105
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and Evaluation of Novel Quinazolinone Thioether Linked 5-Aryl-1,2,4-Triazoles for Anticancer and Antimicrobial Activity

, , &
Pages 3678-3698 | Received 23 Feb 2023, Accepted 12 Jul 2023, Published online: 25 Jul 2023

References

  • Z. Abbas and S. Rehman, "An overview of cancer treatment modalities" Neoplasm 1 (2018): 139–157.
  • Y. Kudo, H. Tada, N. Fujiwara, et al. Oral environment and cancer. Genes and Environ 38 (2016): 13. https://doi.org/10.1186/s41021-016-0042-z
  • J. Dai, S. Tian, X. Yang, and Z. Liu, “Synthesis Methods of 1,2,3-/1,2,4-Triazoles: A Review,” Frontiers in Chemistry 10 (2022): 891484. doi:10.3389/fchem.2022.891484
  • L. Peyton, S. Gallagher, and M. Hashemzadeh, “Triazole Antifungals: A Review,” Drugs of Today 51, no. 12 (2015): 705–718. doi:10.1358/dot.2015.51.12.2421058
  • R. Kharb, P.C. Sharma, and M.S. Yar, “Pharmacological Significance of Triazole Scaffold,” Journal of Enzyme Inhibition and Medicinal Chemistry 26, no. 1 (2011): 1–21. doi:10.3109/14756360903524304
  • Z. Xu, S.-J. Zhao, and Y. Liu, “1, 2, 3-Triazole-Containing Hybrids as Potential Anticancer Agents: Current Developments, Action Mechanisms and Structure-Activity Relationships,” European Journal of Medicinal Chemistry 183 (2019): 111700. doi:10.1016/j.ejmech.2019.111700
  • J. Heeres, L. Meerpoel, and P. Lewi, “Conazoles,” Molecules 15, no. 6 (2010): 4129–4188. no doi:10.3390/molecules15064129
  • P. Kovacic, and M.-C Z. Abadjian, “Mechanism of Antifungal Triazoles and Related Drugs: Electron Transfer, Reactive Oxygen Species and Oxidative Stress,” SOJ Microbiology & Infectious Diseases 5, no. 5 (2017): 1–9. doi:10.15226/sojmid/5/5/00182
  • S. Maddila, R. Pagadala, and S.B. Jonnalagadda, “1, 2, 4-Triazoles: A Review of Synthetic Approaches and the Biological Activity,” Letters in Organic Chemistry 10, no. 10 (2013): 693–714. no doi:10.2174/157017861010131126115448
  • M. Kumari, S. Tahlan, B. Narasimhan, K. Ramasamy, S.M. Lim, S.A.A. Shah, V. Mani, and S. Kakkar, “Synthesis and Biological Evaluation of Heterocyclic 1,2,4-Triazole Scaffolds as Promising Pharmacological Agents,” BMC Chemistry 15, no. 1 (2021): 5. doi:10.1186/s13065-020-00717-y
  • R. Kaur, A. Ranjan Dwivedi, B. Kumar, and V. Kumar, “Recent Developments on 1, 2, 4-Triazole Nucleus in Anticancer Compounds: A Review,” Anti-Cancer Agents in Medicinal Chemistry 16, no. 4 (2016): 465–489. ) no doi:10.2174/1871520615666150819121106
  • M. Aziz, S.A. Ejaz, N. Tamam, F. Siddique, N. Riaz, and F. A. Qais, S. Chtita, and J. Iqbal, “Identification of Potent Inhibitors of NEK7 Protein Using a Comprehensive Computational Approach,” Scientific Reports 12, no. 1 (2022): 6404. doi:10.1038/s41598-022-10253-5
  • H.A.M. El-Sherief, B.G.M. Youssif, S.N.A. Bukhari, M. Abdel-Aziz, and H.M. Abdel-Rahman, “Novel 1,2,4-Triazole Derivatives as Potential Anticancer Agents: Design, Synthesis, Molecular Docking and Mechanistic Studies,” Bioorganic Chemistry 76 (2018): 314–325. doi:10.1016/j.bioorg.2017.12.013
  • X. Wen, Y. Zhou, J. Zeng, and X. Liu, “Recent Development of 1,2,4-Triazole-Containing Compounds as Anticancer Agents,” Current Topics in Medicinal Chemistry 20, no. 16 (2020): 1441–1460. no doi:10.2174/1568026620666200128143230
  • V. Ivasiv, C. Albertini, A.E. Gonçalves, M. Rossi, and M.L. Bolognesi, “Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases,” Current Topics in Medicinal Chemistry 19, no. 19 (2019): 1694–1711. doi:10.2174/1568026619666190619115735
  • J.R. Harrison, S. Brand, V. Smith, D.A. Robinson, S. Thompson, A. Smith, K. Davies, N. Mok, L.S. Torrie, I. Collie, et al. “A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant N-Myristoyltransferase Inhibitors,” Journal of Medicinal Chemistry 61, no. 18 (2018): 8374–8389. doi:10.1021/acs.jmedchem.8b00884
  • R. Sunil, S. Pal, and A. Jayashree, “Molecular Hybridization-an Emanating Tool in Drug Design,” Medicinal Chemistry. 9, no. 6 (2019): 93–95.
  • F. Gao, T. Wang, J. Xiao, and G. Huang, “Antibacterial Activity Study of 1, 2, 4-Triazole Derivatives,” European Journal of Medicinal Chemistry 173 (2019): 274–281. doi:10.1016/j.ejmech.2019.04.043
  • E. Zacharioudakis, B. Agianian, V. Kumar Mv, N. Biris, T.P. Garner, I. Rabinovich-Nikitin, A.T. Ouchida, V. Margulets, L.U. Nordstrøm, J.S. Riley, et al. “Modulating Mitofusins to Control Mitochondrial Function and Signaling,” Nature Communications 13, no. 1 (2022): 3775. doi:10.1038/s41467-022-31324-1
  • H.M. Abdullah Asif, S. Kamal, A.-U. Rehman, S. Rasool, and M.S. Hamid Akash, “Synthesis, Characterization, and Enzyme Inhibition Properties of 1, 2, 4-Triazole Bearing Azinane Analogues,” ACS Omega 7, no. 36 (2022): 32360–32368. doi:10.1021/acsomega.2c03779
  • J. Zhang, S. Wang, Y. Ba, and Z. Xu, “1,2,4-Triazole-Quinoline/Quinolone Hybrids as Potential anti-Bacterial Agents,” European Journal of Medicinal Chemistry 174 (2019): 1–8. doi:10.1016/j.ejmech.2019.04.033
  • P. Peng, H. Chen, Y. Zhu, Z. Wang, J. Li, R.H. Luo, J. Wang, L. Chen, L.M. Yang, H. Jiang, et al. “Structure-Based Design of 1-Heteroaryl-1,3-Propanediamine Derivatives as a Novel Series of CC-Chemokine Receptor 5 Antagonists,” Journal of Medicinal Chemistry 61, no. 21 (2018): 9621–9636. doi:10.1021/acs.jmedchem.8b01077
  • V. La Pietra, S. Sartini, L. Botta, A. Antonelli, S. M. Ferrari, P. Fallahi, A. Moriconi, V. Coviello, L. Quattrini, Y.Y. Ke, et al. “Challenging Clinically Unresponsive Medullary Thyroid Cancer: Discovery and Pharmacological Activity of Novel RET Inhibitors,” European Journal of Medicinal Chemistry 150 (2018): 491–505. doi:10.1016/j.ejmech.2018.02.080
  • B. Rathod, and K. Kumar, “Synthetic and Medicinal Perspective of 1,2,4-Triazole as Anticancer Agents,” Chemistry and Biodiversity 19, no. 2022: e202200679.
  • A. Ozdemir, B. Sever, M.D. Altintop, H.E. Temel, O. Atli, M. Baysal, and F. Demirci, “Synthesis and Evaluation of New Oxadiazole, Thiadiazole, and Triazole Derivatives as Potential Anticancer Agents Targeting MMP-9,” Molecules 22 (2017): 1109. doi:10.3390/molecules22071109
  • A. Al Sheikh Ali, D. Khan, A. Naqvi, F.F. Al-Blewi, N. Rezki, M.R. Aouad, and M. Hager, “Design, Synthesis, Molecular Modeling, Anticancer Studies, and Density Functional Theory Calculations of 4-(1,2,4-Triazol-3-Ylsulfanylmethyl)-1,2,3-Triazole Derivatives,” ACS Omega 6, no. 1 (2021): 301–316. doi:10.1021/acsomega.0c04595
  • M.D. Altıntop, Z.A. Kaplancıklı, G. Turan-Zitouni, A. Özdemir, F. Demirci, G. İşcan, and G. Revial, “Synthesis of Some Novel Triazole Derivatives and Investigation of Their Antimicrobial Activities,” Synthetic Communications 41, no. 15 (2011): 2234–2250. doi:10.1080/00397911.2010.501475
  • P. Wdowiak, J. Matysiak, P. Kuszta, K. Czarnek, E. Niezabitowska, and T. Baj, “Quinazoline Derivatives as Potential Therapeutic Agents in Urinary Bladder Cancer Therapy,” Frontiers in Chemistry 9 (2021) : 765552. doi:10.3389/fchem.2021.765552
  • K. El-Adl, A.A. El-Helby, R.R. Ayyad, H.A. Mahdy, M.M. Khalifa, H.A. Elnagar, A.B.M. Mehany, A.M. Metwaly, M.A. Elhendawy, M.M. Radwan, et al. “Design, Synthesis, and anti-Proliferative Evaluation of New Quinazolin-4(3H)-Ones as Potential VEGFR-2 Inhibitors,” Bioorganic & Medicinal Chemistry 29 (2021): 115872. doi:10.1016/j.bmc.2020.115872
  • A.E. Abdallah, S.I. Eissa, M.M.S. Al Ward, R.R. Mabrouk, A.B.M. Mehany, and M.A. El-Zahabi, “Design, Synthesis and Molecular Modeling of New Quinazolin-4(3H)-One Based VEGFR-2 Kinase Inhibitors for Potential Anticancer Evaluation,” Bioorganic Chemistry 109 (2021): 104695. doi:10.1016/j.bioorg.2021.104695
  • I.H. Eissa, A.A. El-Helby, H.A. Mahdy, M.M. Khalifa, H.A. Elnagar, A.B.M. Mehany, A.M. Metwaly, M.A. Elhendawy, M.M. Radwan, M.A. ElSohly, et al. “Discovery of New Quinazolin-4(3H)-Ones as VEGFR-2 Inhibitors: Design, Synthesis, and anti-Proliferative Evaluation,” Bioorganic Chemistry 105 (2020): 104380. doi:10.1016/j.bioorg.2020.104380
  • K. Kaczorowska, A. Stankiewicz, R. Bugno, M.H. Paluchowska, G. Burnat, P. Brański, P. Cieślik, J.M. Wierońska, M. Milik, M. Nowak, et al. “Design and Synthesis of New Quinazolin-4-One Derivatives with Negative mGlu(7) Receptor Modulation Activity and Antipsychotic-Like Properties,” International Journal of Molecular Sciences. 24, no. 3 (2023): 1981.
  • J.L. Tu, B.H. Wu, H.B. Wu, J.E. Wang, Z.L. Zhang, K.Y. Gao, L.X. Zhang, Q.R. Chen, Y.C. Zhou, J.H. Tan, et al. “Design, Synthesis and Evaluation of N3-Substituted Quinazolinone Derivatives as Potential Bloom’s Syndrome Protein (BLM) Helicase Inhibitor for Sensitization Treatment of Colorectal Cancer,” European Journal of Medicinal Chemistry 246 (2023): 114944. doi:10.1016/j.ejmech.2022.114944
  • H. Mostafavi, M.R. Islami, H. Khabazzadeh, and M. Khaleghi, “Synthesis of New Quinazolin‐4‐(3H)‐One Derivatives and Evaluation of Their Biological Activities,” ChemistrySelect 4, no. 11 (2019): 3169–3174. doi:10.1002/slct.201803039
  • S. Gatadi, J. Gour, M. Shukla, G. Kaul, A. Dasgupta, Y. Madhavi, S. Chopra, and S. Nanduri, “Synthesis and Evaluation of New Quinazolin-4 (3H)-One Derivatives as Potent Antibacterial Agents against Multidrug Resistant Staphylococcus aureus and Mycobacterium tuberculosis,” European Journal of Medicinal Chemistry 175 (2019) : 287–308. doi:10.1016/j.ejmech.2019.04.067
  • M. Safavi, A. Ashtari, F. Khalili, S.S. Mirfazli, M. Saeedi, S.K. Ardestani, P. Rashidi Ranjbar, M. Barazandeh Tehrani, B. Larijani, and M. Mahdavi, “Novel Quinazolin‐4 (3H)‐One Linked to 1, 2, 3‐Triazoles: Synthesis and Anticancer Activity,” Chemical Biology & Drug Design 92, no. 1 (2018): 1373–1381. doi:10.1111/cbdd.13203
  • I. Khan, A. Ibrar, N. Abbas, and A. Saeed, “Recent Advances in the Structural Library of Functionalized Quinazoline and Quinazolinone Scaffolds: Synthetic Approaches and Multifarious Applications,” European Journal of Medicinal Chemistry 76 (2014): 193–244. doi:10.1016/j.ejmech.2014.02.005
  • L. Quattrini, V. Coviello, S. Sartini, T. Di Desidero, P. Orlandi, Y.-Y. Ke, K.-L. Liu, H.-P. Hsieh, G. Bocci, and C. La Motta, “Dual Kit/Aur Inhibitors as Chemosensitizing Agents for the Treatment of Melanoma: Design, Synthesis, Docking Studies and Functional Investigation,” Scientific Reports 9, no. 1 (2019): 9943. doi:10.1038/s41598-019-46287-5
  • E. Menteşe, G. Akyüz, M. Emirik, and N. Baltaş, “Synthesis, in Vitro Urease Inhibition and Molecular Docking Studies of Some Novel Quinazolin-4 (3H)-One Derivatives Containing Triazole, Thiadiazole and Thiosemicarbazide Functionalities,” Bioorganic Chemistry 83 (2019): 289–296. doi:10.1016/j.bioorg.2018.10.031
  • E. Menteşe, G. Akyüz, F. Yılmaz, N. Baltaş, and M. Emirik, “Synthesis of Some Novel Quinazolin‐4 (3H)‐One Hybrid Molecules as Potent Urease Inhibitors,” Archiv Der Pharmazie 351, no. 12 (2018): e1800182. doi:10.1002/ardp.201800182
  • A. S. El-Feky, M. Imran, N. Nayeem, "Design, Synthesis, and Anti-inflammatory Activity of Novel Quinazolines", Oriental Journal of Chemistry 33, no. 2 (2017): 707–716. doi:10.13005/ojc/330217
  • D.R. Godhani, A.A. Jogel, P.B. Dobariya, and A.M. Sanghani, “Synthesis, Characterization and Biological Evaluation of 4-Oxo-Thiazolidine Compounds,” Journal of Saudi Chemical Society 20 (2016): S523–S535. doi:10.1016/j.jscs.2013.03.002
  • V.K. Yadav, and K.G. Babu, “A Remarkably Efficient Markovnikov Hydrochlorination of Olefins and Transformation of Nitriles into Imidates by Use of AcCl and an Alcohol,” European Journal of Organic Chemistry 2005, no. 2 (2005): 452–456. doi:10.1002/ejoc.200400591
  • G.M. Shelke, V.K. Rao, M. Jha, T.S. Cameron, and A. Kumar, “Microwave-Assisted Catalyst-Free Synthesis of Substituted 1, 2, 4-Triazoles,” Synlett 26, no. 03 (2015): 404–407. doi:10.1055/s-0034-1379734
  • E.R. Wood, A.T. Truesdale, O.B. McDonald, D. Yuan, A. Hassell, S.H. Dickerson, B. Ellis, C. Pennisi, E. Horne, K. Lackey, et al. “A Unique Structure for Epidermal Growth Factor Receptor Bound to GW572016 (Lapatinib): Relationships among Protein Conformation, Inhibitor off-Rate, and Receptor Activity in Tumor Cells,” Cancer Research 64, no. 18 (2004): 6652–6659. doi:10.1158/0008-5472.CAN-04-1168
  • N. Goehringer, B. Biersack, Y. Peng, R. Schobert, M. Herling, A. Ma, B. Nitzsche, and M. Höpfner, “Anticancer Activity and Mechanisms of Action of New Chimeric EGFR/HDAC-Inhibitors,” International Journal of Molecular Sciences 22, no. 16 (2021): 8432. doi:10.3390/ijms22168432
  • A.K. Bass, M.S. El-Zoghbi, E.-S.M. Nageeb, M.F. Mohamed, M. Badr, G, and E.-D.A. Abuo-Rahma, “Comprehensive Review for Anticancer Hybridized Multitargeting HDAC Inhibitors,” European Journal of Medicinal Chemistry 209 (2021): 112904. doi:10.1016/j.ejmech.2020.112904
  • K.P. Garnock-Jones, “Panobinostat: First Global Approval,” Drugs 75, no. 6 (2015): 695–704. doi:10.1007/s40265-015-0388-8
  • T.Y. Hargrove, Z. Wawrzak, D.C. Lamb, F.P. Guengerich, and G.I. Lepesheva, “Structure-Functional Characterization of Cytochrome P450 Sterol 14α-Demethylase (CYP51B) from Aspergillus fumigatus and Molecular Basis for the Development of Antifungal Drugs,” The Journal of Biological Chemistry 290, no. 39 (2015): 23916–23934. doi:10.1074/jbc.M115.677310
  • J. Dong, N.N. Wang, Z.J. Yao, L. Zhang, Y. Cheng, D. Ouyang, A.P. Lu, and D.S. Cao, “ADMETlab: A Platform for Systematic ADMET Evaluation Based on a Comprehensively Collected ADMET Database,” Journal of Cheminformatics 10, no. 1 (2018): 29. doi:10.1186/s13321-018-0283-x
  • G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and A.J. Olson, “Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function,” Journal of Computational Chemistry 19, no. 14 (1998): 1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • F.A. Al-Bayati, and H.F. Al-Mola, “Antibacterial and Antifungal Activities of Different Parts of Tribulus Terrestris L. growing in Iraq,” Journal of Zhejiang University. Science. B 9, no. 2 (2008): 154–159. doi:10.1631/jzus.B0720251
  • S. Finegold, and L. Garrod, Bailey and Scott’s Diagnostic Microbiology, Chap. 13. (Toronto: CV Mosby, 1995).
  • G.M. Morris, D.S. Goodsell, R. Huey, W.E. Hart, S. Halliday, R. Belew, and A. J. Olson, Automated Docking of Flexible Ligands to receptor-User Guide, (AutoDock, 2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.