87
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

TMU-16-NH2: A Metal–Organic Framework as an Efficient, Green, and Heterogeneous Catalyst for the Michael Addition Annulations for the Synthesis of a New Series of 2,4-Diphenylpyrido[4,3-d]Pyrimidines

, , , , &
Pages 3771-3786 | Received 20 Jul 2022, Accepted 17 Jul 2023, Published online: 27 Jul 2023

References

  • M. A. Hosny, Y. H. Zaki, W. A. Mokbel, and A. O. Abdelhamid, “Synthesis of Novel Thiazole, Pyranothiazole, Thiazolo[4,5-b]Pyridines and Thiazolo[5,4:5,6] Pyrano[2,3-d]Pyrimidine Derivatives and Incorporating Isoindoline-1,3-Dione Group,” BMC Chemistry. 13 (2019) doi:10.1186/s13065-019-0559-x
  • S. Nasri, M. Bayat, and K. Kochia, “Strategies for Synthesis of 1,2,4-Triazole-Containing Scaffolds Using 3-Amino-1,2,4-Triazole, Mol,” Molecular Diversity 26, no. 1 (2022): 717–739. doi:10.1007/s11030-021-10197-4
  • M. Bakherad, G. Bagherian, A. Rezaeifard, F. Mosayebi, B. Shokoohi, and A. Keivanloo, “Synthesis of Pyrano[2,3‐d]Pyrimidines and Pyrido[2,3‐d]Pyrimidines in the Magnetized Deionized Water Based on UV–Visible Study,” Journal of the Iranian Chemical Society 18, no. 4 (2021): 839–852. doi:10.1007/s13738-020-02073-z
  • M. Bayat, Y. Bayat, and S. S. Asayesh, “One-Pot Synthesis of 2H-Pyrano[2,3-d]Pyrimidine Derivatives,” Monatshefte Für Chemie - Chemical Monthly 143, no. 3 (2012): 479–483. doi:10.1007/s00706-011-0602-7
  • M. S. Mirak-Mahaleh, and K. Rad-Moghadam, “A Novel Amphipathic Low-Melting Complex Salt: An Efficient Homogeneous Catalyst for Synthesis of Pyran-Annulated Heterocyclic Scaffolds and Pyrido[2,3-d]Pyrimidines,” Journal of Molecular Liquids. 307 (2020): 112989. doi:10.1016/j.molliq.2020.112989
  • S. Abdolmohammadi, and M. Afsharpour, “An Ultrasound Assisted Cyclocondensation Reaction for the Efficient Synthesis of [1]Benzopyranopyrido[d]Pyrimidines Using Porous Graphene/MoO3,” Applied Organometallic Chemistry 35, no. 1 (2021) doi:10.1002/aoc.6028
  • M. Mohammadi, M. Khodamorady, B. Tahmasbi, K. Bahrami, and A. Ghorbani-Choghamarani, “Boehmite Nanoparticles as Versatile Support for Organic–Inorganic Hybrid Materials: Synthesis, Functionalization, and Applications in Eco-Friendly Catalysis,” Journal of Industrial and Engineering Chemistry. 97 (2021): 1–78. doi:10.1016/j.jiec.2021.02.001
  • S. Mohana Roopan, and R. Sompalle, “Synthetic Chemistry of Pyrimidines and Fused Pyrimidines: A Review, Synth,” Synthetic Communications 46, no. 8 (2016): 645–672. doi:10.1080/00397911.2016.1165254
  • T. Panneer Selvam, C. Richa James, P. Vijaysarathy Dniandev, and S. Karyn. Valzita, “A Mini Review of Pyrimidine and Fused Pyrimidine Marketed Drugs,” Res. Pharm 2 (2012): 1–9. www.researchinpharmacy.com.
  • G. Joshi, H. Nayyar, J. M. Alex, G. S. Vishwakarma, S. Mittal, and R. Kumar, “Pyrimidine-Fused Derivatives: Synthetic Strategies and Medicinal Attributes,” Current Topics in Medicinal Chemistry 16, no. 28 (2016): 3175–3210. doi:10.2174/1568026616666160506145046
  • M. P. Parmar, R. M. Vala, and H. M. Patel, “Importance of Hybrid Catalysts toward the Synthesis of 5 H -Pyrano[2,3- d] Pyrimidine-2-Ones/2,4-Diones (Thiones,” ACS Omega 8, no. 2 (2023): 1759–1816. doi:10.1021/acsomega.2c05349
  • M. Van Hoof, S. Claes, K. Boon, T. Van Loy, D. Schols, W. Dehaen, and S. De Jonghe, “Exploration of Pyrido[3,4-d]Pyrimidines as Antagonists of the Human Chemokine Receptor CXCR2,” Molecules 28 (2023) : 2099. doi:10.3390/molecules28052099
  • R. M. Vala, M. G. Sharma, D. M. Patel, A. Puerta, J. M. Padrón, V. Ramkumar, R. L. Gardas, and H. M. Patel, “Synthesis and in Vitro Study of Antiproliferative Benzyloxy Dihydropyrimidinones,” Archiv Der Pharmazie 354, no. 6 (2021): e2000466. doi:10.1002/ardp.202000466
  • B. Cacciari, C. Bolcato, G. Spalluto, K.-N. Klotz, M. Bacilieri, F. Deflorian, and S. Moro, “Pyrazolo-Triazolo-Pyrimidines as Adenosine Receptor Antagonists: A Complete Structure-Activity Profile,” Purinergic Signalling 3, no. 3 (2007): 183–193. doi:10.1007/s11302-006-9027-x
  • M. Fecková, P. Le Poul, F. Bureš, F. Robin-Le Guen, and S. Achelle, “Nonlinear Optical Properties of Pyrimidine Chromophores,” Dyes and Pigments 182 (2020): 108659. doi:10.1016/j.dyepig.2020.108659
  • R. López-Garzón, P. Arranz-Mascarós, M. L. Godino-Salido, M. D. Gutiérrez-Valero, R. Cuesta, and J. M. Moreno, “Bifunctional Pyrimidine-Amino-Acid Ligands: Solution Study and Crystal Structure of a Mn(II) Chain Alternating Six- and Sevenfold Coordination Environments,” Inorganica Chimica Acta 355 (2003) : 41–48. doi:10.1016/S0020-1693(03)00343-8
  • C. Igci, O. Karaman, Y. Fan, A. A. Gonzales, H. Fenniri, and G. Gunbas, “Synthesis of N-Bridged Pyrido[4,3-d]Pyrimidines and Self-Assembly into Twin Rosette Cages and Nanotubes in Organic Media,” Scientific Reports 8, no. 1 (2018): 15949. doi:10.1038/s41598-018-34080-9
  • I. W. Sherman, “Chapter 11 Pyrimidines and the Mitochondrion,” Adv. Parasitol 67 (2008): 95–100. doi:10.1016/S0065-308X(08)00411-9
  • R. G. Glushkov, and O. S. Sizova, “Progress in Chemistry of-Pyrrolo[3,2-d]Pyrimidines (Review),” Pharmaceutical Chemistry Journal 20, no. 6 (1986): 415–426. doi:10.1007/BF00758338
  • T. Okawa, M. Toda, S. Eguchi, and A. Kakehi, “Pyrido[2,3-d]Pyrimidine Derivatives: Synthesis via the Intermolecular aza-Wittig Reaction/Heterocyclization and the Crystal Structure,” Synthesis 1998, no. 10 (1998): 1467–1475. doi:10.1055/s-1998-2170
  • T. W. Traut, “Physiological Concentrations of Purines and Pyrimidines,” Molecular and Cellular Biochemistry 140, no. 1 (1994): 1–22. doi:10.1007/BF00928361
  • N. Senthilkumar, Y. D. Ravichandran, K. M. Kumar, and S. Ramaiah, “Synthesis of a New Series of Pyrimidine Derivatives: Exploration of Anti-Proliferative Activity on EAT Cells and Molecular Docking,” Research on Chemical Intermediates 42, no. 2 (2016): 1295–1313. doi:10.1007/s11164-015-2086-2
  • S. G. Patel, R. M. Vala, P. J. Patel, D. B. Upadhyay, V. Ramkumar, R. L. Gardas, and H. M. Patel, “Synthesis, Crystal Structure and in Silico Studies of Novel 2,4-Dimethoxy-Tetrahydropyrimido[4,5- b] Quinolin-6(7 H) -Ones,” RSC Advances 12, no. 29 (2022): 18806–18820. doi:10.1039/D2RA02694E
  • A. A. Fesenko, and A. D. Shutalev, “A New Synthesis of Pyrido[4,3-d]Pyrimidin-2-Ones,” Chemistry of Heterocyclic Compounds 49, no. 6 (2013): 949–951. doi:10.1007/s10593-013-1330-1
  • S. Vásquez-Céspedes, R. C. Betori, M. A. Cismesia, J. K. Kirsch, and Q. Yang, “Heterogeneous Catalysis for Cross-Coupling Reactions: An Underutilized Powerful and Sustainable Tool in the Fine Chemical Industry?,” Organic Process Research & Development 25, no. 4 (2021): 740–753. doi:10.1021/acs.oprd.1c00041
  • M. Nishikawa, S. Kume, and H. Nishihara, “Stimuli-Responsive Pyrimidine Ring Rotation in Copper Complexes for Switching Their Physical Properties,” Physical Chemistry Chemical Physics : PCCP 15, no. 26 (2013): 10549–10565. doi:10.1039/c3cp44710c
  • A. Ghorbani-Choghamarani, M. Mohammadi, T. Tamoradi, and M. Ghadermazi, “Covalent Immobilization of Co Complex on the Surface of SBA-15: Green, Novel and Efficient Catalyst for the Oxidation of Sulfides and Synthesis of Polyhydroquinoline Derivatives in Green Condition,” Polyhedron 158 (2019) : 25–35. doi:10.1016/j.poly.2018.10.054
  • M. Kazemi, and M. Mohammadi, “Magnetically Recoverable Catalysts: Catalysis in Synthesis of Polyhydroquinolines,” Applied Organometallic Chemistry 34, no. 3 (2020): e5400. doi:10.1002/aoc.5400
  • T. M. Dhameliya, H. A. Donga, P. V. Vaghela, B. G. Panchal, D. K. Sureja, K. B. Bodiwala, and M. T. Chhabria, “A Decennary Update on Applications of Metal Nanoparticles (MNPs) in the Synthesis of Nitrogen- and Oxygen-Containing Heterocyclic Scaffolds,” RSC Advances 10, no. 54 (2020): 32740–32820. doi:10.1039/D0RA02272A
  • T. M. Dhameliya, R. J. Patel, and N. D. Gajjar, R. H. Amin, K. B. Bodiwala, D. K. Sureja, eds., Recent Trends in Metal Nanoparticles (MNPs) Catalyzed Synthesis of Aza- and Oxa-Heterocycles, in: Adv. Nanocatalysis Org. Synth. Electroanal., Bentham Science Publishers, 2022: 114–157. doi:10.2174/9789815040166122010009
  • T. M. Dhameliya, R. J. Patel, R. H. Amin, D. K. Sureja, and K. B. Bodiwala, “Comprehensive Review on Metal Nanoparticles Catalyzed Synthesis of Aza- and Oxa-Heterocycles Reported in 2021,” Mini-Reviews in Organic Chemistry 20, no. 8 (2023): 800–817. doi:10.2174/1570193X19666220823101118
  • S. Liu, C. Zhang, Y. Sun, Q. Chen, L. He, K. Zhang, J. Zhang, B. Liu, and L. F. Chen, “Design of Metal-Organic Framework-Based Photocatalysts for Hydrogen Generation,” Coordination Chemistry Reviews. 413 (2020) : 213266. doi:10.1016/j.ccr.2020.213266
  • J. Grzybek, M. Kubů, W. J. Roth, B. Gil, J. Čejka, and V. Kasneryk, “Structural Transformation and Chemical Modifications of the Unusual Layered Zeolite MWW Form SSZ-70,” Catalysis Today. 354 (2020) : 133–140. doi:10.1016/j.cattod.2019.03.006
  • M. Koolivand, M. Nikoorazm, A. Ghorbani‐Choghamarani, M. Mohammadi, A. Ghorbani-Choghamarani, and M. Mohammadi, “A Novel Cubic Zn-Citric Acid-Based MOF as a Highly Efficient and Reusable Catalyst for the Synthesis of Pyranopyrazoles and 5-Substituted 1H-Tetrazoles,” Applied Organometallic Chemistry 36, no. 6 (2022): 2641–2663. doi:10.1002/aoc.6656
  • S. M. Ramish, A. Ghorbani-Choghamarani, and M. Mohammadi, “Microporous Hierarchically Zn-MOF as an Efficient Catalyst for the Hantzsch Synthesis of Polyhydroquinolines,” Scientific Reports 12, no. 1 (2022): 1479. doi:10.1038/s41598-022-05411-8
  • A. Ghorbani-Choghamarani, Z. Taherinia, and M. Mohammadi, “Facile Synthesis of Fe3O4@GlcA@Ni-MOF Composites as Environmentally Green Catalyst in Organic Reactions,” Environmental Technology & Innovation 24 (2021): 102050. doi:10.1016/j.eti.2021.102050
  • P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF Positioning Technology and Device Fabrication,” Chemical Society Reviews 43, no. 16 (2014): 5513–5560. doi:10.1039/c4cs00089g
  • R. Sule, and A. K. Mishra, “MOFs-Carbon Hybrid Nanocomposites in Environmental Protection Applications,” Environmental Science and Pollution Research International 27, no. 14 (2020): 16004–16018. doi:10.1007/s11356-020-08299-x
  • A. Dhakshinamoorthy, A. M. Asiri, and H. García, “Metal–Organic Frameworks as Multifunctional Solid Catalysts,” Trends in Chemistry 2, no. 5 (2020): 454–466. doi:10.1016/j.trechm.2020.02.004
  • W. Zafar, S. H. Sumrra, and Z. H. Chohan, “A Review: Pharmacological Aspects of Metal Based 1,2,4-Triazole Derived Schiff Bases,” European Journal of Medicinal Chemistry 222 (2021) : 113602. doi:10.1016/j.ejmech.2021.113602
  • J. Schnabel, R. Ettlinger, and H. Bunzen, “Zn-MOF-74 as pH-Responsive Drug-Delivery System of Arsenic Trioxide,” Chemistry of nanomaterials 6, no. 8 (2020): 1229–1236. doi:10.1002/cnma.202000221
  • T. Rasheed, M. Bilal, A. A. Hassan, F. Nabeel, R. N. Bharagava, L. F. Romanholo Ferreira, H. N. Tran, and H. M. N. Iqbal, “Environmental Threatening Concern and Efficient Removal of Pharmaceutically Active Compounds Using Metal-Organic Frameworks as Adsorbents,” Environmental Research 185 (2020) : 109436. doi:10.1016/j.envres.2020.109436
  • Y. Li, and G. Wen, “Advances in Metal-Organic Frameworks for Acetylene Storage,” European Journal of Inorganic Chemistry 2020, no. 24 (2020): 2303–2311. doi:10.1002/ejic.202000220
  • P. Rocío-Bautista, I. Taima-Mancera, J. Pasán, and V. Pino, “Metal-Organic Frameworks in Green Analytical Chemistry,” Separations 6, no. 3 (2019): 33. doi:10.3390/separations6030033
  • N. Gargiulo, A. Peluso, and D. Caputo, “MOF-Based Adsorbents for Atmospheric Emission Control: A Review,” Processes 8, no. 5 (2020): 613. doi:10.3390/pr8050613
  • N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, and M. Tsapatsis, “Zeolite Membranes - A Review and Comparison with MOFs,” Chemical Society Reviews 44, no. 20 (2015): 7128–7154. doi:10.1039/c5cs00292c
  • A. Lopez-Magano, A. Jiménez-Almarza, J. Aleman, and R. Mas-Ballesté, “Metal–Organic Frameworks (MOFS) and Covalent Organic Frameworks (COFS) Applied to Photocatalytic Organic Transformations,” Catalysts 10, no. 7 (2020): 720. doi:10.3390/catal10070720
  • N. Hussain-Khil, A. Ghorbani-Choghamarani, and M. Mohammadi, “A New Silver Coordination Polymer Based on 4,6-Diamino-2-Pyrimidinethiol: Synthesis, Characterization and Catalytic Application in Asymmetric Hantzsch Synthesis of Polyhydroquinolines,” Scientific Reports 11, no. 1 (2021): 15657. doi:10.1038/s41598-021-94846-6
  • F. Ghobakhloo, D. Azarifar, M. Mohammadi, H. Keypour, and H. Zeynali, “Copper(II) Schiff-Base Complex Modified UiO-66-NH2(Zr) Metal-Organic Framework Catalysts for Knoevenagel Condensation-Michael Addition-Cyclization Reactions,” Inorganic Chemistry 61, no. 12 (2022): 4825–4841. doi:10.1021/acs.inorgchem.1c03284
  • A. Dhakshinamoorthy, M. Alvaro, and H. Garcia, “Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks,” Advanced Synthesis & Catalysis 352, no. 4 (2010): 711–717. doi:10.1002/adsc.200900747
  • A. Nikseresht, A. Daniyali, M. Ali-Mohammadi, A. Afzalinia, and A. Mirzaie, “Ultrasound-Assisted Biodiesel Production by a Novel Composite of Fe(III)-Based MOF and Phosphotangestic Acid as Efficient and Reusable Catalyst,” Ultrasonics Sonochemistry 37 (2017) : 203–207. doi:10.1016/j.ultsonch.2017.01.011
  • A. Dhakshinamoorthy, M. Alvaro, and H. Garcia, “Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides,” Chemistry (Weinheim an Der Bergstrasse, Germany) 16, no. 28 (2010): 8530–8536. doi:10.1002/chem.201000588
  • L. Zhong, Y. Feng, G. Wang, Z. Wang, M. Bilal, H. Lv, S. Jia, and J. Cui, “Production and Use of Immobilized Lipases in/on Nanomaterials: A Review from the Waste to Biodiesel Production,” International Journal of Biological Macromolecules 152 (2020) : 207–222. doi:10.1016/j.ijbiomac.2020.02.258
  • A. D. S. Barbosa, D. Julião, D. M. Fernandes, A. F. Peixoto, C. Freire, B. de Castro, C. M. Granadeiro, S. S. Balula, and L. Cunha-Silva, “Catalytic Performance and Electrochemical Behaviour of Metal–Organic Frameworks: MIL-101(Fe) versus NH2-MIL-101(Fe),” Polyhedron 127 (2017): 464–470. doi:10.1016/j.poly.2016.10.032
  • Z. Mahmoudi, M. A. Ghasemzadeh, and H. Kabiri-Fard, “Fabrication of UiO-66 Nanocages Confined Brønsted Ionic Liquids as an Efficient Catalyst for the Synthesis of Dihydropyrazolo[4′,3’:5,6]Pyrano[2,3-d]Pyrimidines,” Journal of Molecular Structure. 1194 (2019) : 1–10. doi:10.1016/j.molstruc.2019.05.079
  • Joseph Govan, and Yurii K. Gun’ko, “Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts,” Nanomaterials 4, no. 2 (2014): 222–241. doi:10.3390/nano4020222
  • A. Tombesi, and C. Pettinari, “Metal Organic Frameworks as Heterogeneous Catalysts in Olefin Epoxidation and Carbon Dioxide Cycloaddition,” Inorganics 9, no. 11 (2021): 81. doi:10.3390/inorganics9110081
  • H. Luo, Y. Gu, D. Liu, and Y. Sun, “Advances in Oxidative Desulfurization of Fuel Oils over Mofs-Based Heterogeneous Catalysts,” Catalysts 11, no. 12 (2021): 1557. doi:10.3390/catal11121557
  • A. Afzalinia, A. Mirzaie, A. Nikseresht, and T. Musabeygi, “Ultrasound-Assisted Oxidative Desulfurization Process of Liquid Fuel by Phosphotungstic Acid Encapsulated in a Interpenetrating Amine-Functionalized Zn(II)-Based MOF as Catalyst,” Ultrasonics Sonochemistry 34 (2017) : 713–720. doi:10.1016/j.ultsonch.2016.07.006
  • N. Wang, J. Xie, and J. Zhang, “MOF-253 Immobilized Pd and Cu as Recyclable and Efficient Green Catalysts for Sonogashira Reaction,” Arabian Journal of Chemistry 15, no. 8 (2022): 103962. doi:10.1016/j.arabjc.2022.103962
  • F. Khosravi, M. Gholinejad, J. M. Sansano, and R. Luque, “Low-Amount Palladium Supported on Fe-Cu MOF: Synergetic Effect between Pd, Cu and Fe in Sonogashira-Hagihara Coupling Reaction and Reduction of Organic Dyes,” Molecular Catalysis 522 (2022) : 112199. doi:10.1016/j.mcat.2022.112199
  • Z. Zhao, J. Wang, X. Zhang, T. Lin, J. Ren, and W. Pang, “Pd Nanoparticles Embedded into MOF‑808: An Efficient and Reusable Catalyst for Sonogashira and Heck Cross-Coupling Reactions,” Tetrahedron Letters. 100 (2022) : 153849. doi:10.1016/j.tetlet.2022.153849
  • Y. Y. Zhang, M. L. Zhou, Y. S. Bao, M. Yang, Y. H. Cui, D. L. Liu, Q. Wu, L. Liu, and Z. B. Han, “Palladium Nanoparticles Encapsuled in MOF: An Efficient Dual-Functional Catalyst to Produce Benzylmalononitrile Derivatives by One-Pot Reaction,” Molecular Catalysis 518 (2022) : 112068. doi:10.1016/j.mcat.2021.112068
  • A. Nikseresht, S. Ghasemi, and S. Parak, “[Cu3(BTC)2]: A Metal–Organic Framework as an Environment-Friendly and Economically Catalyst for the Synthesis of Tacrine Analogues by Friedländer Reaction under Conventional and Ultrasound Irradiation,” Polyhedron 151 (2018) : 112–117. doi:10.1016/j.poly.2018.05.018
  • P. Leo, N. Crespí, C. Palomino, A. Martín, G. Orcajo, G. Calleja, and F. Martinez, “Catalytic Activity and Stability of Sulfonic-Functionalized UiO-66 and MIL-101 Materials in Friedel-Crafts Acylation Reaction,” Catalysis Today. 390-391 (2022) : 258–264. doi:10.1016/j.cattod.2021.10.007
  • T.-X. Wu, J.-S. Jia, W. Luo, H.-D. Bian, H.-T. Tang, Y.-M. Pan, and F.-P. Huang, “A Robust Heterogeneous Co-MOF Catalyst in Azide–Alkyne Cycloaddition and Friedel–Crafts Reactions as Well as Hydrosilylation of Alkynes,” New Journal of Chemistry 45, no. 2 (2021): 872–880. doi:10.1039/D0NJ04626D
  • M. Duan, L. Jiang, G. Zeng, D. Wang, W. Tang, J. Liang, H. Wang, D. He, Z. Liu, and L. Tang, “Bimetallic Nanoparticles/Metal-Organic Frameworks: Synthesis, Applications and Challenges,” Applied Materials Today. 19 (2020): 100564. doi:10.1016/j.apmt.2020.100564
  • M. Farrag, “In Situ Preparation of Palladium Nanoclusters in Cerium Metal-Organic Frameworks Ce-MOF-808, Ce-UiO-66 and Ce-BTC as Nanoreactors for Room Temperature Suzuki Cross-Coupling Reaction,” Microporous and Mesoporous Materials. 312 (2021) : 110783. doi:10.1016/j.micromeso.2020.110783
  • C. Mao, K. Yin, C. Yang, G. Dong, G. Tian, Y. Zhang, and Y. Zhou, “Fe-Based MOFs@Pd@COFs with Spatial Confinement Effect and Electron Transfer Synergy of Highly Dispersed Pd Nanoparticles for Suzuki-Miyaura Coupling Reaction,” Journal of Colloid and Interface Science 608, no. Pt 1 (2022): 809–819. doi:10.1016/j.jcis.2021.10.055
  • D. Cartagenova, S. Bachmann, K. Püntener, M. Scalone, M. A. Newton, F. A. Peixoto Esteves, T. Rohrbach, P. P. Zimmermann, J. A. van Bokhoven, and M. Ranocchiari, “Highly Selective Suzuki Reaction Catalysed by a Molecular Pd–P-MOF Catalyst under Mild Conditions: Role of Ligands and Palladium Speciation,” Catalysis Science & Technology 12, no. 3 (2022): 954–961. doi:10.1039/D1CY01351C
  • V. Safarifard, and A. Morsali, “Influence of an Amine Group on the Highly Efficient Reversible Adsorption of Iodine in Two Novel Isoreticular Interpenetrated Pillared-Layer Microporous Metal–Organic Frameworks,” CrystEngComm 16, no. 37 (2014): 8660–8663. doi:10.1039/C4CE01331J
  • N. Shadjou, and M. Hasanzadeh, “Amino Functionalized Mesoporous Silica Decorated with Iron Oxide Nanoparticles as a Magnetically Recoverable Nanoreactor for the Synthesis of a New Series of 2,4-Diphenylpyrido[4,3-d]Pyrimidines,” RSC Advances 4, no. 35 (2014): 18117. doi:10.1039/c4ra00038b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.