284
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The Paal–Knorr Pyrroles Synthesis: A Green Perspective

, &
Pages 3558-3575 | Received 17 Jan 2023, Accepted 09 Jun 2023, Published online: 27 Jun 2023

References

  • F. Gao, R. Bai, F. Ferlin, L. Vaccaro, M. Li, and Y. Gu, “Replacement Strategies for Non-Green Dipolar Aprotic Solvents,” Green Chemistry 22, no. 19 (2020): 6240–6257. doi:10.1039/D0GC02149K
  • J. Cao, and E. Su, “Hydrophobic Deep Eutectic Solvents: The New Generation of Green Solvents for Diversified and Colorful Applications in Green Chemistry,” Journal of Cleaner Production 314, (2021): 127965. doi:10.1016/j.jclepro.2021.127965
  • I.N. Egorov, S. Santra, D.S. Kopchuk, I.S. Kovalev, G.V. Zyryanov, A. Majee, B.C. Ranu, V. L. Rusinov, and O.N. Chupakhin, “Ball Milling: An Efficient and Green Approach for Asymmetric Organic Syntheses,” Green Chemistry 22, no. 2 (2020): 302–315. doi:10.1039/C9GC03414E
  • V. K. Tiwari, A. Kumar, S. Rajkhowa, G. Tripathi, and A. K. Singh, Green Solvents: Application in Organic Synthesis. In: Green Chemistry (Singapore: Springer Nature Singapore, 2022), 79–112.
  • R. Ali, “Low Melting Mixture of L-(+)-Tartaric Acid and N,N′ -Dimethyl Urea: A New Arrival in the Green Organic Synthesis,” in Current Topics in Chirality - From Chemistry to Biology, edited by T. Akitsu (London: IntechOpen, 2021).
  • R.A. Sheldon, “Metrics of Green Chemistry and Sustainability: Past, Present, and Future,” ACS Sustainable Chemistry & Engineering 6, no. 1 (2018): 32–48. doi:10.1021/acssuschemeng.7b03505
  • J. Chen, K. Shen, and Y. Li, “Greening the Processes of Metal-Organic Framework Synthesis and Their Use in Sustainable Catalysis,” Chemsuschem. 10, no. 16 (2017): 3165–3187. doi:10.1002/cssc.201700748
  • S. Ahmad Wagay, A. Hasan, and R. Ali, “An Efficient Low Melting Mixture Mediated Green Approach for the Synthesis of 2-Substituted Benzothiazoles and Benzimidazoles,” Results in Chemistry 4, no. 2022 (2022): 100338. doi:10.1016/j.rechem.2022.100338
  • I.A. Rather, and R. Ali, “An Efficient and Versatile Deep Eutectic Solvent-Mediated Green Method for the Synthesis of Functionalized Coumarins,” ACS Omega 7, no. 12 (2022): 10649–10659. doi:10.1021/acsomega.2c00293
  • S. Alvi, V. Jayant, and R. Ali, “Applications of Oxone® in Organic Synthesis: An Emerging Green Reagent of Modern Era,” ChemistrySelect 7, no. 23 (2022): e202200704. doi:10.1002/slct.202200704
  • C. Ruß, and B. König, “Low Melting Mixtures in Organic Synthesis–an Alternative to Ionic Liquids?” Green Chemistry 14, no. 11 (2012): 2969. doi:10.1039/c2gc36005e
  • I.A. Rather, and R. Ali, “Investigating the Role of Natural Deep Eutectic Low Melting Mixtures for the Synthesis of Symmetrical Bisamides,” ChemistrySelect 6, no. 40 (2021): 10948–10956. doi:10.1002/slct.202103104
  • I.A. Rather, and R. Ali, “A Catalytic and Solvent-Free Approach for the Synthesis of Diverse Functionalized Dipyrromethanes (DPMs) and Calix[4]Pyrroles (C4Ps),” Green Chemistry 23, no. 16 (2021): 5849–5855. doi:10.1039/D1GC01515J
  • J.Y. Lee, H.D. Root, R. Ali, W. An, V.M. Lynch, S. Bähring, I.S. Kim, J.L. Sessler, and J.S. Park, “Ratiometric Turn-On Fluorophore Displacement Ensembles for Nitroaromatic Explosives Detection,” Journal of the American Chemical Society 142, no. 46 (2020): 19579–19587. doi:10.1021/jacs.0c08106
  • A. Kim, R. Ali, S.H. Park, Y.-H. Kim, and J.S. Park, “Probing and Evaluating Anion–π Interaction in Meso-Dinitrophenyl Functionalized Calix[4]Pyrrole Isomers,” Chemical Communications 52, no. 74 (2016): 11139–11142. doi:10.1039/C6CC04562F
  • I.A. Rather, S.A. Wagay, M.S. Hasnain, and R. Ali, “New Dimensions in Calix[4]Pyrrole: The Land of Opportunity in Supramolecular Chemistry,” RSC Advances 9, no. 66 (2019): 38309–38344. doi:10.1039/C9RA07399J
  • I.A. Rather, F.A. Sofi, M.A. Bhat, and R. Ali, “Synthesis of Novel One-Walled Meso -Phenylboronic Acid-Functionalized Calix[4]Pyrrole: A Highly Sensitive Electrochemical Sensor for Dopamine,” ACS Omega 7, no. 17 (2022): 15082–15089. doi:10.1021/acsomega.2c00926
  • S. Alvi, and R. Ali, “Design, Synthesis and Photophysical Properties of Novel Star-Shaped Truxene-Based Heterocycles Utilizing Ring-Closing Metathesis, Clauson–Kaas, Van Leusen and Ullmann-Type Reactions as Key Tools,” Beilstein Journal of Organic Chemistry 17 (2021): 1374–1384. doi:10.3762/bjoc.17.96
  • S. Alvi, and R. Ali, “Synthetic Approaches to Bowl-Shaped π-Conjugated Sumanene and Its Congeners,” Beilstein Journal of Organic Chemistry 16 (2020): 2212–2259. doi:10.3762/bjoc.16.186
  • R. Ali, and S. Alvi, “The Story of π-Conjugated Isotruxene and Its Congeners: From Syntheses to Applications,” Tetrahedron 76, no. 35 (2020): 131345. doi:10.1016/j.tet.2020.131345
  • B. Nehra, B. Mathew, and P.A. Chawla, “A Medicinal Chemist’s Perspective towards Structure Activity Relationship of Heterocycle Based Anticancer Agents,” Current Topics in Medicinal Chemistry 22, no. 6 (2022): 493–528. doi:10.2174/1568026622666220111142617
  • S.S. Gholap, “Pyrrole: An Emerging Scaffold for Construction of Valuable Therapeutic Agents,” European Journal of Medicinal Chemistry 110 (2016): 13–31. doi:10.1016/j.ejmech.2015.12.017
  • V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, and P. Sharma, “Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero-Aromatics,” RSC Advances 5, no. 20 (2015): 15233–15266. doi:10.1039/C4RA15710A
  • S. Alvi, and R. Ali, “An Expeditious and Highly Efficient Synthesis of Substituted Pyrroles Using a Low Melting Deep Eutectic Mixture,” Organic & Biomolecular Chemistry 19, no. 44 (2021): 9732–9745. doi:10.1039/D1OB01618K
  • C. Paal, “Ueber Die Derivate Des Acetophenonacetessigesters Und Des Acetonylacetessigesters,” Berichte Der Deutschen Chemischen Gesellschaft 17, no. 2 (1884): 2756–2767. doi:10.1002/cber.188401702228
  • L. Knorr, “Synthese Von Furfuranderivaten Aus Dem Diacetbernsteinsäureester, Berichte Der,” Berichte Der Deutschen Chemischen Gesellschaft 17, no. 2 (1884): 2863–2870. doi:10.1002/cber.188401702254
  • V. Amarnath, and K. Amarnath, “Intermediates in the Paal–Knorr Synthesis of Furans,” The Journal of Organic Chemistry 60, no. 2 (1995): 301–307. doi:10.1021/jo00107a006
  • V. Amarnath, D.C. Anthony, K. Amarnath, W.M. Valentine, L.A. Wetterau, and D.G. Graham, “Intermediates in the Paal–Knorr Synthesis of Pyrroles,” The Journal of Organic Chemistry 56, no. 24 (1991): 6924–6931. doi:10.1021/jo00024a040
  • H. Veisi, R. Azadbakht, M. Ezadifar, and S. Hemmati, “An Efficient and Green Procedure for Synthesis of Pyrrole Derivatives by Paal–Knorr Condensation Using Sodium Dodecyl Sulfate in Aqueous Micellar,” Journal of Heterocyclic Chemistry 50, no. S1 (2013): E241–E246. doi:10.1002/jhet.1069
  • A. Balakrishna, A. Aguiar, P.J.M. Sobral, M.Y. Wani, J. Almeida e Silva, and A.J.F.N. Sobral, “Paal–Knorr Synthesis of Pyrroles: From Conventional to Green Synthesis,” Catalysis Reviews 61, no. 1 (2019): 84–110. doi:10.1080/01614940.2018.1529932
  • O. Marvi, and H. T. Nahzomi, “Grinding Solvent-Free Paal–Knorr Pyrrole Synthesis on Smectites as Recyclable and Green Catalysts,” Bulletin of the Chemical Society of Ethiopia 32, no. 1 (2018): 139. doi:10.4314/bcse.v32i1.13
  • A. Rahmatpour, “Xanthan Sulfuric Acid as an Efficient, Green, Biodegradable, and Recyclable Solid Acid Catalyst for One-Pot Synthesis of N-Substituted Pyrroles under Solvent-Free Conditions at Room Temperature,” Monatshefte Für Chemie - Chemical Monthly 143, no. 3 (2012): 491–495. doi:10.1007/s00706-011-0604-5
  • S.K. De, “Ruthenium (III) Chloride as a Novel and Efficient Catalyst for the Synthesis of Substituted Pyrroles under Solvent-Free Conditions, Catal,” Catalysis Letters 124, no. 3–4 (2008): 174–177. doi:10.1007/s10562-008-9461-1
  • B.K. Banik, S. Samajdar, and I. Banik, “Simple Synthesis of Substituted Pyrroles,” The Journal of Organic Chemistry 69, no. 1 (2004): 213–216. doi:10.1021/jo035200i
  • A.A.S. Sayyad Sultan Kasim, and S. Faazil, “Grape Juice Catalyzed Synthesis of Substituted Pyrrole by Paal–Knorr Reaction,” International Journal of Research Culture Society 2 (2018): 31–35.
  • M. Banik, B. Ramirez, A. Reddy, D. Bandyopadhyay, and B.K. Banik, “Polystyrenesulfonate-Catalyzed Synthesis of Novel Pyrroles through Paal–Knorr Reaction,” Organic and Medicinal Chemistry Letters 2, no. 1 (2012): 11. doi:10.1186/2191-2858-2-11
  • R. Ghorbani-Vaghei, “One-Pot Synthesis of Substituted Pyrroles with N,N,N’,N’-Tetrachlorobenzene-1,3-Disulphonamide and N,N’-Diiodo-N,N’-1,2-Ethanediylbis(p-Toluenesulphonamide) as Novel Catalytic Reagents,” South African Journal of Chemistry 62 (2009) 33–38.
  • L. Akelis, J. Rousseau, R. Juskenas, J. Dodonova, C. Rousseau, S. Menuel, D. Prevost, S. Tumkevičius, E. Monflier, and F. Hapiot, “Greener Paal–Knorr Pyrrole Synthesis by Mechanical Activation,” European Journal of Organic Chemistry 2016, no. 1 (2016): 31–35. doi:10.1002/ejoc.201501223
  • B.K. Banik, I. Banik, M. Renteria, and S.K. Dasgupta, “A Straightforward Highly Efficient Paal–Knorr Synthesis of Pyrroles,” Tetrahedron Letters. 46, no. 15 (2005): 2643–2645. doi:10.1016/j.tetlet.2005.02.103
  • F. Bonyasi, M. Hekmati, and H. Veisi, “Preparation of Core/Shell Nanostructure Fe3O4@PEG400-SO3H as Heterogeneous and Magnetically Recyclable Nanocatalyst for One-Pot Synthesis of Substituted Pyrroles by Paal–Knorr Reaction at Room Temperature,” Journal of Colloid and Interface Science 496 (2017): 177–187. doi:10.1016/j.jcis.2017.02.023
  • O. Portilla-Zúñiga, Á. Sathicq, J. Martínez, H. Rojas, E. De Geronimo, R. Luque, and G. Romanelli, “Novel Bifunctional Mesoporous Catalysts Based on Preyssler Heteropolyacids for Green Pyrrole Derivative Synthesis,” Catalysts 8, no. 10 (2018): 419. doi:10.3390/catal8100419
  • J. Chen, H. Wu, Z. Zheng, C. Jin, X. Zhang, and W. Su, “An Approach to the Paal–Knorr Pyrroles Synthesis Catalyzed by Sc(OTf)3 under Solvent-Free Conditions,” Tetrahedron Letters 47, no. 30 (2006): 5383–5387. doi:10.1016/j.tetlet.2006.05.085
  • G. Jones, and R.A. Bean, The Chemistry of Pyrroles (London: Academic, 1977).
  • A. Fürstner, “Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500 Years,” Angewandte Chemie 42, no. 31 (2003): 3582–3603. doi:10.1002/anie.200300582
  • V. Estévez, M. Villacampa, and J.C. Menéndez, “Recent Advances in the Synthesis of Pyrroles by Multicomponent Reactions,” Chemical Society Reviews 43, no. 13 (2014): 4633–4657. doi:10.1039/C3CS60015G
  • S. Hemmati, M.M. Mojtahedi, M.S. Abaee, Z. Vafajoo, S.G. Saremi, M. Noroozi, A. Sedrpoushan, and M. Ataee, “One-Pot Tandem Reactions for Direct Conversion of Thiols and Disulfides to Sulfonic Esters, and Paal–Knorr Synthesis of Pyrrole Derivatives Catalyzed by TCCA,” Journal of Sulfur Chemistry. 34, no. 4 (2013): 347–357. doi:10.1080/17415993.2012.744410
  • A. Kamal, S. Faazil, M. Shaheer Malik, M. Balakrishna, S. Bajee, M.R.H. Siddiqui, and A. Alarifi, “Convenient Synthesis of Substituted Pyrroles via a Cerium (IV) Ammonium Nitrate (CAN)-Catalyzed Paal–Knorr Reaction,” Arabian Journal of Chemistry 9, no. 4 (2016): 542–549. doi:10.1016/j.arabjc.2013.04.009
  • A.A. Sheikh, M. Asif, and S.S. Kasim “Lemon Juice Catalyzed Synthesis of N-Substituted Pyrrole by Paal–Knorr Reaction,” International Journal for Research in Science Engineering & Technology 4 (2018): 176–180.
  • S. Menuel, J. Rousseau, C. Rousseau, E. Vaičiūnaite, J. Dodonova, S. Tumkevičius, and E. Monflier, “Access to Pyrrole Derivatives in Water with the Assistance of Methylated Cyclodextrins,” European Journal of Organic Chemistry 2014, no. 20 (2014): 4356–4361. 2014 doi:10.1002/ejoc.201402327
  • A. Rahmatpour, “Polystyrene-Supported GaCl3 as a Highly Efficient and Recyclable Heterogeneous Lewis Acid Catalyst for One-Pot Synthesis of N-Substituted Pyrroles,” Journal of Organometallic Chemistry. 712 (2012): 15–19. doi:10.1016/j.jorganchem.2012.03.025
  • M. Shaibuna, L.V. Theresa, and K. Sreekumar, “A New Green and Efficient Brønsted: Lewis Acidic DES for Pyrrole Synthesis,” Catalysis Letters 148, no. 8 (2018): 2359–2372. doi:10.1007/s10562-018-2414-4
  • S. Hemmati, P. Mohammadi, A. Sedrpoushan, and B. Maleki, “Synthesis of 2,5-Dimethyl- N -Substituted Pyrroles Catalyzed by Diethylenetriaminepentaacetic Acid Supported on Fe 3 O 4 Nanoparticles,” Organic Preparations and Procedures International. 50, no. 5 (2018): 465–481. doi:10.1080/00304948.2018.1525668
  • H. Veisi, P. Mohammadi, and J. Gholami, “Sulfamic Acid Heterogenized on Functionalized Magnetic Fe 3 O 4 Nanoparticles with Diaminoglyoxime as a Green, Efficient and Reusable Catalyst for One-Pot Synthesis of Substituted Pyrroles in Aqueous Phase,” Applied Organometallic Chemistry 28, no. 12 (2014): 868–873. doi:10.1002/aoc.3228
  • Z.-H. Zhang, J.-J. Li, and T.-S. Li, “Ultrasound-Assisted Synthesis of Pyrroles Catalyzed by Zirconium Chloride under Solvent-Free Conditions,” Ultrasonics Sonochemistry 15 (2008): 673–676. doi:10.1016/j.ultsonch.2008.02.008
  • H.R. Darabi, K. Aghapoor, A. Darestani Farahani, and F. Mohsenzadeh, “Vitamin B1 as a Metal-Free Organocatalyst for Greener Paal–Knorr Pyrrole Synthesis,” Environmental Chemistry Letters 10, no. 4 (2012): 369–375. doi:10.1007/s10311-012-0361-7
  • S.S. Salim, Y.U. Gadkari, A.B. Barkule, and V.N. Telvekar, “Thiamine Hydrochloride as an Acid Catalyst for the Facile Green Synthesis of Pyrazolopyranopyrimidines under Aqueous Conditions,” Research on Chemical Intermediates 48, no. 12 (2022): 5077–5087. doi:10.1007/s11164-022-04858-8
  • K. Aghapoor, F. Mohsenzadeh, H.R. Darabi, and S. Rastgar, “Microwave-Induced Calcium(II) Chloride-Catalyzed Paal–Knorr Pyrrole Synthesis: A Safe, Expeditious, and Sustainable Protocol,” Research on Chemical Intermediates 44, no. 7 (2018): 4063–4072. doi:10.1007/s11164-018-3355-7
  • D. Akbaşlar, O. Demirkol, and S. Giray, “Paal–Knorr Pyrrole Synthesis in Water, Synth,” Synthetic Communications 44, no. 9 (2014): 1323–1332. doi:10.1080/00397911.2013.857691
  • A. Azhdari, N. Azizi, H. Sanaeishoar, and E. Tahanpesar, “Amidosulfonic Acid Supported on Graphitic Carbon Nitride: Novel and Straightforward Catalyst for Paal–Knorr Pyrrole Reaction under Mild Conditions,” Monatshefte Für Chemie - Chemical Monthly 152, no. 6 (2021): 625–634. doi:10.1007/s00706-021-02771-1
  • K. Arabpourian, and F.K. Behbahani, “Synthesis of Pyrrole Derivatives Promoted by Fe(ClO4)3/SiO2 as an Environmentally Friendly Catalyst,” Russian Journal of Organic Chemistry 55, no. 5 (2019): 682–685. doi:10.1134/S1070428019050166
  • F. Shokri, and F.K. Behbahani, “Synthesis of Fe3O4 @ L-Proline@SO3 H as a Novel and Reusable Acidic Magnetic Nanocatalyst and Its Application for the Synthesis of N -Substituted Pyrroles at Room Temperature under Ultrasonic Irradiation and without Solvent, Inorg,” Inorganic and Nano-Metal Chemistry 52, no. 8 (2022): 1143–1152. doi:10.1080/24701556.2021.1963278
  • H. Rostami, and L. Shiri, “Fe3O4@SiO2-PTMS-Guanidine-SA Nanoparticles as an Effective and Reusable Catalyst for the Synthesis of N-Substituted Pyrroles,” Journal of the Iranian Chemical Society 17, no. 6 (2020): 1329–1335. doi:10.1007/s13738-020-01857-7
  • B. Wang, Y. Gu, C. Luo, T. Yang, L. Yang, and J. Suo, “Pyrrole Synthesis in Ionic Liquids by Paal–Knorr Condensation under Mild Conditions,” Tetrahedron Letters 45, no. 17 (2004): 3417–3419. doi:10.1016/j.tetlet.2004.03.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.