87
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Quantum Chemical Evaluation on the Structure, Spectroscopic, QSAR Modeling and Topological Insight of Nuarimol

, &
Pages 3633-3662 | Received 04 Aug 2022, Accepted 11 Jul 2023, Published online: 22 Jul 2023

References

  • Nidhi Agarwal, Pratibha Srivastava, Sandeep K. Raghuwanshi, D.N. Upadhyay, Sudhir Sinha, P.K. Shukla, and Vishnu Ji Ram, “Chloropyrimidines as a New Class of Antimicrobial Agents,” Bioorganic & Medicinal Chemistry 10, no. 4 (2002): 869–874. doi:10.1016/s0968-0896(01)00374-1
  • P. Sharma, N. Rane, and V.K. Gurram, “Synthesis and QSAR Studies of Pyrimido [4,5-d] Pyrimidine-2,5-Dione Derivatives as Potential Antimicrobial Agents,” Bioorganic & Medicinal Chemistry Letters 14, no. 16 (2004): 4185–4190. doi:10.1016/j.bmcl.2004.06.014
  • O. Prakash, V. Bhardwaj, R. Kumar, P. Tyagi, and K.R. Aneja, “Organoiodine (III) Mediated Synthesis of 3-Aryl/Hetryl-5,7-Dimethyl-1,2,4- Triazolo[4,3-a] Pyrimidines as Antibacterial Agents,” European Journal of Medicinal Chemistry 39, no. 12 (2004): 1073–1077. doi:10.1016/j.ejmech.2004.06.011.
  • M. Botta, M. Artico, S. Massa, A. Gambacorta, M.E. Marongiu, A. Pani, and P. La Colla, “Synthesis, Antimicrobial and Antiviral Activities of Isotrimethoprim and Some Related Derivatives,” European Journal of Medicinal Chemistry 27, no. 3 (1992): 251–257. doi:10.1016/0223-5234(92)90009-P
  • L. Sun, J. Wu, L. Zhang, M. Luo, and D. Sun, “Synthesis and Antifungal Activities of Some Novel Pyrimidine Derivatives,” Molecules 16, no. 7 (2011): 5618–5628. doi:10.3390/molecules16075618.
  • M. Albratty, and H.A. Alhazmi, “Novel Pyridine and Pyrimidine Derivatives as Promising Anticancer Agents: A Review,” Arabian Journal of Chemistry King Chemistry 15, no. 6 (2022): 103846. doi:10.1016/j.arabjc.2022.103846.
  • B. Tylinska, B. Wiatrak, Z. Czyznikowska, A. Ciesla-Niechwiadowicz, E. Gebarowska, and A. Janicka-Klos, " “Novel Pyrimidine Derivatives as Potential Anticancer Agents: Synthesis, Biological Evaluation and Molecular Docking Study,” International Journal of Molecular Sciences 22, no. 8 (2021): 1-17. doi:10.3390/ijms22083825
  • Ke-Jian Li, Ren-Yu Qu, Yu-Chao Liu, Jing-Fang Yang, Ponnam Devendar, Qiong Chen, Cong-Wei Niu, Zhen Xi, and Guang-Fu Yang, “Design, Synthesis, and Herbicidal Activity of Pyrimidine-Biphenyl Hybrids as Novel Acetohydroxyacid Synthase Inhibitors,” Journal of Agricultural and Food Chemistry 66, no. 15 (2018): 3773–3782. doi:10.1021/acs.jafc.8b00665.
  • Fikret Demirci, Murat Muştu, M.Bora Kaydan, and Selma Ülgentürk, “Effects of Some Fungicides on Isaria Farinosa, and in Vitro Growth and Infection Rate on Planococcus Citri,” Phytoparasitica 39, no. 4 (2011): 353–360. doi:10.1007/s12600-011-0168-2.
  • Martine Keenan, Michael J. Abbott, Paul W. Alexander, Tanya Armstrong, Wayne M. Best, Bradley Berven, Adriana Botero, Jason H. Chaplin, Susan A. Charman, Eric Chatelain, et al. “Analogues of Fenarimol Are Potent Inhibitors of trypanosoma cruzi and Are Efficacious in a Murine Model of Chagas Disease,” Journal of Medicinal Chemistry 55, no. 9 (2012): 4189–4204. doi:10.1021/jm2015809
  • Martine Keenan, Jason H. Chaplin, Paul W. Alexander, Michael J. Abbott, Wayne M. Best, Andrea Khong, Adriana Botero, Catherine Perez, Scott Cornwall, R.Andrew Thompson, et al. “Two Analogues of Fenarimol Show Curative Activity in an Experimental Model of Chagas Disease,” Journal of Medicinal Chemistry 56, no. 24 (2013): 10158–10170. doi:10.1021/jm401610c.
  • G. Kang, J. Kim, H. Park, and T.H. Kim, “Crystal Structure of Nuarimol," Acta Crystallographica Section E,” Crystallographic Communications International Union of Crystallography 71 (2015): 0586–0587. doi:10.1107/S2056989015013493
  • V. Narayan, H.N. Mishra, O. Prasad, and L. Sinha, “Electronic Structure, Electric Moments and Vibrational Analysis of 5-Nitro-2-Furaldehyde Semicarbazone: A D.F.T. study,” Computational and Theoretical Chemistry Elsevier Chemistry 973, no. 1-3 (2011): 20–27. doi:10.1016/j.comptc.2011.06.023
  • M. Muthukkumar, T. Bhuvaneswari, G. Venkatesh, C. Kamal, P. Vennila, S. Armakovic, S.J. Armakovic, Y.S. Mary, and C.Y. Panicker, “Synthesis, Characterization and Computational Studies of Semicarbazide Derivative,” Journal of Molecular Liquids Elsevier Liquids 272, no. 2018 (2018): 481–495. doi:10.1016/j.molliq.2018.09.123.
  • S.M. Hiremath, A.S. Patil, C.S. Hiremath, M. Basangouda, S.S. Khemalapure, N.R. Patil, S.B. Radder, S.J. Armakovic, and S. Armakovic, “Structural, Spectroscopic Characterization of 2-(5-Methyl-1-Benzofuran-3-yl) Acetic Acid in Monomer, Dimer and Identification of Specific Reactive, Drug Likeness Properties: Experimental and Computational Study,” Journal of Molecular Structure 1178 (2019): 1–17. doi:10.1016/j.molstruc.2018.10.007.
  • P.K. Murthy, V. Suneetha, S. Armakovic, S.J. Armakovic, P.A. Suchetan, L. Giri, and R.S. Rao, " “Synthesis, Characterization and Computational Study of the Newly Synthetized Sulfonamide Molecule,” Journal of Molecular Structure 1153 (2018): 212–229. doi:10.1016/j.molstruc.2017.10.028.
  • A.D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” The Journal of Chemical Physics 98, no. 7 (1993): 5648–5652. doi:10.1063/1.464913
  • C. Lee, W. Yang, and R.G. Parr, " “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–789. doi:10.1103/physrevb.37.785.
  • R. Krishnan, J.S. Binkley, R. Seeger, and J.A. Pople, “Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions,” The Journal of Chemical Physics 72, no. 1 (1980): 650–654. doi:10.1063/1.438955
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, B.M.M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, H.P.H.G.A. Petersson, H. Nakatsuji, M. Caricato, et al. Gaussian 09, Revision A. 02 (Wallingford, CT: Gaussian Inc., 2009).
  • T. Sundius, “Scaling of Ab Initio Force Fields by MOLVIB,” Vibrational Spectroscopy 29, no. 1–2 (2002): 89–95. doi:10.1016/S0924-2031(01)00189-8.
  • T. Yanai, D.P. Tew, and N.C. Handy, “A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP,”) ,"Chemical Physics Letters 393, no. 1-3 (2004): 51–57. doi:10.1016/j.cplett.2004.06.011.
  • Noel M. O’Boyle, Adam L. Tenderholt, and Karol M. Langner, “Software News and Updates Cclib: A Library for Package-Independent Computational Chemistry Algorithms,” Journal of Computational Chemistry 29, no. 5 (2008): 839–845. doi:10.1002/jcc.20823
  • E.D. Glendening, C.R. Landis, and F. Weinhold, “Natural Bond Orbital Methods,” WIREs Computational Molecular Science 2, no. 1 (2012): 1–42. doi:10.1002/wcms.51.
  • R. Dennington, T. Keith, and J. Millam, GaussView, Version 4.1. 2, Semichem Inc, Shawnee Mission, KS (2007).
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–592. doi:10.1002/jcc.22885.
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics 14, no. 1 (1996): 33–38. doi:10.1016/0263-7855(96)00018-5
  • M.J. Turner, J.J. Mckinnon, S. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, and M.A. Spackman, CrystalExplorer17 (Perth: The University of Western Australia, 2017).
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, “QSARINS: A New Software for the Development, Analysis, and Validation of QSAR MLR Models,” Journal of Computational Chemistry 34, no. 24 (2013): 2121–2132. doi:10.1002/jcc.23361.
  • O. Trott, and A.J. Olson, “AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–461. doi:10.1002/jcc.21334
  • G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang, and J.R. Durig, “Vibrational Spectra of monothiocarbamates-II. IR and Raman Spectra, Vibrational Assignment, Conformational Analysis and ab Initio Calculations of S-methyl-N,N-Dimethylthiocarbamate,” Spectrochimica Acta Part A: Molecular Spectroscopy 49, no. 13-14 (1993): 2007–2026. doi:10.1016/S0584-8539(09)91012-1
  • G. Keresztury, Raman Spectroscopy: Theory in Hand Book of Vibrational Spectroscopy, John Wiley &Sons Ltd, New York, (2006): 71–87. doi:10.1002/9780470027325.s0109
  • G.P. Sheeja Mol, D. Aruldhas, I. Hubert Joe, S. Balachandran, A. Ronaldo Anuf, Jesby George, and Anuroopa G. Nadh, “Structural Activity, Fungicidal Activity and Molecular Dynamics Simulation of Certain Triphenyl Methyl Imidazole Derivatives by Experimental and Computational Spectroscopic Techniques,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Elsevier Spectroscopy 212 (2019): 105–120. doi:10.1016/j.saa.2018.12.047.
  • S.J.J. Mary, M.U.M. Siddique, S. Pradhan, V. Jayaprakash, and C. James, “Quantum Chemical Insight into Molecular Structure, NBO Analysis of the Hydrogen-Bonded Interactions, Spectroscopic (FT–IR, FT–Raman), Drug Likeness and Molecular Docking of the Novel anti COVID-19 Molecule 2-[(4,6-Diaminopyrimidin-2-yl)Sulfanyl]-N-(4-Fluorophenyl) Acetamide- Dimer,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 244 (2021): 118825. doi:10.1016/j.saa.2020.118825.
  • H.M. Robert, D. Usha, M. Amalanathan, R.R.J. Geetha, and M.S.M. Mary, " “Vibrational Spectral, Density Functional Theory and Molecular Docking Analysis on 4-Nitrobenzohydrazide,” Journal of Molecular Structure 1223 (2021): 128948. doi:10.1016/j.molstruc.2020.128948.
  • J.D. Anban, C. James, J.S. Kumar, and S. Pradhan, “Molecular Structure, Electronic Properties and Drug-Likeness of Xylazine by Quantum Methods and Qsar Analysis,” SN Applied Sciences 2, no. 10 (2020): 1–11. doi:10.1007/s42452-020-03493-5.
  • J.D. Deephlin Tarika, X.D. Divya Dexlin, A. Rathika, A. Arun Kumar, D. Deva Jayanthi, and T. Joselin Beaula, “Impact of Protonation and Hydrogen Bonding Interactions on the Biological Properties of Antibacterial Compound 4-Dimethylaminopyridinium Salicylate Monohydrate: Correlation with Its Precursor Molecules,” Polycyclic Aromatic Compounds Taylor Compounds 42 (2022): 1–23. doi:10.1080/10406638.2022.2110904.
  • S.J. Jenepha Mary, S. Pradhan, and C. James, “Vibrational Spectroscopic Signatures, Effect of Rehybridization and Hyperconjugation on the Dimer Molecule of N–(4–Chlorophenyl)–2–[(4,6–di–Aminopyrimidin–2–yl) Sulfanyl] Acetamide- Quantum Computational Approach,” Spectroscopy Letters Taylor Letters 55, no. 7 (2022): 447–463. doi:10.1080/00387010.2022.2098339
  • J.D.D. Tarika, X.D.D. Dexlin, A. Arun Kumar, A. Rathika, D.D. Jayanthi, and T.J. Beaula, “Computational Insights on Charge Transfer and Non-Covalent Interactions of Antibacterial Compound 4-Dimethylaminopyridinium Pyridine-2-Carboxylate Pentahydrate,” Journal of Molecular Structure 1256 (2022): 132525. doi:10.1016/j.molstruc.2022.132525.
  • Gino Dj, Chinnasami Sidden, Rajesh Paulraj, H.Marshan Robert, and S. Ajitha, “Structural, Hirshfeld Surface Analysis, Third Order Non-Linear Optical and Molecular Modelling of Imidazolium Glutarate Single Crystals for Optical Applications,” Journal of Molecular Structure Elsevier Structure 1276 (2023): 134672. doi:10.1016/j.molstruc.2022.134672.
  • J.C. Monicka, and C. James, “Vibrational Spectra and Natural Bond Orbital Analysis of the Herbicidal Molecule 2(4-Chlorophenoxy)-2-Methyl Propionic Acid,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 78, no. 2 (2011): 718–725. doi:10.1016/j.saa.2010.12.001
  • J.D. Deephlin Tarika, A. Rathika, A. Arun Kumar, X.D. Divya Dexlin, D. Deva Jayanthi, and T. Joselin Beaula, “Consequence of Proton Transfer and Hydrogen Bonding Interactions on the Molecular, Vibrational and Biological Properties of the Novelly Synthesized Antibacterial Compound Bis-(4-Dimethylaminopyridinium) Bis-(3, 5-Dinitrobenzoate) Monohydrate Using DFT Study,” Journal of Molecular Structure Elsevier Structure 1261 (2022): 132914. doi:10.1016/j.molstruc.2022.132914.
  • O. Noureddine, S. Gatfaoui, S.A. Brandan, A. Sagaama, H. Marouani, and N. Issaoui, “Experimental and DFT Studies on the Molecular Structure, Spectroscopic Properties, and Molecular Docking of 4-Phenylpiperazine-1-Ium Dihydrogen Phosphate,” Journal of Molecular Structure 1207 (2020): 127762. doi:10.1016/j.molstruc.2020.127762.
  • A. Viji, V. Balachandran, S. Babiyana, B. Narayana, and V.V. Salian, “FT-IR and FT-Raman Investigation, Quantum Chemical Studies, Molecular Docking Study and Antimicrobial Activity Studies on Novel Bioactive Drug of 1-(2,4-Dichlorobenzyl)-3-[2-(3-(4-Chlorophenyl)-5-(4-(Propan-2-yl)Phenyl-4,5-Dihydro-1H-Pyrazol-1-yl]-4-Oxo-4,5-Dihydro-1,3-Thiazol-5(4H)-Ylidence]-2,3-Dihydro-1H-Indol-2-One,” Journal of Molecular Structure Elsevier Structure 1215 (2020): 128244. doi:10.1016/j.molstruc.2020.128244.
  • R.N. Singh, A. Kumar, R.K. Tiwari, P. Rawat, and V.P. Gupta, “A Combined Experimental and Quantum Chemical (DFT and AIM) Study on Molecular Structure, Spectroscopic Properties, NBO and Multiple Interaction Analysis in a Novel Ethyl 4-[2-(Carbamoyl)Hydrazinylidene]-3,5-Dimethyl-1H- Pyrrole-2-Carboxylate and Its Dimer,” Journal of Molecular Structure 1035 (2013): 427–440. doi:10.1016/j.molstruc.2012.11.059.
  • R. Konakanchi, K.P. Rao, G.N. Reddy, and J. Prashanth, “Zinc(II) Complex: Spectroscopic, Physicochemical Calculations, anti-Inflammatory and in Silico Molecular Docking Studies,” Journal of Molecular Structure Elsevier Structure 1263 (2022): 133070. doi:10.1016/j.molstruc.2022.133070.
  • G. Varsanyi, Vibrational Spectra of Benzene Derivatives (Budapest: Akademia Kiado, 1969), 141–393.
  • P.R. Reddy, J. Prashanth, B. Prasanna, and B.V. Reddy, “Synthesis, Spectroscopic, and DFT Quantum Chemical Studies of 3- and 4-Pyridylacetonitriles,” Journal of Molecular Structure Elsevier Structure 1176 (2019): 447–460. doi:10.1016/j.molstruc.2018.08.061.
  • J. Priscilla, D. Arul Dhas, I. Hubert Joe, and S. Balachandran, “Experimental and Theoretical Spectroscopic Analysis, Hydrogen Bonding, Reduced Density Gradient and Antibacterial Activity Study on 2-Phenyl Quinoline Alkaloid,” Chemical Physics 536 (2020): 110827. doi:10.1016/j.chemphys.2020.110827.
  • J. Prashanth, R. Konakanchi, and B.V. Reddy, “Barrier Potentials, Molecular Structure, Force Filed Calculations and Quantum Chemical Studies of Some Bipyridine di-Carboxylic Acids Using the Experimental and Theoretical Using (DFT, IVP) Approach,” Molecular Simulation Taylor Simulation 45, no. 16 (2019): 1353–1383. doi:10.1080/08927022.2019.1634807.
  • C. Sivakumar, B. Revathi, V. Balachandran, B. Narayana, Vinutha V. Salian, N. Shanmugapriya, and K. Vanasundari, “Molecular Structure, Spectroscopic, Quantum Chemical, Topological, Molecular Docking and Antimicrobial Activity of 3-(4-Chlorophenyl)-5-[4-Propan-2-yl) Phenyl-4, 5-Dihydro-1H-Pyrazol-1-yl] (Pyridin-4-yl) Methanone,” Journal of Molecular Structure Elsevier Structure 1224 (2021): 129286. doi:10.1016/j.molstruc.2020.129286.
  • G. Socrates, Infrared Characteristic Group Frequencies, John Wiley and sons, New York, 1981.
  • W. Abisha, D.A. Dhas, S. Balachandran, and I.H. Joe, “Molecular Structure, Spectroscopic Elucidation (FT-IR, FT-Raman, UV-Visible and NMR) with NBO, ELF, LOL, RDG, Fukui, Drug Likeness and Molecular Docking Analysis on Dimethomorph,” Polycyclic Aromatic Compounds Taylor Compounds 43, no. 5 (2023): 3988–4031. doi:10.1080/10406638.2022.2083195.
  • K. Ramaiah, K. Srishailam, K. Laxma Reddy, B.V. Reddy, and G. Ramana Rao, “Synthesis, Crystal and Molecular Structure, and Characterization of 2-((2-Aminopyridin-3-yl)Methylene)-N-Ethylhydrazinecarbothioamide Using Spectroscopic (1 H and 13 C NMR, FT-IR, FT-Raman, UV–Vis) and DFT Methods and Evaluation of Its Anticancer Activity,” Journal of Molecular Structure Elsevier Structure 1184 (2019): 405–417. doi:10.1016/j.molstruc.2019.02.060.
  • M. Sumithra, S. Jone Pradeepa, D. Tamilvendan, M.S. Boobalan, and N. Sundaraganesan, “Spectral (FT-IR, FT-Raman, NMR, UV–Vis), Electronic Structure (DFT, TD-DFT), and Molecular Docking Investigations on 1-((1H-Benzo[d]Imidazol-1-yl)Methyl)Urea – a Bioactive Mannich Base System,” Chemical Physics Letters Elsevier Letters 806 (2022): 140047. doi:10.1016/j.cplett.2022.140047.
  • S. Slassi, M. Aarjane, and A. Amine, “Synthesis, Spectroscopic Characterization (FT-IR, NMR, UV-Vis), DFT Study, Antibacterial and Antioxidant in Vitro Investigations of 4,6-Bis((E)-1-((3-(1H-Imidazol-1-yl) Propyl) Imino) Ethyl) Benzene-1,3-Diol,” Journal of Molecular Structure Elsevier Structure 1255 (2022): 132457. doi:10.1016/j.molstruc.2022.132457.
  • S. Armakovic, and S.J. Armakovic, “Atomistica.online – Web Application for Generating Input Files for ORCA Molecular Modelling Package Made with the Anvil Platform,” Molecular Simulation 49 (2022): 1–7. doi:10.1080/08927022.2022.2126865
  • T.N. Lohith, S. Shamanth, M.A. Sridhar, K. Mantelingu, and N.K. Lokanath, “Synthesis, Molecular Structure, Hirshfeld Surface, Energy Framework and DFT Studies of 1, 3, 4 Oxadiazole Derivative,” Journal of Molecular Structure Elsevier Structure 1252 (2022): 132203. doi:10.1016/j.molstruc.2021.132203.
  • K. Benbouguerra, N. Chafai, S. Chafaa, Y.I. Touahria, and H. Tlidjane, “New α-Hydrazinophosphonic Acid: Synthesis, Characterization, DFT Study and in Silico Prediction of Its Potential Inhibition of SARS-CoV-2 Main Protease,” Journal of Molecular Structure 1239 (2021): 130480. doi:10.1016/j.molstruc.2021.130480.
  • R. Konakanchi, P. Jyothi, and L.R. Kotha, “Investigation of Structures, FTIR, FT-Raman, in Vivo anti-Inflammatory, Molecular Docking and Molecular Characteristics of 2-Amino-3-Pyridine Carboxaldehyde and Its Copper(II) Complex Using Experimental and Theoretical Approach,” Polycyclic Aromatic Compounds Taylor Compounds 42, no. 1 (2022): 226–248. doi:10.1080/10406638.2020.1725899
  • V. Balachandran, S. Lalitha, and S. Rajeswari, “Density Functional Theory, Comparative Vibrational Spectroscopic Studies, NBO, HOMO-LUMO Analyses and Thermodynamic Functions of N-(Bromomethyl) Phthalimide and N-(Chloromethyl)Phthalimide,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 91 (2012): 146–157. doi:10.1016/j.saa.2012.01.034.
  • Y.Sheena Mary, C.Yohannan Panicker, Thies Thiemann, Mariam Al-Azani, Abdulaziz A. Al-Saadi, C. Van Alsenoy, K. Raju, Javeed Ahmad War, and S.K. Srivastava, “Molecular Conformational Analysis, Vibrational Spectra, NBO, NLO Analysis and Molecular Docking Study of Bis[(E)-Anthranyl-9-Acrylic]Anhydride Based on Density Functional Theory Calculations,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 151 (2015): 350–359. doi:10.1016/j.saa.2015.06.075.
  • P. Manjusha, J.C. Prasana, S. Muthu, and B.F. Rizwana, “Spectroscopic Elucidation (FT-IR, FT-Raman and UV-Visible) with NBO, NLO, ELF, LOL, Drug Likeness and Molecular Docking Analysis on 1-(2-Ethylsulfonylethyl)-2-Methyl-5-Nitro-Imidazole: An Antiprotozoal Agent,” Computational Biology and Chemistry 88 (2020): 107330. 107330 doi:10.1016/j.compbiolchem.2020.107330
  • R.N. Asha, V.V. Murugan, P.P. Matheswari, S. Kumaresan, N. Bhuvanesh, and, and B.R.D. Nayagam, “Cocrystallization of 2,4-Diamino-6-Phenyl-1,3,5-Triazine with β-(Phenylthio)Propionic Acid: Crystal Structure, Hirshfeld Surface, DFT Studies and Molecular Docking,” Chemical Data Collections Elsevier Collections 29 (2020): 100520. doi:10.1016/j.cdc.2020.100520.
  • N. Suma, D. Aruldhas, I.H. Joe, B.S.A. Sasi, A.R. Anuf, G.P.S. Mol, S. Balachandran, and J. George, " “Spectroscopic and Molecular Structure Investigation of Propachlor Herbicide: A Combined Experimental and Theoretical Study,” Journal of Molecular Structure Elsevier Structure 1221 (2020): 128866. doi:10.1016/j.molstruc.2020.128866.
  • D.E V. Pires, T.L. Blundell, and D.B. Ascher, “pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures,” Journal of Medicinal Chemistry 58, no. 9 (2015): 4066–4072. doi:10.1021/acs.jmedchem.5b00104.
  • N. Nahed El-Sayed, T.M. Al-Otaibi, M. Alonazi, H.V. Masand, A. Barakat, M. Zainab Almarhoon, and A.B. Bacha, “Synthesis and Characterization of Some New Quinoxalin-2 (1H) One and 2-Methyl-3H-Quinazolin-4-One Derivatives Targeting the Onset and Progression of CRC with SRA, Molecular Docking, and ADMET Analyses,” Molecules 26, no. 21 (2021): 3121. doi:10.3390/molecules26113121
  • J. Kirchmair, A.H. Goller, D. Lang, J. Kunze, B. Testa, I.D. Wilson, R.C. Glen, and G. Schneider, “Predicting Drug Metabolism: Experiment and/or Computation,” Nature Reviews. Drug Discovery 14, no. 6 (2015): 387–404. doi:10.1038/nrd4581.
  • A. Garrido, A. Lepailleur, S.M. Mignani, P. Dallemagne, and C. Rochais, “hERG Toxicity Assessment: Useful Guidelines for Drug Design,” European Journal of Medicinal Chemistry 195 (2020): 112290. doi:10.1016/j.ejmech.2020.112290.
  • M. Govindammal, M. Prasath, S. Kamaraj, S. Muthu, and M. Selvapandiyan, “Exploring the Molecular Structure, Vibrational Spectroscopic, Quantum Chemical Calculation and Molecular Docking Studies of Curcumin : A Potential PI3K/AKT Uptake Inhibitor,” Heliyon 7, no. 4 (2021): e06646. doi:10.1016/j.heliyon.2021.e06646.
  • C.A. Lipinski, “Lead- and Drug-like Compounds: The Rule-of-Five Revolution,” Drug Discovery Today. Technologies 1, no. 4 (2004): 337–341. doi:10.1016/j.ddtec.2004.11.007.
  • David C. Rees, Miles Congreve, Christopher W. Murray, and Robin Carr, “Fragment-Based Lead Discovery,” Nature Reviews. Drug Discovery 3, no. 8 (2004): 660–672. doi:10.1038/nrd1467
  • A.L. Christopher, F. Lombardo, and W. Beryl Dominy, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Adv. Drug. Del. Rev 23, no. 1–3 (1997): 3–25. doi:10.1016/S0169-409X(96)00423-1
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7 (2017): 42717. doi:10.1038/srep42717.
  • A. Gaulton, L.J. Bellis, A.P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, et al. “ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery,” Nucleic Acids Research 40, no. Database issue (2012): D1100–07. doi:10.1093/nar/gkr777
  • C.Y. Wei, “PaDEL-Descriptor: An Open Source Software to Calculate Molecular Descriptors and Fingerprints,” Journal of Computational Chemistry 32 (2011): 1466–1474. doi:10.1002/jcc.21707.
  • J. Klekota, and F.P. Roth, “Chemical Substructures That Enrich for Biological Activity,” Bioinformatics (Oxford, England) 24, no. 21 (2008): 2518–2525. doi:10.1093/bioinformatics/btn479.
  • R. Todeschini, and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim (2009).
  • V.H. Masand, N.N.E. El-Sayed, M.U. Bambole, V.R. Patil, and S.D. Thakur, “Multiple Quantitative Structure-Activity Relationships (QSARs) Analysis for Orally Active Trypanocidal N-Myristoyltransferase Inhibitors,” Journal of Molecular Structure 1175 (2019): 481–487. doi:10.1016/j.molstruc.2018.07.080.
  • A.A. Ishola, O. Adedirin, T. Joshi, and S. Chandra, “QSAR Modeling and Pharmacoinformatics of SARS Coronavirus 3C-like Protease Inhibitors,” Computers in Biology and Medicine 134, no. 4 (2021): 104483. doi:10.1016/j.compbiomed.2021.104483.
  • N. Ramalakshmi, P. Manimegalai, R.R. Bhandare, S. Arun Kumar, and A.B. Shaik, “2D-Quantitative Structure Activity Relationship (QSAR) Modeling, Docking Studies, Synthesis and in-Vitro Evaluation of 1,3,4-Thiadiazole Tethered Coumarin Derivatives as Antiproliferative Agents,” Journal of Saudi Chemical Society 25, no. 7 (2021): 101279. doi:10.1016/j.jscs.2021.101279.
  • A. Tropsha, “Best Practices for QSAR Model Development, Validation, and Exploitation,” Molecular Informatics 29, no. 6-7 (2010): 476–488. doi:10.1002/minf.201000061.
  • S.B. Olasupo, A. Uzairu, G.A. Shallangwa, and S. Uba, “Profiling the Antidepressant Properties of Phenyl Piperidine Derivatives as Inhibitors of Serotonin Transporter (SERT) via Cheminformatics Modeling, Molecular Docking and ADMET Predictions,” Scientific African Elsevier 9 (2020): e00517. doi:10.1016/j.sciaf.2020.e00517.
  • M.M. Al Mogren, E. Zerroug, S. Belaidi, A. Benamor, and S.D.A. Al Harbi, “Molecular Structure, Drug Likeness and QSAR Modeling of 1,2-Diazole Derivatives as Inhibitors of Enoyl-Acyl Carrier Protein Reductase,” Journal of King Saud University - Science 32, no. 4 (2020): 2301–2310. doi:10.1016/j.jksus.2020.03.007.
  • T.Y. Hargrove, Z. Wawrzak, P.W. Alexander, J.H. Chaplin, M. Keenan, S.A. Charman, C.J. Perez, M.R. Waterman, E. Chatelain, and G.I. Lepesheva, “Complexes of trypanosoma cruzi Sterol 14α-Demethylase (CYP51) with Two Pyridine-Based Drug Candidates for Chagas Disease: Structural Basis for Pathogen Selectivity,” The Journal of Biological Chemistry 288, no. 44 (2013): 31602–31615. doi:10.1074/jbc.M113.497990
  • Laura Friggeri, Tatiana Y. Hargrove, Girish Rachakonda, Amanda D. Williams, Zdzislaw Wawrzak, Roberto Di Santo, Daniela De Vita, Michael R. Waterman, Silvano Tortorella, Fernando Villalta, et al. “Structural Basis for Rational Design of Inhibitors Targeting Trypanosoma cruzi Sterol 14α-Demethylase: Two Regions of the Enzyme Molecule Potentiate Its Inhibition,” Journal of Medicinal Chemistry 57, no. 15 (2014): 6704–6717. doi:10.1021/jm500739f.
  • B. Fathima Rizwana, J.C. Prasana, C.S. Abraham, and S. Muthu, “Spectroscopic Investigation, Hirshfeld Surface Analysis and Molecular Docking Studies on anti-Viral Drug Entecavir,” Journal of Molecular Structure 1164 (2018): 447–458. doi:10.1016/j.molstruc.2018.03.090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.