94
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A New Approach to the Ring-Opening of Epoxides under Mild and Green Conditions

, , , , &
Pages 3442-3455 | Received 03 Nov 2022, Accepted 28 Jun 2023, Published online: 20 Jul 2023

References

  • F. Moschona, I. Savvopoulou, M. Tsitopoulou, D. Tataraki, and G. Rassias, “Epoxide Syntheses and Ring-Opening Reactions in Drug Development,” Catalysts 10, no. 10 (2020): 1117.‏ doi:10.3390/catal10101117
  • R.E. Parker and N.S. Isaacs, “Mechanisms of Epoxide Reactions,” Chemical Reviews 59, no. 4 (1959): 737–99. ‏doi:10.1021/cr50028a006
  • J. Afsar, M.A. Zolfigol, and A. Khazaei, “Fe3O4@ SiO2@(CH2)3im] C6F5O as a New Hydrophilic and Task‐Specific Nanomagnetic Catalyst: Application for Synthesis of β‐Azido Alcohols and Thiiranes under Mild and Green Conditions,” ChemistrySelect 3, no. 39 (2018): 11134–40. doi:10.1002/slct.201802118
  • M. Zarei, E. Noroozizadeh, O. Khaledian, A.R. Moosavi-Zare, and M.A. Zolfigol, “Regioselective Synthesis of Novel α-Ariloxy Alcohols over Silica-Bonded 1,4-Diaza-Bicyclo[2.2.2]Octane-Acetic Acid Bromide as New Catalyst,” Journal of Molecular Structure 1175 (2019): 428–38.‏ doi:10.1016/j.molstruc.2018.07.098
  • V. Polshettiwar and M.P. Kaushik, “CsF-Celite Catalyzed Regio-and Chemoselective SN2 Type Ring Opening of Epoxides with Thiol,” Catalysis Communications 5, no. 9 (2004): 515–8.‏ doi:10.1016/j.catcom.2004.06.008
  • P. Salehi, M.M. Khodaei, M.A. Zolfigol, and A. Keyvan, “Magnesium Hydrogensulfate; a Cheap and Efficient Catalyst for the Conversion of Epoxides into β-Alkoxy Alcohols, Vicinal Diols, and Thiiranes,” Synthetic Communications 33, no. 17 (2003): 3041–8. doi:10.1081/SCC-120022479
  • P. Salehi, M. Dabiri, M.A. Zolfigol, and M.A. Bodaghi Fard, “Silica Sulfuric Acid: As an Efficient and Reusable Catalyst for Regioselective Ring Opening of Epoxides by Alcohols and Water,” Phosphorus Sulfur and Silicon 179, no. 6 (2004): 1113–21. doi:10.1080/10426500490459722
  • M.A. Zolfigol, A. R. Moosavi-Zare, M. Zarei, A. Zare, E. Noroozizadeh, R. Karamian, and M. Asadbegy, “The First Regioselective Ring Opening of Epoxide via Phetalimide for the Synthesis of ß-Phthalimidoalcohols as New Compounds Catalyzed by Basic Magnetic Nano Particles and Ionic Liquid under Green Conditions and Their Biological Evaluation as Antioxidant Agents,” RSC Advances 6, no. 67 (2016): 62460–6. ‏ doi:10.1039/C6RA07660B
  • T. Hansen, P. Vermeeren, A. Haim, M.J. van Dorp, J.D. Codée, F.M. Bickelhaupt, and T.A. Hamlin, “Regioselectivity of Epoxide Ring‐Openings via SN2 Reactions under Basic and Acidic Conditions,” European Journal of Organic Chemistry 2020, no. 25 (2020): 3822–8.‏ doi:10.1002/ejoc.202000590
  • M. Fallah-Mehrjardi, A.R. Kiasat, and K. Niknam, “Nucleophilic Ring-Opening of Epoxides: Trends in β-Substituted Alcohols Synthesis,” Journal of the Iranian Chemical Society 15, no. 9 (2018): 2033–81. doi:10.1007/s13738-018-1400-5
  • J.S. Bajwa and R.C. Anderson, “A Highly Regioselective Conversion of Epoxides to Halohydrins by Lithium Halides,” Tetrahedron Letters 32, no. 26 (1991): 3021–24.‏ doi:10.1016/0040-4039(91)80676-W
  • O. Meyer, S. Ponaire, M. Rohmer, and C. Grosdemange-Billiard, “Lewis Acid Mediated Regioselective Ring Opening of Benzylglycidol with Dibenzyl Phosphate: Short and Attractive Synthesis of Dihydroxyacetone Phosphate,” Organic Letters 8, no. 19 (2006): 4347–50.‏ doi:10.1021/ol061748a
  • A.R. Kiasat and M.F. Mehrjardi, “PEG-SO3H as Eco-Friendly Polymeric Catalyst for Regioselective Ring Opening of Epoxides Using Thiocyanate Anion in Water: An Efficient Route to Synthesis of β-Hydroxy Thiocyanate,” Catalysis Communications 9, no. 6 (2008): 1497–500.‏ doi:10.1016/j.catcom.2007.12.019
  • Z. Chen, S.M. Nasr, M. Kazemi, and M. Mohammadi, “A Mini-Review: Achievements in the Thiolysis of Epoxides,” Mini-Reviews in Organic Chemistry 17, no. 4 (2020): 352–62. doi:10.2174/1570193X16666190723111746
  • N. Azizi and M.R. Saidi, “Highly Efficient Ring Opening Reactions of Epoxides with Deactivated Aromatic Amines Catalyzed by Heteropoly Acids in Water,” Tetrahedron 63, no. 4 (2007): 888–91. ‏ doi:10.1016/j.tet.2006.11.045
  • M. Mirza-Aghayan, M. Alizadeh, M.M. Tavana, and R. Boukherroub, “Graphite Oxide: A Simple and Efficient Solid Acid Catalyst for the Ring-Opening of Epoxides by Alcohols,” Tetrahedron Letters 55, no. 49 (2014): 6694–7. ‏ doi:10.1016/j.tetlet.2014.10.050
  • S. Ahmad, A.F. Zahoor, S.A.R. Naqvi, and M. Akash, “Recent Trends in Ring Opening of Epoxides with Sulfur Nucleophiles,” Molecular Diversity 22, no. 1 (2018): 191–205. ‏ doi:10.1007/s11030-017-9796-x
  • S. Mohammadi-Aghdam, H. Jabbari, O. Pouralimardan, F. Divsar, I. Amini, and S. Sajjadifar, “One-Pot Synthesis of Highly Regioselective β-Azido Alcohols Catalyzed by Brønsted Acidic Ionic Liquids,” Quarterly Journal of Iranian Chemical Communications 7, (2019): 15–28.
  • J. Shi, X. Wang, and W. Li, “Highly Uniform Fe-Based MOFs Fabricated by Mixed-Linker Strategy for Ring-Opening of Epoxides with Alcohols,” Materials Letters 331 (2023): 133506. doi:10.1016/j.matlet.2022.133506
  • M. Thirumalaikumar, “Ring Opening Reactions of Epoxides. a Review,” Organic Preparations and Procedures International 54, no. 1 (2022): 1–39. doi:10.1080/00304948.2021.1979357
  • J. Marco-Contelles, M.T. Molina, and S. Anjum, “Naturally Occurring Cyclohexane Epoxides: Sources, Biological Activities, and Synthesis,” Chemical Reviews 104, no. 6 (2004): 2857–99. doi:10.1021/cr980013j
  • M.A. Zolfigol, G. Chehardoli, and M. Shiri, “Epoxidation of Aromatic α, β-Unsaturated Ketones Using PVP-H2O2 under Mild and Heterogeneous Conditions,” Reactive and Functional Polymers 67, no. 8 (2007): 723–7. doi:10.1016/j.reactfunctpolym.2007.05.002
  • K. Seth, S.R. Roy, D.N. Kommi, B.V. Pipaliya, and A.K. Chakraborti, “Silver Nanoparticle-Catalysed Phenolysis of Epoxides under Neutral Conditions: Scope and Limitations of Metal Nanoparticles and Applications towards Drug Synthesis,” Journal of Molecular Catalysis A: Chemical 392 (2014): 164–72. ‏ doi:10.1016/j.molcata.2014.05.011
  • J.M. Ready and E.N. Jacobsen, “Asymmetric Catalytic Synthesis of α-Aryloxy Alcohols: Kinetic Resolution of Terminal Epoxides via Highly Enantioselective Ring-Opening with Phenols,” Journal of the American Chemical Society 121, no. 25 (1999): 6086–7. ‏ doi:10.1021/ja9910917
  • A.Z. Halimehjani, A. Jalali, M. Khalesi, A. Ashouri, and K. Marjani, “Catalyst-Free Efficient Regioselective Ring Opening of Oxiranes with Thioacids in Water,” Synthetic Communications 41, no. 11 (2011): 1638–43. ‏ doi:10.1080/00397911.2010.491172
  • H. Firouzabadi, N. Iranpoor, A. A. Jafari, and S. Makarem, “Aluminum Dodeca Tungstophosphate (AlPW12O40) as a Reusable Lewis Acid Catalyst: Facile Regioselective Ring Opening of Epoxides with Alcohols, Acetic Acid and Thiols,” Journal of Molecular Catalysis A: Chemical 250, no. 1–2 (2006): 237–42. ‏ doi:10.1016/j.molcata.2006.01.061
  • M. Boudou, C. Ogawa, and S. Kobayashi, “Chiral Scandium‐Catalysed Enantioselective Ring‐Opening of Meso‐Epoxides with N‐Heterocycle, Alcohol and Thiol Derivatives in Water,” Advanced Synthesis & Catalysis 348, no. 18 (2006): 2585–9. ‏ doi:10.1002/adsc.200600290
  • M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, and M. Khatami, “A Review on Metal-Organic Frameworks: Synthesis and Applications,” Trac Trends in Analytical Chemistry 118 (2019): 401–25. doi:10.1016/j.trac.2019.06.007
  • H. Sepehrmansourie, M. Zarei, M.A. Zolfigol, S. Babaee, and S. Rostamnia, “Application of Novel Nanomagnetic Metal–Organic Frameworks as a Catalyst for the Synthesis of New Pyridines and 1, 4-Dihydropyridines via a Cooperative Vinylogous Anomeric Based Oxidation,” Scientific Report 11 (2021): 1–15.
  • S. Babaee, M. Zarei, H. Sepehrmansourie, M.A. Zolfigol, and S. Rostamnia, “Synthesis of Metal–Organic Frameworks MIL-101 (Cr)-NH2 Containing Phosphorous Acid Functional Groups: Application for the Synthesis of N-Amino-2-Pyridone and Pyrano[2,3-c]Pyrazole Derivatives via a Cooperative Vinylogous Anomeric-Based Oxidation,” ACS Omega 5, no. 12 (2020): 6240–9.‏ doi:10.1021/acsomega.9b02133
  • M. Jia, X. Yang, Y. Chen, M. He, W. Zhou, J. Lin, L. An, and S. Yang, “Grafting of Gd-DTPA onto MOF-808 to Enhance MRI Performance for Guiding Photothermal Therapy,” Journal of Materials Chemistry. B 9, no. 41 (2021): 8631–8. doi:10.1039/d1tb01596f
  • (a) Y. Bai, Y. Dou, L.H. Xie, W. Rutledge, J.R. Li, and H.C. Zhou, “Zr-Based Metal–Organic Frameworks: Design, Synthesis, Structure, and Applications,” Chemical Society Reviews 45, no. 8 (2016): 2327–67. ‏ doi:10.1039/C5CS00837A ; (b) E. Tavakoli, H. Sepehrmansourie, M. Zarei, M.A. Zolfigol, A. Khazaei, and M. Hosseinifard, “Applications of Novel Composite UiO-66-NH2/Melamine with Phosphorous Acid Tags as a Porous and Efficient Catalyst for the Preparation of Novel Spiro-Oxindoles,” New Journal of Chemistry 46, no. 39 (2022): 19054–61.; (c) H. Sepehrmansourie, M. Zarei, M.A. Zolfigol, S. Babaee, S. Azizian, and S. Rostamnia, “Catalytic Synthesis of New Pyrazolo [3,4-b] Pyridine via a Cooperative Vinylogous Anomeric-Based Oxidation,” Scientific Report 12 (2022): 14145.
  • M.X. Wu and Y.W. Yang, “Metal–Organic Framework (MOF)‐Based Drug/Cargo Delivery and Cancer Therapy,” Advanced Materials 29, no. 23 (2017): 1606134. doi:10.1002/adma.201606134
  • S. Nikhar, P. Sahu, S. Rarotra, and P. Kumar, “Biological Metal Organic Framework (Bio-MOF) for Detection of Voltaic Organic Compounds (VOC’s),” Inorganic Chemistry Communications 130 (2021): 108711. doi:10.1016/j.inoche.2021.108711
  • C.H. Bartholomew and R.J. Farrauto, Fundamentals of Industrial Catalytic Processes (John Wiley and Sons, 2011).
  • A. Badoei-Dalfard, N. Sohrabi, Z. Karami, and G. Sargazi, “Fabrication of an Efficient and Sensitive Colorimetric Biosensor Based on Uricase/Th-MOF for Uric Acid Sensing in Biological Samples,” Biosensors & Bioelectronics 141 (2019): 111420. doi:10.1016/j.bios.2019.111420
  • (a) A. Dhakshinamoorthy and H. Garcia, “Metal-Organic Frameworks as Solid Catalysts for the Synthesis of Nitrogen-Containing Heterocycles,” Chemical Society Reviews 43, no. 16 (2014): 5750–65. doi:10.1039/C3CS60442J; (b) H. Sepehrmansourie, M. Zarei, M.A. Zolfigol, S. Kalhor, and H. Shi, “Catalytic Chemo and Homoselective Ipso-Nitration under Mild Condition,” Molecular Catalysis 531 (2022): 112634.
  • J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K.P. Lillerud, “A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability,” Journal of the American Chemical Society 130, no. 42 (2008): 13850–1.‏ doi:10.1021/ja8057953
  • A.M. Naseri, M. Zarei, S. Alizadeh, S. Babaee, M.A. Zolfigol, D. Nematollahi, and H. Shi, “Synthesis and Application of [Zr-UiO-66-PDC-SO3H]Cl MOFs to the Preparation of Dicyanomethylene Pyridines via Chemical and Electrochemical Methods,” Scientific Report 11 (2021): 1–19.
  • F. Jalili, M. Zarei, M.A. Zolfigol, and A. Khazaei, “Application of Novel Metal-Organic Framework [Zr-UiO-66-PDC-SO3H]FeCl4 in the Synthesis of Dihydrobenzo[g]Pyrimido [4,5-b] Quinoline Derivatives,” RSC Advances 12, no. 15 (2022): 9058–68. doi:10.1039/d1ra08710j
  • A.R. Moosavi-Zare, M.A. Zolfigol, E. Noroozizadeh, M. Zarei, R. Karamian, and M. Asadbegy, “Synthesis and Characterization of Acetic Acid Functionalized Poly (4-Vinylpyridinium) Salt as New Catalyst for the Synthesis of Spiropyran Derivatives and Their Biological Activity,” Journal of Molecular Catalysis A: Chemical 425 (2016): 217–28. ‏ doi:10.1016/j.molcata.2016.10.011
  • E. Noroozizadeh, A.R. Moosavi-Zare, M.A. Zolfigol, M. Zarei, R. Karamian, M. Asadbegy, S. Yari, and S.H.M. Farida, “Synthesis of Bis-Coumarins over Acetic Acid Functionalized Poly (4-Vinylpyridinum) Bromide (APVPB) as a Green and Efficient Catalyst under Solvent-Free Conditions and Their Biological Activity,” Journal of the Iranian Chemical Society 15, no. 2 (2018): 471–81. doi:10.1007/s13738-017-1247-1
  • H. Sepehrmansourie, M. Zarei, R. Taghavi, and M.A. Zolfigol, “Mesoporous Ionically Tagged Cross-Linked Poly (Vinyl Imidazole) s as Novel and Reusable Catalysts for the Preparation of N-Heterocycle Spiropyrans,” ACS Omega 4, no. 17 (2019): 17379–92. doi:10.1021/acsomega.9b02135
  • K. Tanabe and W.F. Hölderich, “Industrial Application of Solid Acid–Base Catalysts,” Applied Catalysis A: General 181, no. 2 (1999): 399–434. ‏ doi:10.1016/S0926-860X(98)00397-4
  • R. Sheldon, “Catalytic Reactions in Ionic Liquids,” Chemical Communications 23, no. 23 (2001): 2399–407. doi:10.1039/b107270f
  • K. Seth, S.R. Roy, B.V. Pipaliya, and A.K. Chakraborti, “Synergistic Dual Activation Catalysis by Palladium Nanoparticles for Epoxide Ring Opening with Phenols,” Chemical Communications (Cambridge, England) 49, no. 52 (2013): 5886–8. ‏ doi:10.1039/c3cc42507j
  • H.F. Lu, J. Zhou, H. Cheng, L. Sun, F. Yang, R. Wu, and Z. Luo “An Efficient Catalyst for Ring Opening of Epoxides with Phenol and Thiophenol under Solvent-Free Conditions,” Tetrahedron 69, no. 52 (2013): 11174–84. ‏ ‏ doi:10.1016/j.tet.2013.10.098
  • K. Cheng, B. Xin, and Y. Zhang, “The Pd (OAc)2-Catalyzed Homocoupling of Arylboronic Acids in Water and Ionic Liquid,” Journal of Molecular Catalysis A: Chemical 273, no. 1–2 (2007): 240–3. doi:10.1016/j.molcata.2007.03.031
  • S. Waitschat, D. Fröhlich, H. Reinsch, H. Terraschke, K.A. Lomachenko, C. Lamberti, H. Kummer, T. Helling, M. Baumgartner, S. Henninger, et al. “Synthesis of M-UiO-66 (M = Zr, Ce or Hf) Employing 2,5-Pyridinedicarboxylic Acid as a Linker: Defect Chemistry, Framework Hydrophilisation and Sorption Properties,” Dalton Transactions 47, no. 4 (2018): 1062–70.‏ doi:10.1039/c7dt03641h
  • A.R. Moosavi-Zare, M.A. Zolfigol, M. Zarei, A. Zare, V. Khakyzadeh, and A. Hasaninejad, “Design, Characterization and Application of New Ionic Liquid 1-Sulfopyridinium Chloride as an Efficient Catalyst for Tandem Knoevenagel–Michael Reaction of 3-Methyl-1-Phenyl-1H-Pyrazol-5 (4H)-One with Aldehydes,” Applied Catalysis A: General 467 (2013): 61–8.‏ doi:10.1016/j.apcata.2013.07.004
  • S. Kalhor, M. Zarei, H. Sepehrmansourie, M.A. Zolfigol, H. Shi, J. Wang, J. Arjomandi, M. Hasani, and R. Schirhagl, “Novel Uric Acid-Based Nano Organocatalyst with Phosphorous Acid Tags: Application for Synthesis of New Biologically-Interest Pyridines with Indole Moieties via a Cooperative Vinylogous Anomeric Based Oxidation,” Molecular Catalysis 507 (2021): 111549. doi:10.1016/j.mcat.2021.111549
  • I.V. Alabugin, L. Kuhn, M.G. Medvedev, N.V. Krivoshchapov, V.A. Vil, I.A. Yaremenko, P. Mehaffy, M. Yari, A.O. Terent, Ev, and M.A. Zolfigol, “Stereoelectronic Power of Oxygen in Control of Chemical Reactivity: The Anomeric Effect is Not Alone,” Chemical Society Reviews 50, no. 18 (2021): 10253–345. doi:10.1039/d1cs00386k
  • K. Gilmore, R.K. Mohamed, and I.V. Alabugin, “The Baldwin Rules: Revised and Extended,” Wiley Interdisciplinary Reviews: Computational Molecular Science 6, no. 5 (2016): 487–514. doi:10.1002/wcms.1261
  • M.M. Mojtahedi, M.S. Abaee, M. Bolourtchian, and H. Abbasi, “Facile Room-Temperature MgBr2 OEt2-Catalyzed Thiolysis of Epoxides under Solvent-Free Conditions,” Phosphorus Sulfur Silicon Rela 182, no. 4 (2007): 905–10. ‏ doi:10.1080/10426500601088697
  • M.M. Mojtahedi, M.S. Abaee, A. Rajabi, P. Mahmoodi, and S. Bagherpoor, “Recyclable Superparamagnetic Fe3O4 Nanoparticles for Efficient Catalysis of Thiolysis of Epoxides,” Journal of Molecular Catalysis A: Chemical 361–362 (2012): 68–71. ‏ doi:10.1016/j.molcata.2012.05.004
  • M. Shailaja, A. Manjula, and B. Vittal Rao, “(“Bromodimethyl) Sulfonium Bromide–Mediated Thiolysis of Epoxides: An Easy Access to β-Hydroxy Sulfides and Benzoxathiepinones in Solvent-Free Conditions,” Synthetic Communications 40, no. 24 (2010): 3629–39.‏ doi:10.1080/00397910903458595
  • S. Peukert and E.N. Jacobsen, “Enantioselective Parallel Synthesis Using Polymer-Supported Chiral Co (Salen) Complexes,” Organic Letters 1, no. 8 (1999): 1245–48.‏ doi:10.1021/ol990920q

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.