16, no. 9 (2018): 1402–1418. doi:10.1039/c7ob02305g; b) S. Abdolmohammadi, “Study of the Catalytic Activity of Zr(HPO4)2 in the Synthesis of Hexahydroquinoline Derivatives under Solvent-Free Conditions,” Zeitschrift Für Naturforschung B 68, no. 2 (2013): 195–200. doi:10.5560/znb.2013-2237; c) S. Abdolmohammadi, S. Balalaie, M. Barari, and F. Rominger, “Three-Component Green Reaction of Arylaldehydes, 6-Amino-1,3-Dimethyluracil and Active Methylene Compounds Catalyzed by Zr(HSO4)4 under Solvent-Free Conditions,” Combinatorial Chemistry & High Throughput Screening 16, no. 2 (2013): 150–159. doi:10.2174/1386207311316020009; d) S. Abdolmohammadi, H. Pirelahi, F. Balalaie, and S. Balalaie, “Efficient Synthesis of Dihydrochromeno[4,3-b]Chromenone Derivatives in Aqueous Media,” Hetrocyclic Communications 16, no. 1 (2010): 13–20; e) S. Abdolmohammadi, B. Mirza, and E. Vessally, “Immobilized TiO2 Nanoparticles on Carbon Nanotubes: An Efficient Heterogeneous Catalyst for the Synthesis of Chromeno[b]Pyridine Derivatives under Ultrasonic Irradiation,” RSC Advances 9, no. 71 (2019): 41868–41876. doi:10.1039/c9ra09031b
  • L. F. Tietze, C. Bsasche, and K. M. Gericke, Domino Reactions in Organic Synthesis. 2006, Wiley-VCH, Weinheim.
  • L. Weber, K. Illgen, and M. Almstetter, “Discovery of New Multi Component Reactions with Combinatorial Methods,” Synlett 1999, no. 3 (1999): 366–374. doi:10.1055/s-1999-2612
  • R. P. Herrera, and E. Marqués-López, Multicomponent Reactions: Concepts and Applications for Design and Synthesis. 2015, Wiley, Hoboken.
  • a) Behrooz. Maleki, and Safoora. Sheikh, “Nano Polypropylenimine Dendrimer (DAB-PPI-G1): As a Novel Nano Basic-Polymer Catalyst for One-Pot Synthesis of 2-Amino-2-Chromene Derivatives,” RSC Advances 5, no. 54 (2015): 42997–43005. doi:10.1039/C5RA04458H; b) Behrooz. Maleki, and Fereshteh. Taimazi, “One-Pot Synthesis of 1-Amidoalkyl-2-Naphthols under Solvent-Free Conditions,” Organic Preparations and Procedures International 46, no. 3 (2014): 252–260. doi:10.1080/00304948.2014.903143
  • A. Chanda, and V. V. Fokin, “Organic Synthesis on Water,” Chemical Reviews 109, no. 2 (2009): 725–748. doi:10.1021/cr800448q
  • R. N. Butler, and A. G. Coyne, “Water: Nature’s Reaction Enforcer-Comparative Effects for Organic Synthesis in-Water and on-Water,” Chemical Reviews 110, no. 10 (2010): 6302–6337. doi:10.1021/cr100162c
  • M. O. Simon, and C. Li, “Green Chemistry Oriented Organic Synthesis in Water,” Chemical Society Reviews 41, no. 4 (2012): 1415–1427. doi:10.1039/c1cs15222j
  • a) F. Chaghari-Farahani, S. Abdolmohammadi, and R. Kia-Kojoori, “PANI-Fe3O4@ZnO Nanocomposite: A Magnetically Separable and Applicable Catalyst for the Synthesis of Chromeno-Pyrido[d]Pyrimidine Derivatives,” RSC Advances 10, no. 26 (2020): 15614–15621. doi:10.1039/d0ra01978j; b) S. Fakheri-Vayeghan, S. Abdolmohammadi, and R. Kia-Kojoori, “An Expedient Synthesis of 6-Amino-5-[(4-Hydroxy-2-Oxo-2H-Chromen-3-yl)(Aryl)Methyl]-1,3-Dimethyl-2,4,6(1H,3H)-Pyrimidinedione Derivatives Using Fe3O4@TiO2 Nanocomposite as an Efficient, Magnetically Separable, and Reusable Catalyst,” Zeitschrift Für Naturforschung B 73, no. 8 (2018): 545–551. doi:10.1515/znb-2018-0030; c) S. Abdolmohammadi, “TiO2 NPs-Coated Carbone Nanotubes as a Green and Efficient Catalyst for the Synthesis of [1]Benzopyrano[b][1]Benzopyranones and Xanthenols in Water,” Combinatorial Chemistry & High Throughput Screening 21, no. 8 (2018): 594–601. doi:10.2174/1386207321666181018164739; d) S. Khalilian, S. Abdolmohammadi, and F. Nematolahi, “An Eco-Friendly and Highly Efficient Synthesis of Pyrimidinones Using a TiO2-CNTs Nanocomposite Catalyst,” Letters in Organic Chemistry 14, no. 5 (2017): 361–367. doi:10.2174/1570178614666170321113926
  • a) S. Ebrahimiasl, F. Behmagham, S. Abdolmohammadi, R. N. Kojabad, and E. Vessally, “Recent Advances in the Application of Nanometal Catalysts for Glaser Coupling,” Current Organic Chemistry 23, no. 22 (2020) : 2489–2503. doi:10.2174/1385272823666191022174928; b) J. Wang, P. Su, S. Abdolmohammadi, and E. Vessally, “A Walk around the Application of Nanocatalysts for Cross Dehydrogenative Coupling of C-H Bonds,” RSC Advances 9, no. 71 (2019): 41684–41702. doi:10.1039/c9ra08752d; c) A. Rabiei, S. Abdolmohammadi, and F. Shafaei, “A Green Approach for an Efficient Preparation of 2,4-Diamino-6-Aryl-5-Pyrimidinecarbonitriles Using a TiO2/SiO2 Nanocomposite Catalyst under Solvent-Free Conditions,” Zeitschrift Für Naturforschung B 72, no. 4 (2017): 241–247. doi:10.1515/znb-2016-0219; d) Amir Samani, Shahrzad Abdolmohammadi, and Asieh Otaredi-Kashani, “A Green Synthesis of Xanthenone Derivatives in Aqueous Media Using TiO2-CNTs Nanocomposite as an Eco-Friendly and Re-Usable Catalyst,” Combinatorial Chemistry & High Throughput Screening 21, no. 2 (2018): 111–116. doi:10.2174/1386207321666180219151705
  • Hamid Reza. Saadati-Moshtaghin, Behrooz. Maleki, Reza. Tayebee, Sepideh. Kahrobaei, and Fahime. Abbasinohoji, “6-methylguanamine-Supported CoFe2O4: An Efficient Catalyst for One-Pot Three-Component Synthesis of Isoxazol-5(4H)-One Derivatives,” Polycyclic Aromatic Compounds 42, no. 3 (2022): 885–896. doi:10.1080/10406638.2020.1754865
  • a) M. Mohammadi, F. Alirezapour, and A. Khanmohammadi, “DFT Calculation of the Interplay Effects between Cation–π and Intramolecular Hydrogen Bond Interactions of Mesalazine Drug with Selected Transition Metal Ions (Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+),” Theoretical Chemistry Accounts 140, no. 8 (2021): 104. doi:10.1007/s00214-021-02813-1; (b) M. Mohammadi, and A. Khanmohammadi, “Molecular Structure, QTAIM and Bonding Character of Cation–π Interactions of Mono- and Divalent Metal Cations (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) with Drug of Acetaminophen,” Theoretical Chemistry Accounts 138, no. 8 (2019): 101. doi:10.1007/s00214-019-2492-4; c) M. Masoudi, M. Anary-Abbasinejad, and M. Mohammadi, “An Efficient One-Pot Synthesis of Polyfunctionalized 2H-Pyrroline Derivatives by Reaction of β-Enaminocarbonyls, Arylglyoxals and Amines,” Journal of the Iranian Chemical Society 13, no. 2 (2016): 315–321. doi:10.1007/s13738-015-0739-0; d) A. Khanmohammadi, and M. Mohammadi, “Theoretical Study of Various Solvents Effect on 5-Fluorouracil-Vitamin B3 Complex Using Pcm Method,” Journal of the Chilean Chemical Society 64, no. 1 (2019): 4337–4344. doi:10.4067/s0717-97072019000104337; e) M. A. Poor, A. Darehkordi, M. Anary-Abbasinejad, and M. Mohammadi, “Gabapentin-Base Synthesis and Theoretical Studies of Biologically Active Compounds: N-Cyclohexyl-3-Oxo-2-(3-Oxo-2-Azaspiro[4.5] Decan-2-yl)-3-Arylpropanamides and N-(Tert-Butyl)-2-(3-Oxo-2-Azaspiro[4.5]Decan-2-yl)-2-Arylacetamide Derivatives,” Journal of Molecular Structure 1152 (2018): 44–52. doi:10.1016/j.molstruc.2017.09.061
  • a) N. Karami Hezarcheshmeh, F. Godarzbod, N. Faal Hamedanii, and S. Vaseghi, Polycyclic Aromatic Compounds, 2023, 1–23; b)Nasrin Karami Hezarcheshmeh, and Javad Azizian, “Regioselective One-Pot Synthesis and Antioxidant Activity Study of Trichloro Isatins and Dichloro Isatins,” Polycyclic Aromatic Compounds 42, no. 10 (2022): 7686–7696. doi:10.1080/10406638.2021.2006250; c) N. K. Hezarcheshmeh, and J. Azizian, “Solvent-Free Synthesis of New Spiropyrroloindole Compounds Using Fe3O4/TiO2/MWCNTs MNCs via Multicomponent Reactions: Assessment of New Spiropyrroloindole Antioxidant Activity,” Molecular Diversity 26, no. 4 (2022): 2011–2024. doi:10.1007/s11030-021-10311-6
  • Y. Tonbul, M. Zahmakiran, and S. Özkar, “Iridium(0) Nanoparticles Dispersed in Zeolite Framework: A Highly Active and Long-Lived Green Nanocatalyst for the Hydrogenation of Neat Aromatics at Room Temperature,” Applied Catalysis B: Environmental 148 (2014): 466–472.
  • F. Durap, M. Rakap, M. Aydemir, and S. Özkar, “Room Temperature Aerobic Suzuki Cross-Coupling Reactions in DMF/Water Mixture Using Zeolite Confined Palladium(0) Nanoclusters as Efficient and Recyclable Catalyst,” Applied Catalysis A: General 382, no. 2 (2010): 339–344. doi:10.1016/j.apcata.2010.05.021
  • D. Azarifar, and F. Soleimanei, “Natural Indian Natrolite Zeolite-Supported Cu Nanoparticles: A New and Reusable Heterogeneous Catalyst for N-Arylation of Sulfonamides with Boronic Acids in Water under Ligand-Free Conditions,” RSC Advances 4, no. 24 (2014): 12119–12126. doi:10.1039/c3ra47955b
  • M. Zahmakiran, and S. Özkar, “Zeolite-Confined Ruthenium(0) Nanoclusters Catalyst: Record Catalytic Activity, Reusability, and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride,” Langmuir 25, no. 5 (2009): 2667–2678. doi:10.1021/la803391c
  • M. Zahmakiran, and S. Özkar, “Intrazeolite Ruthenium(0) Nanoclusters: A Superb Catalyst for the Hydrogenation of Benzene and the Hydrolysis of Sodium Borohydride,” Langmuir 24, no. 14 (2008): 7065–7067. doi:10.1021/la800874u
  • M. Zahmakiran, and S. Özkar, “Zeolite Framework Stabilized Rhodium(0) Nanoclusters Catalyst for the Hydrolysis of Ammonia-Borane in Air: Outstanding Catalytic Activity, Reusability and Lifetime,” Applied Catalysis B: Environmental 89, no. 1-2 (2009): 104–110. doi:10.1016/j.apcatb.2008.12.004
  • H.-Y. Chen, Z. Wei, M. Kollar, F. Gao, Y. Wang, J. Szanyi, and C. H. F. Peden, “A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts,” Journal of Catalysis 329 (2015): 490–498. doi:10.1016/j.jcat.2015.06.016
  • D. W. Crandell, H. Zhu, X. Yang, J. Hochmuth, and M.-H. Baik, “Computational and Spectroscopic Characterization of Key Intermediates of the Selective Catalytic Reduction Cycle of NO on Zeolite-Supported Cu Catalyst,” Inorganica Chimica Acta 430 (2015): 132–143. doi:10.1016/j.ica.2015.02.021
  • a) M. A. Khalilzadeh, H. Keipour, A. Hosseini, and D. Zareyee, “KF/Clinoptilolite, an Effective Solid Base in Ullmann Ether Synthesis Catalyzed by CuO Nanoparticles,” New Journal of Chemistry 38, no. 1 (2014): 42–45. doi:10.1039/C3NJ00834G; b) Naghmeh Faal. Hamedani, Fariba Zamani. Hargalani, and Faramarz. Rostami-Charati, “Biosynthesis of Cu/KF/Clinoptilolite@MWCNTs Nanocomposite and Its Application as a Recyclable Nanocatalyst for the Synthesis of New Schiff Base of Benzoxazine Derivatives and Reduction of Organic Pollutants,” Molecular Diversity 26, no. 4 (2022): 2069–2083. doi:10.1007/s11030-021-10316-1; c) Mohammad A. Khalilzadeh, Abolfazl. Hosseini, and Afsaneh. Pilevar, “Potassium Fluoride Supported on Natural Nanoporous Zeolite: A New Solid Base for the Synthesis of Diaryl Ethers,” European Journal of Organic Chemistry 2011, no. 8 (2011): 1587–1592. doi:10.1002/ejoc.201001447
  • a) M. Amirsoleimani, M. A. Khalilzadeh, and D. Zareyee, “Preparation and Catalytic Evaluation of a Palladium Catalyst Deposited over Modified Clinoptilolite (Pd@MCP) for Chemoselective N-Formylation and N-Acylation of Amines,” Journal of Molecular Structure 1225 (2021): 129076. doi:10.1016/j.molstruc.2020.129076; b) R. Oladee, D. Zareyee, and M. A. Khalilzadeh, ” “KF/Clinoptilolite Nanoparticles as an Efficient Nanocatalyst for the Strecker Synthesis of α-Aminonitriles,” Monatshefte Für Chemie - Chemical Monthly 151, no. 4 (2020): 611–615. doi:10.1007/s00706-020-02574-w; c) M. Amirsoleimani, M. A. Khalilzadeh, and D. Zareyee, “Nano-Sized Clinoptilolite as a Green Catalyst for the Rapid and Chemoselective N-Formylation of Amines,” Reaction Kinetics, Mechanisms and Catalysis 131, no. 2 (2020): 859–873. doi:10.1007/s11144-020-01886-6
  • a) J. Balou, M. A. Khalilzadeh, and D. Zareyee, “KF/Nano-Clinoptilolite Catalyzed Aldol-Type Reaction of Aldehydes with Ethyl Diazoacetate,” Catalysis Letters 147, no. 10 (2017): 2612–2618. doi:10.1007/s10562-017-2158-6; b) M. A. Khalilzadeh, H. Sadeghifar, and R. Venditti, “Natural Clinoptilolite/KOH: An Efficient Heterogeneous Catalyst for Carboxymethylation of Hemicellulose,” Industrial & Engineering Chemistry Research 58, no. 27 (2019): 11680–11688. doi:10.1021/acs.iecr.9b02239; c) J. Balou, M. A. Khalilzadeh, and D. Zareyee, “An Efficient and Reusable Nano Catalyst for the Synthesis of Benzoxanthene and Chromene Derivatives,” Scientific Reports 9, no. 1 (2019): 9. doi:10.1038/s41598-019-40431-x; d) J. Ghanaat, M. A. Khalilzadeh, and D. Zareyee “KF/CP NPs as an Efficient Nanocatalyst for the Synthesis of 1,2,4-Triazoles: Study of Antioxidant and Antimicrobial Activity,” Eurasian Chemical Communications 2 (2020): 202–212.
  • a) A. Alizadeh, M. A. Khalilzadeh, E. Alipour, and D. Zareyee, “Pd (II) Immobilized on Clinoptilolite as a Highly Active Heterogeneous Catalyst for Ullmann Coupling-Type S-Arylation of Thiols with Aryl Halides,” Combinatorial Chemistry & High Throughput Screening 23, no. 7 (2020): 658–666. doi:10.2174/1386207323666200415103239; b) H. Keipour, M. A. Khalilzadeh, A. Hosseini, A. Pilevar, and D. Zareyee, “An Active and Selective Heterogeneous Catalytic System for Michael Addition,” Chinese Chemical Letters 23, no. 5 (2012): 537–540. doi:10.1016/j.cclet.2012.02.006; c) Mohammad A. Khalilzadeh, Issa Yavari, Zinatossadat Hossaini, and Hasan Sadeghifar, “N-Methylimidazole-Promoted Efficient Synthesis of 1,3-Oxazine-4-Thiones under Solvent-Free Conditions,” Monatshefte Für Chemie - Chemical Monthly 140, no. 4 (2009): 467–471. doi:10.1007/s00706-008-0042-1
  • J. V. Smith, “Topochemistry of Zeolites and Related Materials. 1. Topology and Geometry,” Chemical Reviews 88, no. 1 (1988): 149–182. doi:10.1021/cr00083a008
  • L. L. Ames, American Mineralogist. 45 (1960): 689–700.
  • Matthew Johnson, David O'Connor, Paul Barnes, C. Richard A. Catlow, Scott L. Owens, Gopinathan Sankar, Robert Bell, Simon J. Teat, and Richard Stephenson, “Cation Exchange, Dehydration, and Calcination in Clinoptilolite: In Situ X-Ray Diffraction and Computer Modeling,” The Journal of Physical Chemistry B 107, no. 4 (2003): 942–951. doi:10.1021/jp021672+
  • F. A. Mumpton, “La Roca Magica: Uses of Natural Zeolites in Agriculture and Industry,” Proceedings of the National Academy of Sciences of the United States of America 96, no. 7 (1999): 3463–3470. doi:10.1073/pnas.96.7.3463
  • D. Caputo, and F. Pepe, “Experiments and Data Processing of Ion Exchange Equilibria Involving Italian Natural Zeolites,” Microporous and Mesoporous Materials. 105, no. 3 (2007): 222–231. doi:10.1016/j.micromeso.2007.04.024
  • a) B. Halliwell, ” “Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning,” Free Radical Research 31, no. 4 (1999): 261–272. doi:10.1080/10715769900300841; b) F. Ahmadi, M. Kadivar, and M. Shahedi, “Antioxidant Activity of Kelussia Odoratissima Mozaff in Model and Food Systems,” Food Chemistry 105, no. 1 (2007): 57–64. doi:10.1016/j.foodchem.2007.03.056
  • Mark A. Babizhayev, Anatoly I. Deyev, Valentina N. Yermakova, Igor V. Brikman, and Johan Bours, “Lipid Peroxidation and Cataracts: N-Acetylcarnosine as a Therapeutic Tool to Manage Age-Related Cataracts in Human and in Canine Eyes,” Drugs in R & D 5, no. 3 (2004): 125–139. doi:10.2165/00126839-200405030-00001
  • L. Liu, and M. Meydani, “Combined Vitamin C and E Supplementation Retards Early Progression of Arteriosclerosis in Heart Transplant Patients,” Nutrition Reviews 60 (2002): 368–371.
  • L. Liu, and M. Meydani, "Combined vitamin C and E supplementation retards early progression of arteriosclerosis in heart transplant patients," Nutr. Rev 60 (2002): 368–371.
  • a) E. Ezzatzadeh, Chemoselective oxidation of sulfides to sulfoxides using a novel Zn-DABCO functionalized Fe3O4 MNPs as highly effective nanomagnetic catalyst. Asian J. Nanosci. Mater 4 (2021): 125–136; b) E. Ezzatzadeh, and Z. S. Hossaini, “2D ZnO/Fe 3 O 4 Nanocomposites as a Novel Catalyst‐Promoted Green Synthesis of Novel Quinazoline Phosphonate Derivatives,” Applied Organometallic Chemistry 34, no. 7 (2020): e5596. doi:10.1002/aoc.5596; c) E. Ezzatzadeh, Z. S. Hossaini, R. Rostamian, S. Vaseghi, and S. F. Mousavi, “Fe 3 O 4 Magnetic Nanoparticles (MNPs) as Reusable Catalyst for the Synthesis of Chromene Derivatives Using Multicomponent Reaction of 4-Hydroxycumarin Basis on Cheletropic Reaction,” Journal of Heterocyclic Chemistry 54, no. 5 (2017): 2906–2911. doi:10.1002/jhet.2900; d) E. Ezzatzadeh, E. Pourghasem, and S. F. I. Sofla, “Chemical Composition and Antimicrobial Activity of the Volatile Oils from Leaf, Flower, Stem and Root of Thymus Transcaucasicus from Iran,” Journal of Essential Oil Bearing Plants 17, no. 4 (2014): 577–583. doi:10.1080/0972060X.2014.901616; e) M. Mohammadi, F. Alirezapour, and A. Khanmohammadi, “DFT Calculation of the Interplay Effects between Cation–π and Intramolecular Hydrogen Bond Interactions of Mesalazine Drug with Selected Transition Metal Ions (Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+),” Theoretical Chemistry Accounts 140, no. 8 (2021): 104. doi:10.1007/s00214-021-02813-1
  • (a) M. Mohammadi, and A. Khanmohammadi, “Molecular Structure, QTAIM and Bonding Character of Cation–π Interactions of Mono- and Divalent Metal Cations (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) with Drug of Acetaminophen,” Theoretical Chemistry Accounts 138, no. 8 (2019): 101. doi:10.1007/s00214-019-2492-4; b) M. Masoudi, M. Anary-Abbasinejad, and M. Mohammadi, “An Efficient One-Pot Synthesis of Polyfunctionalized 2H-Pyrroline Derivatives by Reaction of β-Enaminocarbonyls, Arylglyoxals and Amines,” Journal of the Iranian Chemical Society 13, no. 2 (2016): 315–321. doi:10.1007/s13738-015-0739-0; c) A. Khanmohammadi, and M. Mohammadi, “Theoretical Study of Various Solvents Effect on 5-Fluorouracil-Vitamin B3 Complex Using Pcm Method,” Journal of the Chilean Chemical Society 64, no. 1 (2019): 4337–4344. doi:10.4067/s0717-97072019000104337; d) M. A. Poor, A. Darehkordi, M. Anary-Abbasinejad, and M. Mohammadi, “Gabapentin-Base Synthesis and Theoretical Studies of Biologically Active Compounds: N-Cyclohexyl-3-Oxo-2-(3-Oxo-2-Azaspiro[4.5] Decan-2-yl)-3-Arylpropanamides and N-(Tert-Butyl)-2-(3-Oxo-2-Azaspiro[4.5]Decan-2-yl)-2-Arylacetamide Derivatives,” Journal of Molecular Structure 1152 (2018): 44–52. doi:10.1016/j.molstruc.2017.09.061
  • a)Nasrin Karami Hezarcheshmeh, Farideh Godarzbod, Naghmeh Faal Hamedani, and Samaneh Vaseghi, “Ag/CdO/Fe 3 O 4 @MWCNTs Promoted Green Synthesis of Novel Triazinopyrrolothiazepine: Investigation of Antioxidant and Antimicrobial Activity,” Polycyclic Aromatic Compounds (2023): 1–23. doi:10.1080/10406638.2022.2162553 b) N. Karami Hezarcheshmeh, and J. Azizian, “Regioselective One-Pot Synthesis and Antioxidant Activity Study of Trichloro Isatins and Dichloro Isatins,” Polycyclic Aromatic Compounds 42 (2022): 7686–7696. c) N. K. Hezarcheshmeh, and J. Azizian, “Solvent-Free Synthesis of New Spiropyrroloindole Compounds Using Fe3O4/TiO2/MWCNTs MNCs via Multicomponent Reactions: assessment of New Spiropyrroloindole Antioxidant Activity,” Molecular Diversity 26 (2022): 2011–2024. d)Naghmeh Faal Hamedani, Maryam Ghazvini, Fatemeh Sheikholeslami‐Farahani, and Mohammad Taghi Bagherian‐Jamnani, “ZnO Nanorods as Efficient Catalyst for the Green Synthesis of Thiophene Derivatives: Investigation of Antioxidant and Antimicrobial Activity,” Journal of Heterocyclic Chemistry 57, no. 4 (2020): 1588–1598. doi:10.1002/jhet.3884
  • a) F. Sheikholeslami-Farahani, and A. S. Shahvelayati, “Synthesis of Unsaturated α-Acyloxybenzothiazoleamides via the Passerini Three-Component Reaction,” Combinatorial Chemistry & High Throughput Screening 16 (2013): 726–730. c) F. Sheikholeslami-Farahani, and A. S. Shahvelayati, Bulgarian Chemical Communications 47 (2015): 830–836. ; d) E. Ezzatzadeh, F. Sheikholeslami-Farahani, K. Yadollahzadeh, and S. Rezayati, “Highly Efficient Reusable Carboxy Group Functionalized Imidazolium Salts for a Simple and Cost-Effective Preparation of Pyrano[2,3-d]Pyrimidinone Derivatives,” Combinatorial Chemistry & High Throughput Screening 24 (2021): 1465–1475.
  • a)Somayeh Soleimani‐Amiri, Faezeh Shafaei, Ali Varasteh Moradi, Fathali Gholami‐Orimi, and Zohreh Rostami, “A Novel Synthesis and Antioxidant Evaluation of Functionalized [1,3]‐Oxazoles Using Fe 3 O 4 ‐Magnetic Nanoparticles,” Journal of Heterocyclic Chemistry 56, no. 10 (2019): 2744–2752. doi:10.1002/jhet.3640; b) M. Koohi, S. Soleimani-Amiri, and M. Shariati, “Novel X- and Y-Substituted Heterofullerenes X4Y4C12 Developed from the Nanocage C20, Where X = B, Al, Ga, Si and Y = N, P, as, Ge: A Comparative Investigation on Their Structural, Stability, and Electronic Properties at DFT,” Structural Chemistry 29, no. 3 (2018): 909–920. doi:10.1007/s11224-017-1071-3; c) M. Koohi, S. Soleimani Amiri, and B. N. Haerizade, “Substituent Effect on Structure, Stability, and Aromaticity of Novel B n N m C 20-(n + m) Heterofullerenes,” Journal of Physical Organic Chemistry 30, no. 11 (2017): e3682. doi:10.1002/poc.3682; d) Somayeh Soleimani‐Amiri, Zinatossadat Hossaini, Maryam Arabkhazaeli, Hossein Karami, and Saeid Afshari Sharif Abad, “Green Synthesis of Pyrimido‐Isoquinolines and Pyrimido‐Quinoline Using ZnO Nanorods as an Efficient Catalyst: Study of Antioxidant Activity,” Journal of the Chinese Chemical Society 66, no. 4 (2019): 438–445. doi:10.1002/jccs.201800199
  • a) M. Ghashghaee, M. Ghambarian, and Z. Azizi, Black phosphorus: Synthesis, properties and applications, 2020, 59-72; b) M. Abniki, Z. Azizi, and H. A. Panahi, “Design of 3-Aminophenol-Grafted Polymer-Modified Zinc Sulphide Nanoparticles as Drug Delivery System,” IET Nanobiotechnology 15, no. 8 (2021): 664–673. doi:10.1049/nbt2.12063; c) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Quantum-Chemical Calculations on Graphitic Carbon Nitride (g-C3N4) Single-Layer Nanostructures: Polymeric Slab vs. quantum Dot,” Structural Chemistry 31, no. 3 (2020): 1137–1148. doi:10.1007/s11224-020-01496-x; d) Z. Azizi, M. Ghashghaee, and M. Ghambarian, Future Prospects and Challenges of Black Phosphorous Materials. Black phosphorus: Synthesis, properties and applications (Switzerland: Springer, 2020) 157–169.
  • a) M. Z. Kassaee, M. R. Momeni, F. A. Shakib, M. Ghambarian, and S. M. Musavi, “Novel α-Spirocyclic (Alkyl)(Amino)Carbenes at the Theoretical Crossroad of Flexibility and Rigidity,” Structural Chemistry 21, no. 3 (2010): 593–598. doi:10.1007/s11224-010-9585-y; b) M. Ghashghaee, and M. Ghambarian, “Ethene Protonation over Silica-Grafted Metal (Cr, Mo, and W) Oxide Catalysts: A Comparative Nanocluster Modeling Study,” Russian Journal of Inorganic Chemistry 63, no. 12 (2018): 1570–1577. doi:10.1134/S0036023618160015; c) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Theoretical Insights into Hydrogen Sensing Capabilities of Black Phosphorene Modified through ZnO Doping and Decoration,” International Journal of Hydrogen Energy 45, no. 33 (2020): 16918–16928. doi:10.1016/j.ijhydene.2020.04.138; d) M. Ghadiri, M. Ghashghaee, and M. Ghambarian, “Influence of NiO Decoration on Adsorption Capabilities of Black Phosphorus Monolayer toward Nitrogen Dioxide: Periodic DFT Calculations,” Molecular Simulation 46, no. 14 (2020): 1062–1072. doi:10.1080/08927022.2020.1802023; e) M. Ghambarian, Z. Azizi, and M. Ghashghaee, Functionalization and Doping of Black Phosphorus. Black phosphorus: Synthesis, properties and applications (Switzerland: Springer, 2020) 1–30.
  • M. Kangani, N. Hazeri, Kh Khandan-Barani, M. Lashkari, and M. T. Maghsoodlou, Lime juice as an efficient and green catalyst for the synthesis of 6-amino-4- aryl-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives. Iranian Journal of Organic Chemistry 6 (2014): 1187–1192; b) Khatereh Khandan-Barani, Malek T. Maghsoodlou, Nourallah Hazeri, Sayyed M. Habibi-Khorasani, and Seyed Sajad Sajadikhah, “One-Pot, Three Component Reactions between Isocyanides and Dialkyl Acetylenedicarboxylates in the Presence of Phenyl Isocyanate: Synthesis of Dialkyl 2-(Alkyl/Arylimino)-2,5-Dihydro-5-Oxo-1-Phenyl-1H-Pyrrole-3,4-Dicarboxylate,” Arkivoc 2011, no. 11 (2011): 22–28. doi:10.3998/ark.5550190.0012.b02. c) Kh Khandan-Barani, M. Kangani, M. Mirbaluchzehi, and Z. Siroos, “Synthesis of Tetrahydrobenzo[b]Pyran and 3,4-Dihydropyrimidinone Derivatives Using Glutamic Acid as an Efficient Catalyst,” Inorganic and Nano-Metal Chemistry 47, no. 5 (2017): 751–755. doi:10.1080/15533174.2016.1212233; d) Kh Khandan-Barani, and A. Motamedi-Asl, "Lactic acid, as an efficient catalyst for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthols under thermal solvent-free conditions," Iranian Journal of Catalysis 5, no. 4 (2015): 339–343.
  • a) F. Zamani Hargalani, A. Karbassi, S. M. Monavari, and P. Abroomand Azar, "Origin and partitioning of heavy metals in sediments of the Anzali Wetland," Environmental Sciences 11, no. 2 (2013):79–88. b) R. N. Mahmonir, V. Abdossi, F. Zamani Hargalani, and K. Larijani, 2021, doi:10.21203/rs.3.rs-708123/v1; c) R. N. Mahmonir, A. Vahid, F. Zamani Hargalani, and K. Larijani, "The effect of nano selenium foliar application on some secondary metabolites of Hypericum perforatum L," Journal of Medicinal Plants 21, no. 81 (2022): 67–78. d) E. Ezzatzadeh, F. Z. Hargalani, and F. Shafaei, Polycyclic Aromatic Compounds 2022, 42 (7), 3908–3923. doi:10.52547/jmp.21.81.67
  • S. P. Rajendran, and K. Sengodan, “Synthesis and Characterization of Zinc Oxide and Iron Oxide Nanoparticles Using Sesbania Grandiflora Leaf Extract as Reducing Agent,” Journal of Nanoscience 2017 (2017): 1–7. doi:10.1155/2017/8348507
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–948. doi:10.1021/jf00018a005
  • A. Yildirim, A. Mavi, and A. A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. Extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–4089. doi:10.1021/jf0103572
  • G. C. Yen, and P. D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–632. doi:10.1021/jf00039a005
  • Abdul Mueed Bidchol, A. Wilfred, P. Abhijna, and R. Harish, “Free Radical Scavenging Activity of Aqueous and Ethanolic,” Food and Bioprocess Technology 4, no. 7 (2011): 1137–1143. doi:10.1007/s11947-009-0196-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.