75
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Novel Magnetically Recoverable Catalyst for Preparation of Polyhydroquinolines: Fe3O4@DABA-PA-CuBr2 Nanocomposite Catalyzed Multicomponent Reactions under Water

, , , , , & show all
Pages 3289-3312 | Received 15 Mar 2023, Accepted 30 Jun 2023, Published online: 16 Jul 2023

References

  • A. Rostami, B. Atashkar, and D. Moradi, “Synthesis, Characterization and Catalytic Properties of Magnetic Nanoparticle Supported Guanidine in Base Catalyzed Synthesis of α-Hydroxyphosphonates and α-Acetoxyphosphonates,” Applied Catalysis A: General 467 (2013): 7–16. doi:10.1016/j.apcata.2013.07.001
  • M. Shaterian, M. Yulchikhani, Z. Aghasadeghi, and H. Hassani Ardeshiri, “Synthesis, Characterization, and Investigation of Electrochemical Hydrogen Storage Capacity in Barium Hexaferrite Nanocomposite,” Journal of Alloys and Compounds 915 (2022): 165350. doi:10.1016/j.jallcom.2022.165350
  • J. Luo, Y. Liu, H. Wang, C. Gong, Z. Zhou, and Q. Zhou, “Chiral 1,2-Diaminocyclohexane-α-Amino Acid-Derived Amidphos/Ag(I)-Catalyzed Divergent Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides,” Heterocycles 104, no. 1 (2022): 123. doi:10.3987/COM-21-14561
  • B. Guo, Y. Wang, Y. Feng, C. Liang, L. Tang, X. Yao, and F. Hu, “The Effects of Environmental Tax Reform on Urban Air Pollution: A Quasi-Natural Experiment Based on the Environmental Protection Tax Law,” Frontiers in Public Health 10 (2022): 967524. doi:10.3389/fpubh.2022.967524
  • L. Liu, Z. Wu, Z. Zheng, Q. Zhou, K. Chen, and P. Yin, “Polymerization-Induced Microphase Separation of Polymer-Polyoxometalate Nanocomposites for Anhydrous Solid State Electrolytes,” Chinese Chemical Letters 33, no. 9 (2022): 4326–30. doi:10.1016/j.cclet.2021.12.031
  • D.D. Stueber, J. Villanova, I. Aponte, Z. Xiao, and V.L. Colvin, “Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends,” Pharmaceutics 13, no. 7 (2021): 943. doi:10.3390/pharmaceutics13070943
  • H. Kiyani and M. Ghiasi, “Solvent-Free Efficient One-Pot Synthesis of Biginelli and Hantzsch Compounds Catalyzed by Potassium Phthalimide as a Green and Reusable Organocatalyst,” Research on Chemical Intermediates 41, no. 8 (2015): 5177–203. doi:10.1007/s11164-014-1621-x
  • K.-Q. Zhang, Q.-F. Deng, J. Luo, C.-L. Gong, Z.-G. Chen, W. Zhong, S.-Q. Hu, and H.-F. Wang, “Multifunctional Ag(I)/CAAA-Amidphos Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of α-Substituted Acrylamides,” ACS Catalysis 11, no. 9 (2021): 5100–07. doi:10.1021/acscatal.1c00913
  • N. Chen, W. Fu, J. Zhou, L. Mei, J. Yang, Y. Tian, Q. Wang, and W. Yin, “Mn2+-Doped ZrO2@PDA Nanocomposite for Multimodal Imaging-Guided Chemo-Photothermal Combination Therapy,” Chinese Chemical Letters 32, no. 8 (2021): 2405–10. doi:10.1016/j.cclet.2021.02.030
  • M. Nasiruzzaman Shaikh, and M. H. Zahir, “Pd Complex of Ferrocenylphosphine Supported on Magnetic Nanoparticles: A Highly Reusable Catalyst for Transfer Hydrogenation and Coupling Reactions,” Journal of Organometallic Chemistry 973–974 (2022): 122395. doi:10.1016/j.jorganchem.2022.122395
  • R. Qiu, W. Wang, Z. Wang, and H. Wang, “Advancement of Modification Engineering in Lean Methane Combustion Catalysts Based on Defect Chemistry,” Catalysis Science & Technology 13, no. 8 (2023): 2566–84. doi:10.1039/D3CY00087G
  • D. Chen, and T. Savidge, “Comment on “Extreme Electric Fields Power Catalysis in the Active Site of Ketosteroid Isomerase,” Science 349, no. 6251 (2015): 936. doi:10.1126/science.aab0095
  • D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, and Y. Fan, “A General Linear Free Energy Relationship for Predicting Partition Coefficients of Neutral Organic Compounds,” Chemosphere 247 (2020): 125869. doi:10.1016/j.chemosphere.2020.125869
  • Q. Zhang, X. Yang, and J. Guan, “Applications of Magnetic Nanomaterials in Heterogeneous Catalysis,” ACS Applied Nano Materials 2, no. 8 (2019): 4681–97. doi:10.1021/acsanm.9b00976
  • L. Kong, H. Sun, Y. Nie, Y. Yan, R. Wang, Q. Ding, S. Zhang, H. Yu, and G. Luan, “Luminescent Properties and Charge Compensator Effects of SrMo0.5W0.5O4:Eu3+ for White Light LEDs,” Molecules 28, no. 6 (2023): 2681. doi:10.3390/molecules28062681
  • X. Tang, J. Liu, P. Chen, C. Wu, X. Li, Y. Pan, and Y. Liang, “Effective N ‐Formylation of Amines with CO2 in Anaerobic Fermentation Gas Catalyzed by Triply Synergistic Effect of Ionic Porous Organic Polymer,” Chemcatchem 15, no. 4 (2023):e202201351. doi:10.1002/cctc.202201351
  • S. Mahmoudi-Gom Yek, M. Nasrollahzadeh, D. Azarifar, A. Rostami-Vartooni, M. Ghaemi, and M. Shokouhimehr, “Grafting Schiff Base Cu(II) Complex on Magnetic Graphene Oxide as an Efficient Recyclable Catalyst for the Synthesis of 4H-Pyrano[2,3-b]Pyridine-3-Carboxylate Derivatives,” Materials Chemistry and Physics 284 (2022): 126053. doi:10.1016/j.matchemphys.2022.126053
  • M. Fallah-Mehrjardi, M. Shirzadi, and S.H. Banitaba, “A New Basic Ionic Liquid Supported on Magnetite Nanoparticles: An Efficient Phase-Transfer Catalyst for the Green Synthesis of 2-Amino-3-Cyano-4 H -Pyrans,” Polycyclic Aromatic Compounds 42, no. 5 (2022): 2198–09. doi:10.1080/10406638.2020.1830131
  • G. Pal, S. Paul, and A.R. Das, “A Facile and Efficient Synthesis of Functionalized 4-Oxo-2-(Phenylimino)Thiazolidin-5-Ylideneacetate Derivatives via a CuFe2O4 Magnetic Nanoparticles Catalyzed Regioselective Pathway,” New Journal of Chemistry 38, no. 7 (2014): 2787–91. doi:10.1039/C3NJ01608K
  • M.A. Rezvani, H.H. Ardeshiri, H. Ghafuri, and S. Hosseini, “Highly Oxidative Desulfurization of Thiophenic Model Fuels and Real Gasoline by Keggin‐Type Heteropolyanion Immobilized on Polyaniline and Chitosan as an Efficient Organic–Inorganic Nanohybrid Catalyst,” Journal of Applied Polymer Science 140, no. 24 (2023): e53950. doi:10.1002/app.53950
  • Y. Liu, B. Fan, B. Xu, and B. Yang, “Ambient-Stable Polyethyleneimine Functionalized Ti3C2T Nanohybrid Corrosion Inhibitor for Copper in Alkaline Electrolyte,” Materials Letters 337 (2023): 133979. doi:10.1016/j.matlet.2023.133979
  • T. Cheng, D. Zhang, H. Li, and G. Liu, “Magnetically Recoverable Nanoparticles as Efficient Catalysts for Organic Transformations in Aqueous Medium,” Green Chemistry 16, no. 7 (2014): 3401–3427. doi:10.1039/C4GC00458B
  • M.A. Rezvani, S. Hosseini, and H. Hassani Ardeshiri, “Highly Efficient Catalytic Oxidative Desulfurization of Gasoline Using PMnW11@PANI@CS as a New Inorganic–Organic Hybrid Nanocatalyst,” Energy & Fuels 36, no. 14 (2022): 7722–32. doi:10.1021/acs.energyfuels.2c00997
  • S. Wei, T. Chen, H. Hou, and Y. Xu, “Recent Advances in Electrochemical Sterilization,” Journal of Electroanalytical Chemistry 937 (2023): 117419. doi:10.1016/j.jelechem.2023.117419
  • Y. Ma, Y. Leng, D. Huo, D. Zhao, J. Zheng, H. Yang, P. Zhao, F. Li, and C. Hou, “A Sensitive Enzyme-Free Electrochemical Sensor Based on a Rod-Shaped Bimetallic MOF Anchored on Graphene Oxide Nanosheets for Determination of Glucose in Huangshui,” Analytical Methods: Advancing Methods and Applications 15, no. 20 (2023): 2417–26. doi:10.1039/D2AY01977A
  • M. Aqeel Ashraf, Z. Liu, Y. Yang, C. Li, and D. Zhang, “Magnetic Nanomaterials Catalyzed Synthesis of Tetrazoles,” Synthetic Communications 50, no. 17 (2020): 2629–46. doi:10.1080/00397911.2020.1783685
  • S. Shylesh, V. Schünemann, and W.R. Thiel, “Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis,” Angewandte Chemie (International ed. in English) 49, no. 20 (2010): 3428–59. doi:10.1002/anie.200905684
  • M. Aqeel Ashraf, Z. Liu, Y. Yang, and D. Zhang, “Magnetic Nanoparticles Supported Copper Catalysts: Synthesis of Heterocyclic Scaffolds, Synth,” Synthetic Communications 50, no. 19 (2020): 2885–905. doi:10.1080/00397911.2020.1789167
  • M. Aghmasheh, M.A. Rezvani, V. Jafarian, and H.H. Ardeshiri, “Synthesis and Characterization of a New Nanocatalyst Based on Keggin-Type Polyoxovanadate/Nickel-Zinc Oxide, PV 14/NiZn2O4, as a Potential Material for Deep Oxidative Desulfurization of Fuels,” Energy & Fuels 37 no. 13 (2023): 9474–9486. doi:10.1021/acs.energyfuels.3c01082
  • G. Xia, Y. Zheng, Z. Sun, S. Xia, Z. Ni, and J. Yao, “Fabrication of ZnAl-LDH Mixed Metal-Oxide Composites for Photocatalytic Degradation of 4-Chlorophenol,” Environmental Science and Pollution Research International 29, no. 26 (2022): 39441–50. doi:10.1007/s11356-022-18989-3
  • Q. Wan, Z. Zhang, Z.-W. Hou, and L. Wang, “Recent Advances in the Electrochemical Generation of 1,3-Dicarbonyl Radicals from C–H Bonds,” Organic Chemistry Frontiers 10, no. 11 (2023): 2830–48. doi:10.1039/D3QO00408B
  • Z. Wang, C. Chen, H. Liu, D. Hrynshpan, T. Savitskaya, J. Chen, and J. Chen, “Enhanced Denitrification Performance of Alcaligenes sp. TB by Pd Stimulating to Produce Membrane Adaptation Mechanism Coupled with Nanoscale Zero-Valent Iron,” The Science of the Total Environment 708 (2020): 135063. doi:10.1016/j.scitotenv.2019.135063
  • P. Kumar, V. Tomar, D. Kumar, R.K. Joshi, and M. Nemiwal, “Magnetically Active Iron Oxide Nanoparticles for Catalysis of Organic Transformations: A Review,” Tetrahedron 106–107 (2022): 132641. doi:10.1016/j.tet.2022.132641
  • M. Kazemi and M. Mohammadi, “Magnetically Recoverable Catalysts: Catalysis in Synthesis of Polyhydroquinolines,” Applied Organometallic Chemistry 34, no. 3 (2020): e5400. doi:10.1002/aoc.5400
  • M. Abedi, M. Hosseini, A. Arabmarkadeh, and M. Kazemi, “Magnetic Nanocatalysts in A3-Coupling Reactions, Synth,” Commun 51 (2021): 835-855. doi:10.1080/00397911.2020.1858320
  • P. Rai and D. Gupta, “Magnetic Nanoparticles as Green Catalysts in Organic Synthesis-a Review,” Synthetic Communications 51, no. 20 (2021): 3059–83. doi:10.1080/00397911.2021.1968910
  • Z. Wang, L. Dai, J. Yao, T. Guo, D. Hrynsphan, S. Tatsiana, and J. Chen, “Enhanced Adsorption and Reduction Performance of Nitrate by Fe–Pd–Fe3O4 Embedded Multi-Walled Carbon Nanotubes,” Chemosphere 281 (2021): 130718. doi:10.1016/j.chemosphere.2021.130718
  • H. Khashei Siuki, P. Ghamari Kargar, and G. Bagherzade, “New Acetamidine Cu(II) Schiff Base Complex Supported on Magnetic Nanoparticles Pectin for the Synthesis of Triazoles Using Click Chemistry,” Scientific Reports 12, no. 1 (2022): 3771. doi:10.1038/s41598-022-07674-7
  • R.K. Sharma, S. Dutta, S. Sharma, R. Zboril, R.S. Varma, and M.B. Gawande, “Fe3O4 (Iron Oxide)-Supported Nanocatalysts: Synthesis, Characterization and Applications in Coupling Reactions,” Green Chemistry 18, no. 11 (2016): 3184–209. doi:10.1039/C6GC00864J
  • N.A. Frey, S. Peng, K. Cheng, and S. Sun, “Magnetic Nanoparticles: Synthesis, Functionalization, and Applications in Bioimaging and Magnetic Energy Storage,” Chemical Society Reviews 38, no. 9 (2009): 2532–42. doi:10.1039/b815548h
  • M. Shi, Y. Ao, L. Yu, L. Sheng, S. Li, J. Peng, H. Chen, W. Huang, J. Li, and M. Zhai, “Epoxy-POSS/Silicone Rubber Nanocomposites with Excellent Thermal Stability and Radiation Resistance,” Chinese Chemical Letters 33, no. 7 (2022): 3534–38. doi:10.1016/j.cclet.2022.03.068
  • S. Sathishkumar and K. Gayathri, “Synthesis of Tetrazole Derivatives,” Russian Journal of Organic Chemistry 57, no. 3 (2021): 402–16. doi:10.1134/S107042802103012X
  • Z. Liu, B. Fan, J. Zhao, B. Yang, and X. Zheng, “Benzothiazole Derivatives-Based Supramolecular Assemblies as Efficient Corrosion Inhibitors for Copper in Artificial Seawater: Formation, Interfacial Release and Protective Mechanisms,” Corrosion Science 212 (2023): 110957. doi:10.1016/j.corsci.2022.110957
  • J. Lu, Y. Chen, M. Ding, X. Fan, J. Hu, Y. Chen, J. Li, Z. Li, and W. Liu, “A 4arm-PEG Macromolecule Crosslinked Chitosan Hydrogels as Antibacterial Wound Dressing,” Carbohydrate Polymers 277 (2022): 118871. doi:10.1016/j.carbpol.2021.118871
  • G. Wang, J. Li, H. Li, H. He, L. Zhai, X. Li, T. Li, C. Zhao, L. Wu, and H. Li, “In Situ Crosslinking of Polyoxometalate-Polymer Nanocomposites for Robust High-Temperature Proton Exchange Membranes,” Chinese Chemical Letters 34, no. 2 (2023): 107497. doi:10.1016/j.cclet.2022.05.011
  • D. Bu, Y. Zhou, C. Yang, H. Feng, C. Cheng, M. Zhang, Z. Xu, L. Xiao, Y. Liu, and Z. Jin, “Preparation of Quaternarized N-Halamine-Grafted Graphene Oxide Nanocomposites and Synergetic Antibacterial Properties,” Chinese Chemical Letters 32, no. 11 (2021): 3509–13. doi:10.1016/j.cclet.2021.03.007
  • P. Mayurachayakul, W. Pluempanupat, C. Srisuwannaket, and O. Chantarasriwong, “Four-Component Synthesis of Polyhydroquinolines under Catalyst- and Solvent-Free Conventional Heating Conditions: Mechanistic Studies,” RSC Advances 7, no. 89 (2017): 56764–70. doi:10.1039/C7RA13120H
  • G.B. Dharma Rao, S. Nagakalyan, and G.K. Prasad, “Solvent-Free Synthesis of Polyhydroquinoline Derivatives Employing Mesoporous Vanadium Ion Doped Titania Nanoparticles as a Robust Heterogeneous Catalyst via the Hantzsch Reaction,” RSC Advances 7, no. 6 (2017): 3611–6. doi:10.1039/C6RA26664A
  • H. Khabazzadeh, E.T. Kermani, D. Afzali, A. Amiri, and A. Jalaladini, “Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives Using Cs2.5H0.5PW12O40 as a Heterogeneous and Reusable Catalyst in Molten Salt Media,” Arabian Journal of Chemistry 5, no. 2 (2012): 167–72. doi:10.1016/j.arabjc.2010.08.009
  • F.K. Behbahani and M. Homafar, “Synthesis of Polyhydroquinoline Derivatives through the Hantzsch Four Component Using Iron (III) Phosphate as a Catalyst,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 42, no. 2 (2012): 291–5. doi:10.1080/15533174.2011.610020
  • S.C. Jadhvar, H.M. Kasraliker, S.V. Goswami, A.V. Chakrawar, and S.R. Bhusare, “One-Pot Synthesis and Evaluation of Anticancer Activity of Polyhydroquinoline Derivatives Catalyzed by [Msim]Cl,” Research on Chemical Intermediates 43, no. 12 (2017): 7211–21. doi:10.1007/s11164-017-3069-2
  • S. Das, S. Santra, A. Roy, S. Urinda, A. Majee, and A. Hajra, “One-Pot Multicomponent Synthesis of Polyhydroquinolines under Catalyst and Solvent-Free Conditions,” Green Chemistry Letters and Reviews 5, no. 1 (2012): 97–100. doi:10.1080/17518253.2011.584073
  • A. Ghorbani-Choghamarani, H. Aghavandi, and M. Mohammadi, “Mesoporous SBA-15@n-Pr-THAM-ZrO Organic–Inorganic Hybrid: As a Highly Efficient Reusable Nanocatalyst for the Synthesis of Polyhydroquinolines and 2,3-Dihydroquinazolin-4 (1h)-Ones,” Journal of Porous Materials 28, no. 4 (2021): 1167–86. doi:10.1007/s10934-021-01063-7
  • M.A. Zolfigol and M. Yarie, “Synthesis and Characterization of Novel Silica-Coated Magnetic Nanoparticles with Tags of Ionic Liquid. Application in the Synthesis of Polyhydroquinolines,” RSC Advances 5, no. 125 (2015): 103617–24. doi:10.1039/C5RA23670C
  • T. Tamoradi, S.M. Mousavi, and M. Mohammadi, “Praseodymium(III) Anchored on CoFe2O4 MNPs: An Efficient Heterogeneous Magnetic Nanocatalyst for One-Pot, Multi-Component Domino Synthesis of Polyhydroquinoline and 2,3-Dihydroquinazolin-4(1:H)-One Derivatives,” New Journal of Chemistry 44, no. 7 (2020): 3012–20. doi:10.1039/C9NJ05468E
  • A. Khazaei, M. Mahmoudiani Gilan, and N. Sarmasti, “Magnetic‐Based Picolinaldehyde–Melamine Copper Complex for the One‐Pot Synthesis of Hexahydroquinolines via Hantzsch Four‐Component Reactions,” Applied Organometallic Chemistry 32, no. 3 (2018): e4151. doi:10.1002/aoc.4151
  • Y. Chen, Z. Zhang, W. Jiang, M. Zhang, and Y. Li, “RuIII@CMC/Fe3O4 Hybrid: An Efficient, Magnetic, Retrievable, Self-Organized Nanocatalyst for Green Synthesis of Pyranopyrazole and Polyhydroquinoline Derivatives,” Molecular Diversity 23, no. 2 (2019): 421–42. doi:10.1007/s11030-018-9887-3
  • H. Ahankar, A. Ramazani, and S.W. Joo, “Magnetic Nickel Ferrite Nanoparticles as an Efficient Catalyst for the Preparation of Polyhydroquinoline Derivatives under Microwave Irradiation in Solvent-Free Conditions,” Research on Chemical Intermediates 42, no. 3 (2016): 2487–500. doi:10.1007/s11164-015-2163-6
  • R. Tafer, R. Boulcina, B. Carboni, and A. Debache, “Cd(NO3)2.4H2O Catalyzed One-Pot Synthesis of 1,4-Dihydropyridine and Polyhydroquinoline Derivatives through the Hantzsch Multicomponent Condensation,” Journal of the Chinese Chemical Society 59, no. 12 (2012): 1555–60. doi:10.1002/jccs.201200162
  • S.-J. Yü, S. Wu, X.-M. Zhao, and C.-W. Lü, “Green and Efficient Synthesis of Acridine-1,8-Diones and Hexahydroquinolines via a KH2PO4 Catalyzed Hantzsch-Type Reaction in Aqueous Ethanol,” Research on Chemical Intermediates 43, no. 5 (2017): 3121–30. doi:10.1007/s11164-016-2814-2
  • L. Nagarapu, M.D. Kumari, N.V. Kumari, and S. Kantevari, “MCM-41 Catalyzed Rapid and Efficient One-Pot Synthesis of Polyhydroquinolines via the Hantzsch Reaction under Solvent-Free Conditions,” Catalysis Communications 8, no. 12 (2007): 1871–5. doi:10.1016/j.catcom.2007.03.004
  • D.D. Pham, N.T. Le, and G. Vo-Thanh, “Fast and Efficient Hantzsch Synthesis Using Acid-Activated and Cation-Exchanged Montmorillonite Catalysts under Solvent-Free Microwave Irradiation Conditions,” ChemistrySelect 2, no. 36 (2017): 12041–5. doi:10.1002/slct.201702681
  • A. Khazaei, N. Sarmasti, J.Y. Seyf, and M. Tavasoli, “Synthesis of Hexahydroquinoline (HHQ) Derivatives Using ZrOCl28H2O as a Potential Green Catalyst and Optimization of Reaction Conditions Using Design of Experiment (DOE),” RSC Advances 5, no. 123 (2015): 101268–75. doi:10.1039/C5RA16102A
  • H. Singh, N. Garg, P. Arora, and J.K.R. Jigyasa, “Sucrose Chelated Auto Combustion Synthesis of BiFeO3 Nanoparticles: Magnetically Recoverable Catalyst for the One‐Pot Synthesis of Polyhydroquinoline,” Applied Organometallic Chemistry 32, no. 6 (2018): e4357. doi:10.1002/aoc.4357
  • A. Khazaei, L. Jafari-Ghalebabakhani, E. Ghaderi, M. Tavasoli, and A.R. Moosavi-Zare, “Synthesis, Characterization and Application of nano-CoAl2O4 as an Efficient Catalyst in the Preparation of Hexahydroquinolines,” Applied Organometallic Chemistry 31, no. 12 (2017): e3815. doi:10.1002/aoc.3815
  • B. Sakram, B. Sonyanaik, K. Ashok, and S. Rambabu, “Polyhydroquinolines: 1-Sulfopyridinium Chloride Catalyzed an Efficient One-Pot Multicomponent Synthesis via Hantzsch Condensation under Solvent-Free Conditions,” Research on Chemical Intermediates 42, no. 10 (2016): 7651–8. doi:10.1007/s11164-016-2559-y
  • M. Yarie, M.A. Zolfigol, Y. Bayat, A. Asgari, D.A. Alonso, and A. Khoshnood, “Novel Magnetic Nanoparticles with Ionic Liquid Tags as a Reusable Catalyst in the Synthesis of Polyhydroquinolines,” RSC Advances 6, no. 86 (2016): 82842–53. doi:10.1039/C6RA16459E
  • M.A. Zolfigol, H. Ghaderi, S. Baghery, and L. Mohammadi, “Nanometasilica Disulfuric Acid (NMSDSA) and Nanometasilica Monosulfuric Acid Sodium Salt (NMSMSA) as Two Novel Nanostructured Catalysts: applications in the Synthesis of Biginelli-Type, Polyhydroquinoline and 2,3-Dihydroquinazolin-4(1H)-One Derivatives,” Journal of the Iranian Chemical Society 14, no. 1 (2017): 121–34. doi:10.1007/s13738-016-0964-1
  • N. Taheri, F. Heidarizadeh, and A. Kiasat, “A New Magnetically Recoverable Catalyst Promoting the Synthesis of 1,4-Dihydropyridine and Polyhydroquinoline Derivatives via the Hantzsch Condensation under Solvent-Free Conditions,” Journal of Magnetism and Magnetic Materials 428 (2017): 481–7. doi:10.1016/j.jmmm.2016.09.099
  • Q. Zhang, X.M. Ma, H.X. Wei, X. Zhao, and J. Luo, “Covalently Anchored Tertiary Amine Functionalized Ionic Liquid on Silica Coated nano-Fe3O4 as a Novel, Efficient and Magnetically Recoverable Catalyst for the Unsymmetrical Hantzsch Reaction and Knoevenagel Condensation,” RSC Advances 7, no. 85 (2017): 53861–70. doi:10.1039/C7RA10692K
  • H. Khandaka and R. Kumar Joshi, “Fe3O4@SiO2 Supported Pd (II)-Selenoether N-Heterocyclic Carbene: A Highly Active and Reusable Heterogeneous Catalyst for C[Sbnd]O Cross-Coupling of Alcohols and Chloroarenes,” Tetrahedron Letters 111 (2022): 154163. doi:10.1016/j.tetlet.2022.154163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.