60
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A Simple and Efficient Method for the Synthesis of Benzo[3,4-a]Phenazin-5-Ols and Benzo[f]Pyrido[b]Quinoxalin-5-ol Derivatives Using Trisodium Citrate as an Efficient Organo-Catalyst at Room Temperature

ORCID Icon, , , , & ORCID Icon
Pages 3747-3760 | Received 04 Mar 2023, Accepted 13 Jul 2023, Published online: 27 Jul 2023

References

  • P. Saluja, A. Chaudhary, and J.M. Khurana, “Synthesis of Novel Fluorescent Benzo[a]Pyrano[2,3-c]Phenazine and Benzo[a]Chromeno[2,3-c]Phenazine Derivatives via Facile Four-Component Domino Protocol,” Tetrahedron Letters 55, no. 23 (2014): 3431–3435. doi:10.1016/j.tetlet.2014.04.072
  • J.B. Laursen, and J. Nielsen, “Phenazine Natural Products: Biosynthesis, Synthetic Analogues, and Biological Activity,” Chemical Reviews 104, no. 3 (2004): 1663–1686. doi:10.1021/cr020473j
  • N. Guttenberger, W. Blankenfeldt, and R. Breinbauer, “Recent Developments in the Isolation, Biological Function, Biosynthesis, and Synthesis of Phenazine Natural Products,” Bioorganic & Medicinal Chemistry 25, no. 22 (2017): 6149–6166. doi:10.1016/j.bmc.2017.01.002
  • A. Yazdani-Elah-Abadi, M. Lashkari, and R. Mohebat, “DABCO-Catalyzed Five-Component Domino Protocol for the Synthesis of Novel Benzo[a]Pyrazolo[4’,3’:5,6]Pyrano[2,3-c]Phenazines in PEG-400 as an Efficient Green Reaction Medium,” Organic Preparations and Procedures International 52, no. 4 (2020): 261–273. doi:10.1080/00304948.2020.1765297
  • P. Dehghan, and R. Mohebat, “A Highly Efficient and Green Synthesis of Pyrimido fused Benzophenazines via Microwave-Assisted and H3PW12O40@Nano-ZnO Catalyzed a Sequential One-Pot Cyclization in Aqueous Medium,” Polycyclic Aromatic Compounds 40, no. 4 (2020): 1164–1174. doi:10.1080/10406638.2018.1533874
  • M. Taheri, R. Mohebat, and M.H. Moslemin, “Synthesis of Benzo[a]Furo[2,3-c]Phenazine Derivatives through an Efficient, Rapid and via Microwave Irradiation under Solvent-Free Conditions Catalyzed by H3PW12O40@Fe3O4-ZnO for High-Performance Removal of Methylene Blue,” Artificial Cells, Nanomedicine, and Biotechnology 49, no. 1 (2021): 250–260. doi:10.1080/21691401.2021.1894163
  • A. Chaudhary, and J.M. Khurana, “Synthetic Routes for Phenazines: An Overview,” Research on Chemical Intermediates 44, no. 2 (2018): 1045–1083. doi:10.1007/s11164-017-3152-8
  • A.A. Kostenko, K.A. Bykova, A.S. Kucherenko, A.N. Komogortsev, B.V. Lichitsky, and S.G. Zlotin, “2-Nitroallyl Carbonate-Based Green Bifunctional Reagents for Catalytic Asymmetric Annulation Reactions,” Organic & Biomolecular Chemistry 19, no. 8 (2021): 1780–1786. doi:10.1039/d0ob02283g
  • P. Kumari, R. Bharti, and T. Parvin, “Synthesis of Aminouracil-Tethered Tri-Substituted Methanes in Water by Iodine-Catalyzed Multicomponent Reactions,” Molecular Diversity 23, no. 1 (2019): 205–213. doi:10.1007/s11030-018-9862-z
  • J. Safaei-Ghomi, and A. Bakhtiari, “Preparation and Characterization of New Inorganic–Organic Hybrid Catalyst H3PMo12O40/Hyd-SBA-15 and Its Application in the Domino Multi-Component Reaction,” Applied Organometallic Chemistry 33, no. 12 (2019): e5201. doi:10.1002/aoc.5201
  • M. Esmaeilpour, A.R. Sardarian, and H. Firouzabadi, “Theophylline Supported on Modified Silica-Coated Magnetite Nanoparticles as a Novel, Efficient, Reusable Catalyst in Green One-Pot Synthesis of Spirooxindoles and Phenazines,” ChemistrySelect 3, no. 32 (2018): 9236–9248. doi:10.1002/slct.201801506
  • M. Nazeef, M. Saquib, S.K. Tiwari, V. Yadav, S. Ansari, H. Sagir, M.K. Hussain, and I.R. Siddiqui, “Catalyst Free, Multicomponent Green Approach to Benzo[a]Chromeno[2,3-c]Phenazines Using Glycerol as a Recyclable and Biodegradable Promoting Medium,” ChemistrySelect 5, no. 45 (2020): 14447–14454. doi:10.1002/slct.202003732
  • R. Mohebat, A. Yazdani-Elah-Abadi, M.-T. Maghsoodlou, and N. Hazeri, “DABCO-Catalyzed Multi-Component Domino Reactions for Green and Efficient Synthesis of Novel 3-Oxo-3H-Benzo[a]Pyrano[2,3-c]Phenazine-1-Carboxylate and 3-(5-Hydroxybenzo[a]Phenazin-6-yl)Acrylate Derivatives in Water,” Chinese Chemical Letters 28, no. 5 (2017): 943–948. doi:10.1016/j.cclet.2016.12.042
  • M. Taheri, and R. Mohebat, “Synthesis of One-Pot Pyrazolo[4′,3′:5,6]Pyrano[2,3-c]Phenazin-15-yl) Methanone Derivatives via a Multi-Component Using Fe3O4@TiO2-SO3H as a Recoverable Magnetic Catalyst under Microwave Irradiation,” Green Chemistry Letters and Reviews 13, no. 3 (2020): 165–178. 14. doi:10.1080/17518253.2020.1794056
  • M. Taheri, R. Mohebat, and M.H. Mosslemin, “Multi-Component Reaction Synthesis of Novel 3-Phenyl-3,4-Dihydro-2H-Benzo[a][1,3]Oxazino[5,6-c]Phenazine Derivatives Catalyzed by Reusable ZnO-PTA@Fe3O4/EN-MIL-101(Cr) Nanopowder at Room Temperature,” Green Chemistry Letters and Reviews 13, no. 3 (2020): 179–191. doi:10.1080/17518253.2020.1800830
  • R. Mohebat, P. Dehgan, and A. Yazdani-Elah-Abadi, “Green Synthesis of Novel Pyrazolo-Fused Benzophenazines Using H3PW12O40 as Efficient and Recyclable Catalyst under Microwave Irradiation,” Journal of the Chinese Chemical Society 65, no. 10 (2018): 1259–1265. doi:10.1002/jccs.201800071
  • A.S. Choudhary, and N. Sekar, “Phenazine Fused Benzocoumarins with Negative Solvatochromism and Positive Solvatochromic Emission – Synthesis, Photo Physical Properties, DFT and TDDFT Studies,” Journal of Fluorescence 25, no. 3 (2015): 675–684. doi:10.1007/s10895-015-1553-x
  • K. Aggarwal, and J.M. Khurana, “Phenazine Containing Indeno-Furan Based Colorimetric and “on–off” Fluorescent Sensor for the Detection of Cu2+ and Pb2+,” Journal of Luminescence 167 (2015): 146–155. doi:10.1016/j.jlumin.2015.06.027
  • A. Yazdani-Elah-Abadi, S.A. Pour, M. Kangani, and R. Mohebat, “L-Proline catalyzed Domino Cyclization for the Green Synthesis of Novel 1,4-Dihydrobenzo[a]Pyrido[2,3-c]Phenazines,” Monatshefte Für Chemie – Chemical Monthly 148, no. 12 (2017): 2135–2142. doi:10.1007/s00706-017-2008-7
  • M.Z.H. Abadi, R. Mohebat, and M.H. Mosslemin, “A Novel Eco-Friendly Catalyst- and Solvent-Free Four-Component Synthesis of Benzo[a]Furo[2,3-c]Phenazines under Microwave Conditions,” Polycyclic Aromatic Compounds 40, no. 1 (2020): 159–165. doi:10.1080/10406638.2017.1385493
  • G. Kaur, R. Moudgil, M. Shamim, V.K. Gupta, and B. Banerjee, “Camphor Sulfonic Acid Catalyzed a Simple, Facile, and General Method for the Synthesis of 2-Arylbenzothiazoles, 2-Arylbenzimidazoles, and 3H-Spiro[Benzo[d]Thiazole-2,3′-Indolin]-2′-Ones at Room Temperature,” Synthetic Communications 51, no. 7 (2021): 1100–1120. doi:10.1080/00397911.2020.1870043
  • A. Singh, A. Basu, A. Sharma, A. Priya, M. Kaur, G. Kaur, and B. Banerjee, “Lawsone (2-Hydroxy-1,4-Naphthaquinone) Derived Anticancer Agents,” Physical Sciences Reviews (2022). doi:https://doi.org/10.1515/psr-2021-0043
  • J. AbolfazlOlyaei, A. Aghajanzadeh, E. Feizy, and M. Sadeghpour, “A Green One-Pot Pseudo-Five-Component Sequential Protocol for the Synthesis of Novel 6,6’-(Arylmethylene)Bis(Benzo[a]Phenazin-5-ol) Derivatives,” Chinese Chemical Society 68 (2020): 704–712.
  • G. Kaupp, and M.R. Naimi-Jamal, “Quantitative Cascade Condensations between o-Phenylenediamines and 1,2-Dicarbonyl Compounds without Production of Wastes,” European Journal of Organic Chemistry 2002, no. 8 (2002): 1368–1373. doi:10.1002/1099-0690(200204)2002:8<1368::AID-EJOC1368>3.0.CO;2-6
  • A.S. Choudhary, M.K. Malik, S.R. Patil, K.H. Prabhu, R.R. Deshmukh, and N. Sekar, “Phenazines and Thiazine: Green Synthesis, Photophysical Properties and Dichroic behavior in Nematic Host,” Canadian Chemical Transactions 2 (2014): 365–380. doi:10.13179/canchemtrans.2014.02.04.0122
  • P.G. Hegade, M.M. Mane, J.D. Patil, and D.M. Pore, “Sulfamic Acid: A Mild, Efficient, and Cost-Effective Catalyst for Synthesis of Indoloquinoxalines at Ambient Temperature,” Synthetic Communications 44, no. 23 (2014): 3384–3391. doi:10.1080/00397911.2014.943345
  • Y. Lu, L. Wang, X. Wang, T. Xi, J. Liao, Z. Wang, and F. Jiang, “Design, Combinatorial Synthesis and Biological Evaluations of Novel 3-Amino-1’-((1-Aryl-1H-1,2,3-Triazol-5-yl)Methyl)-2’-Oxospiro[Benzo[a]Pyrano[2,3-c]Phenazine-1,3’-Indoline]-2-Carbonitrile Antitumor Hybrid Molecules,” European Journal of Medicinal Chemistry 135 (2017): 125–141. doi:10.1016/j.ejmech.2017.04.040
  • B. Banerjee, “Recent Developments on Organo-Bicyclo-Bases Catalyzed Multicomponent Synthesis of Biologically Relevant Heterocycles,” Current Organic Chemistry 22, no. 3 (2018): 208–233. doi:10.2174/1385272821666170703123129
  • G. Kaur, S. Thakur, P. Kaundal, K. Chandel, and B. Banerjee, “p-Dodecylbenzenesulfonic Acid: An Efficient Brønsted Acid-Surfactant-Combined Catalyst to Carry out Diverse Organic Transformations in Aqueous Medium,” ChemistrySelect 3, no. 45 (2018): 12918–12936. doi:10.1002/slct.201802824
  • B. Banerjee, V. Bhardwaj, A. Kaur, G. Kaur, and A. Singh, “Catalytic Applications of Saccharin and Its Derivatives in Organic Synthesis,” Current Organic Chemistry 23, no. 28 (2019): 3191–3205. doi:10.2174/1385272823666191121144758
  • S. Basafa, A. Davoodnia, S.A. Beyramabadi, and M. Pordel, “A Probe into Hydrolysis of Nitrile Moiety in 2-Amino-1-Methyl-4-Oxo-1,4-Dihydroquinoline-3-Carbonitrile,” Chemical Methodologies 5 (2021): 59–69.
  • A. Selmi, A. Zarei, W. Tachoua, H. Puschmann, H. Teymourinia, and A. Ramazani, “Synthesis and Structural Analysis of a Novel Stable Quinoline Dicarbamic Acid: X-Ray Single Crystal Structure of (2-((4-((2-(Carboxy(Methyl)Amino)Ethoxy)Carbonyl) Quinoline-2-yl)Oxy)Ethyl) (Methyl)-Carbamic Acid and Molecular Docking Assessments to Test Its Inhibitory Potential against SARS-CoV-2 Main Protease,” Chemical Methodologies 6 (2022): 463–474.
  • G. Brahmachari, and B. Banerjee, “Sulfamic Acid-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions: An Overview,” Current Organocatalysis 3, no. 2 (2016): 93–124. doi:10.2174/2213337202666150812230830
  • G. Brahmachari, and B. Banerjee, “Facile and Chemically Sustainable One-Pot Synthesis of a Wide Array of Fused O- and N-Heterocycles Catalyzed by Trisodium Citrate Dihydrate under Ambient Conditions,” Asian Journal of Organic Chemistry 5, no. 2 (2016): 271–286. doi:10.1002/ajoc.201500465
  • G. Brahmachari, and K. Nurjamal, “Trisodium Citrate Dihydrate-Catalyzed One-Pot Three-Component Synthesis of Biologically Relevant Diversely Substituted 2-Amino-3-Cyano-4-(3-Indolyl)-4H-Chromenes under Eco-Friendly Conditions,” Current Green Chemistry 3, no. 3 (2017): 248–258. doi:10.2174/2213346104666170306100839
  • A. Sharma, A. Singh, A. Priya, M. Kaur, V.K. Gupta, V. Jaitak, and B. Banerjee, “Trisodium Citrate Dihydrate Catalyzed One-Pot Pseudo Four-Component Synthesis of Fully Functionalized Pyridine Derivatives,” Synthetic Communications 52, no. 15 (2022): 1614–1627. doi:10.1080/00397911.2022.2101378
  • C.M. Jr Gruber, and W.A. Halbeisen, “A Study on the Comparative Toxic Effects of Citric Acid and Its Sodium Salts,” Journal of Pharmacology and Experimental Therapeutics 94 (1948): 65–67.
  • M. Saltmarsh, and L. Insall, Essential Guide to Food Additives, 4th ed. (UK: RSC Publishing, 2013), 148.
  • R. Winter, A Consumer’s Dictionary of Food Additives, 7th ed. (New York: Three Rivers Press, Crown Publishing Group, 2009), 538.
  • V. Oçpik, I. Saaremets, L. Medijainen, K. Karelson, T. Janson, and S. Timpmann, “Effects of Sodium Citrate Ingestion before Exercise on Endurance Performance in Well Trained College Runners,” British Journal of Sports Medicine 37 (2003): 485–489.
  • G. Kaur, A. Singh, N. Kaur, and B. Banerjee, “A General Method for the Synthesis of Structurally Diverse Quinoxalines and Pyrido-Pyrazine Derivatives Using Camphor Sulfonic Acid as an Efficient Organo-Catalyst at Room Temperature,” Synthetic Communications 51, no. 7 (2021): 1121–1131. doi:10.1080/00397911.2021.1873383
  • G. Kaur, D. Singh, A. Singh, and B. Banerjee, “Camphor Sulfonic Acid Catalyzed Facile and General Method for the Synthesis of 3,3’-(Arylmethylene) Bis(4-Hydroxy-2H -Chromen-2-Ones), 3,3’-(Arylmethylene)Bis(2-Hydroxynaphthalene-1,4-Diones) and 3,3’-(2-Oxoindoline-3,3-Diyl)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives at Room Temperature,” Synthetic Communications 51, no. 7 (2021): 1045–1057. doi:10.1080/00397911.2020.1856877
  • G. Kaur, K. Bala, S. Devi, and B. Banerjee, “Camphorsulfonic Acid (CSA): An Efficient Organocatalyst for the Synthesis or Derivatization of Heterocycles with Biologically Promising Activities,” Current Green Chemistry 5, no. 3 (2018): 150–167. doi:10.2174/2213346105666181001113413
  • B.K. Banik, B. Banerjee, G. Kaur, S. Saroch, and R. Kumar, “Tetrabutylammonium Bromide (TBAB) Catalyzed Synthesis of Bioactive Heterocycles,” Molecules 25 (2020): 5918. doi:10.3390/molecules25245918
  • A. Sharma, G. Kaur, D. Singh, V.K. Gupta, and B. Banerjee, “A General Method for the Synthesis of 11H-Indeno[1,2-b]Quinoxalin-11-Ones and 6H-Indeno[1,2-b]Pyrido[3,2-e]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-Catalyst at Room Temperature,” Current Organocatalysis 9, no. 1 (2022): 53–61. doi:10.2174/2213337208666210825112301
  • G. Kaur, R. Kumar, S. Saroch, V.K. Gupta, and B. Banerjee, “Mandelic Acid: An Efficient Organo-Catalyst for the Synthesis of 3-Substituted-3-Hydroxy-Indolin-2-Ones and Related Derivatives in Aqueous Ethanol at Room Temperature,” Current Organocatalysis 8, no. 1 (2021): 147–159. doi:10.2174/2213337207999200713145440
  • G. Kaur, M. Shamim, V. Bhardwaj, V.K. Gupta, and B. Banerjee, “Mandelic Acid Catalyzed One-Pot Three-Component Synthesis of α-Aminonitriles and α-Aminophosphonates under Solvent-Free Conditions at Room Temperature,” Synthetic Communications 50, no. 10 (2020): 1545–1560. doi:10.1080/00397911.2020.1745844
  • A. Singh, G. Kaur, A. Kaur, V.K. Gupta, and B. Banerjee, “A General Method for the Synthesis of 3,3-Bis(Indol-3-yl)Indolin-2-Ones, Bis(Indol-3-yl)(Aryl)Methanes and Tris(Indol-3-yl)Methanes Using Naturally Occurring Mandelic Acid as an Efficient Organo-Catalyst in Aqueous Ethanol at Room Temperature,” Current Green Chemistry 7, no. 1 (2020): 128–140. doi:10.2174/2213346107666200228125715
  • B. Banerjee, A. Singh, A. Sharma, A. Priya, M. Kaur, G. Kaur, V.K. Gupta, and V. Jaitak, “Mandelic Acid Catalyzed One-Pot Pseudo Three-Component Synthesis of Various Trisubstituted Methane Derivatives at Room Temperature,” Arkivoc 2022, no. 9 (2022): 100–118. doi:10.24820/ark.5550190.p011.895

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.