119
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Spectroscopic, Computational, Molecular Docking and Dynamics Simulations Studies of 4-Amino-3-hydroxyNaphthalene-1-Sulfonic Acid (ANSA)

, , , , , , & ORCID Icon show all
Pages 3787-3806 | Received 24 Mar 2023, Accepted 14 Jul 2023, Published online: 04 Aug 2023

References

  • P. Mohan, R. Singh, J. Wepsiec, I. Gonzalez, D.K. Sun, and P.S. Sarin, Inhibition of HIV replication by naphthalenemonosulfonic acid derivatives and a bis naphthalenedisulfonic acid compound. Life Sciences, 47(12) (1990) 993–999. doi:10.1016/0024-3205(90)90471-3
  • H. Gai, C. Zhong, L. Qiao, S. Chen, M. Xiao, and H. Song, Extraction of 1-Amino-2-Naphthol-4-Sulfonic Acid from Wastewater Using Trioctylamine (N, N-Dioctyloctan-1-Amine) in Methyl Isobutyl Ketone, Journal of Cleaner Production 201 (2018): 774–782. doi:10.1016/j.jclepro.2018.08.082
  • A. Rajasekaran, V. Rajamanickam, and S. Darlinquine, “Synthesis, anti-Inflammatory and Analgesic Evaluation of Thioxoquinazolinone Derivatives,” Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 131, no. 7 (2011): 1079–1084. doi:10.1248/yakushi.131.1079
  • M.N. Ibrahim, S.A. Sharif, A.N. El-Tajory, and A.A. Elamari, “Synthesis and Antibacterial Activities of Some Schiff Bases,” E-Journal of Chemistry 8, no. 1 (2011): 212–216. doi:10.1155/2011/258340
  • A. Geto, M. Amare, M. Tessema, and S. Admassie, “Voltammetric Determination of Nicotine at Poly(4-Amino-3-Hydroxynaphthalene Sulfonic Acid)-Modified Glassy Carbon Electrode,” Electroanalysis 24, no. 3 (2012): 659–665. doi:10.1002/elan.201100653
  • B.W. Zewde, and S. Admassie, “Electrocatalysis of Oxygen Reduction at Poly(4-Amino-3-Hydroxynaphthalene Sulfonic Acid) and Platinum Loaded Polymer Modified Glassy Carbon Electrodes,” Journal of Power Sources. 216 (2012): 502–507. doi:10.1016/j.jpowsour.2012.06.058
  • T. Mori, and M. Kijima, “Synthesis and Electroluminescence Properties of Carbazole-Containing 2,6-Naphthalene-Based Conjugated Polymers,” European Polymer Journal. 45, no. 4 (2009): 1149–1157. doi:10.1016/j.eurpolymj.2008.12.042
  • R. Yıldız, T. Doğan, and İ. Dehri, “Evaluation of Corrosion Inhibition of Mild Steel in 0.1MHCl by 4-Amino-3-Hydroxynaphthalene-1-Sulphonic Acid,” Corrosion Science. 85 (2014): 215–221. doi:10.1016/j.corsci.2014.04.017
  • A. Geto, M. Tessema, and S. Admassie, “Determination of Histamine in Fish Muscle at Multi-Walled Carbon Nanotubes Coated Conducting Polymer Modified Glassy Carbon Electrode,” Synthetic Metals. 191 (2014): 135–140. doi:10.1016/j.synthmet.2014.03.005
  • M. Shariati-Rad, M. Irandoust, and S. Mohammadi, “Determination of Nitrite in Food Samples by Kinetic Spectrophotometric Data and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS),” Food Analytical Methods 10, no. 3 (2017): 694–703. doi:10.1007/s12161-016-0639-7
  • M. Shariati-Rad, M. Irandoust, and F. Niazi, “A Sensitive Spectrofluorimetric Method for the Determination of Nitrite in Agricultural Samples,” Food Analytical Methods 8, no. 7 (2015): 1691–1698. doi:10.1007/s12161-014-0045-y
  • Martinez, R.H., Blasco  , “In Estimation of Dietary Intake and Content of Lead and Cadmium in Infant Cereals Marketed in Spain,” Food Control. 26 (2012) : 6–14.
  • T. Tabanlıgil Calam, and E.B. Yılmaz, “Electrochemical Determination of 8-Hydroxyquinoline in a Cosmetic Product on a Glassy Carbon Electrode Modified with 1-Amino-2-Naphthol-4-Sulphonic Acid,” Instrumentation Science & Technology 49, no. 1 (2021): 1–20. doi:10.1080/10739149.2020.1765175
  • L.A.A.R. Al-Rubaie, and R. J. Mhessn, “Synthesis and Characterization of Azo Dye Para Red and New Derivatives,” E-Journal of Chemistry 9, no. 1 (2012): 465–470. doi:10.1155/2012/206076
  • H. Faroughi Niya, N. Hazeri, and M. Fatahpour, “Synthesis, Characterization, and Application of CoFe2O4@ Amino‐2‐Naphthol‐4‐Sulfonic Acid as a Novel and Reusable Catalyst for the Synthesis of Spirochromene Derivatives,” Applied Organometallic Chemistry 35, no. 3 (2021): E 6119. doi:10.1002/aoc.6119
  • W. Al Zoubi, and N. Al Mohanna, “Membrane Sensors Based on Schiff Bases as Chelating Ionophores–a Review,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 132 (2014): 854–870. doi:10.1016/j.saa.2014.04.176
  • W. Al Zoubi, A.A.S. Al‐Hamdani, and M. Kaseem, “Synthesis and Antioxidant Activities of Schiff Bases and Their Complexes: A Review,” Applied Organometallic Chemistry 30, no. 10 (2016): 810–817. doi:10.1002/aoc.3506
  • M.S.S. Adam, A.M. Abu-Dief, M.M. Makhlouf, S. Shaaban, S.O. Alzahrani, F. Alkhatib, G.S. Masaret, M.A. Mohamed, M. Alsehli, N.M. El-Metwaly, et al. “Tailoring, Structural Inspection of Novel Oxy and Non-Oxy Metal-Imine Chelates for DNA Interaction, Pharmaceutical and Molecular Docking Studies,” Polyhedron 201 (2021): 115167. doi:10.1016/j.poly.2021.115167
  • S.B. Bakare, “Cu (II), Co (II), Ni (II), Mn (II) and Zn (II) Schiff Base Complexes of 3-Hydroxy-4-[N-(2-Hydroxynaphthylidene)-Amino]-Naphthalene-1-Sulfonic Acid: Synthesis, Spectroscopic, Thermal, and Antimicrobial Studies,” Polish Journal of Chemical Technology 21, no. 3 (2019): 26–34. doi:10.2478/pjct-2019-0026
  • D. Zürrer, A.M. Cook, and T. Leisinger, “Microbial Desulfonation of Substituted Naphthalenesulfonic Acids and Benzenesulfonic Acids,” Applied and Environmental Microbiology 53, no. 7 (1987): 1459–1463. doi:10.1128/aem.53.7.1459-1463.1987
  • K. Soroka, R.S. Vithanage, D.A. Phillips, B. Walker, and P.K. Dasgupta, “Fluorescence Properties of Metal Complexes of 8-Hydroxyquinoline-5-Sulfonic Acid and Chromatographic Applications,” Analytical Chemistry 59, no. 4 (1987): 629–636. doi:10.1021/ac00131a019
  • A. Kassa, and M. Amare, “Poly (4-Amino-3-Hydroxynaphthalene-1-Sulfonic Acid) Modified Glassy Carbon Electrode for Square Wave Voltammetric Determination of Amoxicillin in Four Tablet Brands,” BMC Chemistry 15, no. 1 (2021): 11. doi:10.1186/s13065-021-00739-0
  • M.L. Sall, A.K.D. Diaw, D. Gningue-Sall, A. Chevillot-Biraud, N. Oturan, M.A. Oturan, C. Fourdrin, D. Huguenot, and J.J. Aaron, “Removal of Lead and Cadmium from Aqueous Solutions by Using 4-Amino-3-Hydroxynaphthalene Sulfonic Acid-Doped Polypyrrole Films,” Environmental Science and Pollution Research International 25, no. 9 (2018): 8581–8591. doi:10.1007/s11356-017-1111-y
  • R. Kumar, P. Kumar, M. Kumar, and B. Narasimhan, “Synthesis, anti-Microbial Evaluation, and QSAR Studies of 4-Amino-3-Hydroxy-Naphthalene-1-Sulfonic Acid Derivatives,” Medicinal Chemistry Research 21, no. 12 (2012): 4301–4310. doi:10.1007/s00044-011-9954-0
  • M. Sangeetha, and R. Mathammal, “Structure-Activity Relationship of the Ionic Cocrystal: 5-Amino-2-Naphthalene Sulfonate· Ammonium Ions for Pharmaceutical Applications,” Journal of Molecular Structure 1154 (2018): 327–337. doi:10.1016/j.molstruc.2017.10.060
  • (a) Fatima, A. Pooja, K. Savita, S. Singh, M. Verma, I. Siddiqui, N. and Javed, S. “Quantum Chemical, Experimental Spectroscopic, Hirshfeld Surface and Molecular Docking Studies of the anti-Microbial Drug Sulfathiazole,” Journal of Molecular Structure 1245 (2021): 131118–29. doi:10.1016/j.molstruc.2021.131118; (b) A. Fatima, G. Khanum, A. Sharma, N. Siddiqui, S. Muthu, R.J. Butcher, S. Kumar Srivastava, and S. Javed, “Synthesis, Single Crystal X-Ray, DFT, Hirshfeld Surface and Molecular Docking Studies of 9-(2, 4-Dichlorophenyl)-4a-Hydroxy-Tetramethyl-Octahydro-1H-Xanthene-1, 8 (2H)-Dione,” Journal of Molecular Structure 1268 (2022) 133613; (c) A. Fatima, G. Khanum Dau, D. Agrawal, S.K. Srivastava Ray, J. Butcher, S. Muthu,   Musheer Ahmad,   Khaled Althubeiti, N. Siddiqui, and S. Javed, “Synthesis, Spectroscopic, Crystal, Structure, DFT, Hirshfeld Surface and Molecular Docking Analysis of Hexahydroquinoline Derivative (HQ).” Polycyclic Aromatic Compounds 43 (2022): 4242–70. doi:10.1016/j.molstruc.2022.133613; (d) A. Fatima, G. Khanum, A. Sharma, N. Siddiqui, R.J. Butcher, S.K. Srivastava, and S. Javed, “Synthesis, X-Ray Diffraction, DFT and Hirshfeld Surface Studies of9-(4-Hydroxyphenyl-Tetramethyl-Hexahydro-1H-Xanthene-1,8(2H)-Dione,” Polycyclic Aromatic Compounds (2022): 1–24; (e) A. Fatima, G. Khanum, S. Savita, K. Pooja, I. Verma, N. Siddiqui, and S. Javed, “Quantum Computational, Spectroscopic, Hirshfeld Surface, Electronic State and Molecular Docking Studies on Sulfanilic Acid: An anti-Bacterial Drug,” Journal of Molecular Liquids 346 (2022): 117150. doi:10.1016/j.molliq.2021.117150; (f) A. Fatima, G. Khanum, S. Kumar Srivastava, I. Verma, N. Siddiqui, and S. Javed, “Synthesis, Computational, Spectroscopic, Hirshfeld Surface, Electronic State and Molecular Docking Studies on Diethyl-5-Amino-3-Methylthiophene-2, 4-Dicarboxylate,” Chemical Physics Letters 784 (2021): 139103. doi:10.1016/j.cplett.2021.139103; (g) A. Fatima, M. Singh, N. Agarwal, I. Verma, R.J. Butcher, N. Siddiqui, and S. Javed, “Spectroscopic, Molecular Structure, Electronic, Hirshfeld Surface, Molecular Docking, and Thermodynamic Investigations of Trans-4-hydroxy-L-Proline by DFT Method,” Journal of Molecular Liquids 343 (2021): 117549; (h) A. Fatima, G. Khanum, A. Sharma, K. Garima, S. Savita, I. Verma, N. Siddiqui, and S. Javed, “Computational, Spectroscopic, Hirshfeld Surface, Electronic State and Molecular Docking Studies on Phthalic Anhydride,” Journal of Molecular Structure 1249 (2022): 131571. doi:10.1016/j.molliq.2021.117549
  • (a) A. Fatima, J. Bhadoria, S. K. Srivastava, I. Verma, N. Siddiqui, and S. Javed, “Exploration of Experimental and Theoretical Properties of 5, 5-Dimethyl 3-Amino-Cyclohex-2-en-1-One (AMINE DIMEDONE) by DFT/TD-DFT with Ethanol and DMSO as Solvents and Molecular Docking Studies,” Journal of Molecular Structure 1273 (2023): 134242–32; (b) A. Fatima, M. Singh, N. Singh, S. Savita, I. Verma, N. Siddiqui, and S. Javed, “Investigations on Experimental, Theoretical Spectroscopic, Electronic Excitations, Molecular Docking of Sulfaguanidine (SG): an Antibiotic Drug,” Journal of Molecular Liquids 783 (2021): 139049; (c) A. Fatima, A. Ali, S. Shabbir, M. Khan, M. Mehkoom, S.M. Afzal, and M. Ahmad, “Synthesis, Crystal Structure, Characterization, Hirshfeld Analysis, Molecular,” “Docking and DFT Calculations of 5-Phenylamino-Isophthalic Acid: A Good NLO Material,” Journal of Molecular Structure 1261 (2022): 13279; (d) A. Fatima, G. Khanum, A. Sharma, I. Verma, H. Arora, N. Siddiqui, and S. Javed, “Experimental Spectroscopic, Computational, Hirshfeld Surface, Molecular Docking Investigations on 1H-Indole-3-Carbaldehyde,” Polycyclic Aromatic Compounds 43 (2022): 1; (e) A. Fatima, G. Khanum, I. Verma, R.J. Butcher, N. Siddiqui, S.K. Srivastava, and S. Javed, “Synthesis, Characterization, Crystal Structure, Hirshfeld Surface, Electronic Excitation, Molecular Docking, and DFT Studies on 2-Amino Thiophene Derivative,” Polycyclic Aromatic Compounds 43 (2022): 1644–1675; (f) A. Fatima, M. Singh, K.M. Abualnaja, K. Althubeiti, S. Muthu, N. Siddiqui, and S. Javed, “Experimental Spectroscopic, Structural (Monomer and Dimer), Molecular Docking, Molecular Dynamics Simulation and Hirshfeld Surface Analysis of 2-Amino-6-Methylpyridine.” Polycyclic Aromatic Compounds 43 (2022): 3910–3940; (g) A. Fatima, H. Arora, P. Bhattacharya, N. Siddiqui, K.M. Abualnaja, P. Garg, and S. Javed, “DFT, Molecular Docking, Molecular Dynamics Simulation (MMGBSA) and Hirshfeld Surface Analysis of 5-Sulfosalicylic Acid,” Journal of Molecular Structure 1273 (2022): 134242. doi:10.1016/j.molstruc.2022.134242
  • M.J. Frisch, and D.J. Fox, Gaussian 09, C3 Revision B.01 (Wallingford, CT: Gaussian Inc, 2010).
  • R.I. Dennington, T. Keith, and J. Millam, Gaussview, Version 5.0.8 (Shawnee Mission, KS: Semichem. Inc, 2008).
  • C. Lee, W. Yang, and R.G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–789. doi:10.1103/physrevb.37.785
  • A.D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics, 98, no. 7 (1993): 5648–5652. doi:10.1063/1.464913
  • W.R. Wadt, and P.J. Hay, “Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi,” The Journal of Chemical Physics 82, no. 1 (1985): 284–298. doi:10.1063/1.448800
  • G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, and J. Mantzaris, “A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements,” The Journal of Chemical Physics 89, no. 4 (1988): 2193–2218. doi:10.1063/1.455064
  • J. Eberhardt, D. Santos-Martins, A.F. Tillack, and S. Forli, “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings,” Journal of Chemical Information and Modeling 61, no. 8 (2021): 3891–3898. doi:10.1021/acs.jcim.1c00203
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–592. doi:10.1002/jcc.22885
  • OriginLab Corporation, “Origin 8.0,” (Northampton, MA: OriginLab Corporation, 2009).
  • G. Smith, U.D. Wermuth, D.J. Young, and J.M. White, “Zwitterionic 5-Amino-2-Naphthalenesulfonic Acid,” Acta Crystallographica Section E 60, no. 11 (2004): 2014–2016.
  • H. Lampert, W. Mikenda, and A. Karpfen, “Molecular Geometries and Vibrational Spectra of Phenol, Benzaldehyde, and Salicylaldehyde: experimental versus Quantum Chemical Data,” The Journal of Physical Chemistry A 101, no. 12 (1997): 2254–2263. doi:10.1021/jp962933g
  • P.V. Rao, “Vibrational Spectra and Normal Coordinate Treatment of Some Substituted Phenols” (PhD Thesis, Kakatiya University, 1998).
  • N.P.G. Roeges, A Guide to the Complete Interpretation of the Infrared Spectra of Organic Structures (New York, NY: Wiley, 1994).
  • C. Topacli, and A. Topacli, “Ab Initio Calculations and Vibrational Structure of Sulfanilamide,” Journal of Molecular Structure 644, no. 1–3 (2003): 145–150. doi:10.1016/S0022-2860(02)00473-8
  • M.H. Chohan, A. Youssoufi, T.B. Jarrahpour, and B. Hadda, “Identification of Antibacterial and Antifungal Pharmacophore Sites for Potent Bacteria and Fungi Inhibition: Indolenyl Sulfonamide Derivatives,” European Journal of Medicinal Chemistry 45, no. 3 (2010): 1189–1199. doi:10.1016/j.ejmech.2009.11.029
  • L.J. Bellamy, The IR Spectra of Complex Molecules (New York, NY: John Wiley and Sons, 1975).
  • A. Spire, M. Barthes, H. Kellouai, and G. De Nunzio, “Far-Infrared Spectra of Acetanilide Revisited,” Physica D: Nonlinear Phenomena 137, no. 3–4 (2000): 392–401. doi:10.1016/S0167-2789(99)00178-5
  • S. Rostamizadeh, Z. Daneshfar, and H. Moghimi, “Synthesis of Sulfamethoxazole and Sulfabenzamide Metal Complexes; Evaluation of Their Antibacterial Activity,” European Journal of Medicinal Chemistry 171 (2019): 364–371. doi:10.1016/j.ejmech.2019.03.002
  • R.M. Silverstein, and F.X. Webster, Spectrometric Identification of Organic Compounds, 6th ed. (Singapore: Wiley, 2003).
  • A. Arcoria, E. Maccarone, G. Musumarra, and G.A. Tomaselli, “Ultraviolet and Infrared Absorption Spectra of 2-Thiophenesulfonamides,” Spectrochimica Acta. 30, no. 3 (1974): 611–618. doi:10.1016/0584-8539(74)80184-4
  • M.N. Ahmed, K.A. Yasin, K. Ayub, T. Mahmood, M.N. Tahir, B.A. Khan, M. Hafeez, M. Ahmed, and I. Ul-Haq, “Click One Pot Synthesis, Spectral Analyses, Crystal Structures, DFT Studies and Brine Shrimp Cytotoxicity Assay of Two Newly Synthesized 1,4,5-Trisubstituted 1,2,3-Triazoles,” Journal of Molecular Structure. 1106 (2016): 430–439. doi:10.1016/j.molstruc.2015.11.010
  • (a) M.N. Arshad, A.M. Asiri, K.A. Alamry, T. Mahmood, M.A. Gilani, K. Ayub, and A.S. Birinji, “Synthesis, Crystal Structure, Spectroscopic and Density Functional Theory (DFT) Study of N-[3-Anthracen-9-yl-1-(4-Bromo-Phenyl)- Allylidene]-N-Benzenesulfonohydrazine, Spectrochim,” Spectrochimica Acta. Part A 106 (2013): 299–309; (b). S. Muthu, J.U. Maheswari, and T. Sundius, “Molecular Structural, Non-Linear Optical, Second Order Perturbation and Fukui Studies of Indole-3-Aldehyde Using Density Functional Calculations,” Spectrochimica Acta, Part A 142 (2013) 299–309. doi:10.1016/j.saa.2012.12.080
  • A.D. Becke, and K.E. Edgecombe, “A Simple Measure of Electron Localization in Atomic and Molecular Systems,” The Journal of Chemical Physics 92, no. 9 (1990): 5397–5403. doi:10.1063/1.458517
  • A. Savin, A. Becke, J. Flad, R. Nesper, H. Preuss, and H. von Schnering, “New Look at Electron Localization,” Angewandte Chemie International Edition in English 30, no. 4 (1991): 409–412. doi:10.1002/anie.199104091
  • S. Sebastian, J. Sylvestre, S. Jayabharathi, M. Ayyapan, K. Amalanathan, I.A. Oudayakumar, and I. A. Herman, “Study on Conformational Stability, Molecular Structure, Vibrational Spectra, NBO, TD-DFT, HOMO and LUMO Analysis of 3,5-Dinitrosalicylic Acid by DFT Techniques,” Spectrochimica Acta Part A 136 Pt B (2015): 1107–1118. doi:10.1016/j.saa.2014.09.135
  • L. Larabi, Y. Harek, O. Benali, and S. Ghalem, “Hydrazide Derivatives as Corrosion Inhibitors for Mild Steel in 1M HCl,” Progress in Organic Coatings 54, no. 3 (2005): 256–262. doi:10.1016/j.porgcoat.2005.06.015
  • M. Karabacak, M. Cinar, M. Kurt, P. Chinna Babu, and N. Sundaraganesan, “Experimental and Theoretical FTIR and FT-Raman Spectroscopic Analysis of 1-Pyrenecarboxylic Acid, Spectrochimica Acta Part,” Spectrochimica Acta. Part A 114 (2013): 509–519. doi:10.1016/j.saa.2013.05.086
  • X.Y. Meng, H.X. Zhang, M. Mezei, and M. Cui, “Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery,” Current Computer-Aided Drug Design 7, no. 2 (2011): 146–157. doi:10.2174/157340911795677602
  • H.M. Berman, K. Henrick, and H. Nakamura, “Announcing the Worldwide Protein Data Bank,” Nature Structural Biology, 10, no. 12 (2003): 980.
  • P.A. Kumar, D.V. Shukla, V.N. Mishra, V. Singh, O.P. Yadav, and A. Dwivedi, “Molecular Docking, Experimental FT-IR Spectra, UV–Vis Spectra, Vibrational Analysis, Electronic Properties, Fukui Function Analysis of a Potential Bioactive Agent – Proflavine,” Journal of the Indian Chemical Society 99, no. 4 (2022): 100396. doi:10.1016/j.jics.2022.100396
  • K.S. Kaushal, B. Singh, S. Mujwar, and P.S. Bise, “Molecular Docking Based Analysis to Elucidate the DNA Topoisomerase IIβ as the Potential Target for the Ganoderic Acid; a Natural Therapeutic Agent in Cancer Therapy,” Current Computer-Aided Drug Design 16, no. 2 (2020): 176–189. doi:10.2174/1573409915666190820144759
  • S. Mujwar, and V. Kumar, “Computational Drug Repurposing Approach to Identify Potential Fatty Acid-Binding Protein-4 Inhibitors to Develop Novel Antiobesity Therapy,” Assay and Drug Development Technologies 18, no. 7 (2020): 318–327. doi:10.1089/adt.2020.976
  • A. Fatima, A. Ali, R. Rajan, I. Verma, S. Muthu, N. Siddiqui, P. Garg, and S. Javed, “Experimental Spectroscopic, DFT, Molecular Docking, and Molecular Dynamics Simulation Investigations on m-Phenylenediamine (Monomer and Trimer),” Polycyclic Aromatic Compounds (2022): 1–33. doi:10.1080/10406638.2022.2150655
  • Molecular graphics images were produced using the UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California. San Francisco (supported by NIH P41 RR-01081).
  • E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin, “UCSF Chimera—A Visualization System for Exploratory Research and Analysis,” Journal of Computational Chemistry 25, no. 13 (2004): 1605–1612. doi:10.1002/jcc.20084
  • H. Bekker, H.J. . Berendsen, E.J. Dijkstra, S. Achterop, R. van Drunen, D. van der Spoel, A. Sijbers, and H. Keegstra, “Gromacs: A Parallel Computer for Molecular Dynamics Simulations,” 252–256. in Physics Computing, edited by R.A. de Groot and J. Nadrchal, vol. 92. World Scientific, Singapore, 1993.
  • H.J.C. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation,” Computer Physics Communications 91, no. 1–3 (1995): 43–56. doi:10.1016/0010-4655(95)00042-E
  • E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: A Package for Molecular Simulation and Trajectory Analysis,” Journal of Molecular Modeling 7, no. 8 (2001): 306–317. doi:10.1007/s008940100045
  • D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H.J.C. Berendsen, “GROMACS: Fast, Flexible and Free,” Journal of Computational Chemistry 26, no. 16 (2005): 1701–1718. doi:10.1002/jcc.20291
  • B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation,” Journal of Chemical Theory and Computation 4, no. 3 (2008): 435–447. doi:10.1021/ct700301q
  • S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. van der Spoel, et al. “GROMACS 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit,” Bioinformatics 29, no. 7 (2013): 845–854. doi:10.1093/bioinformatics/btt055
  • N. Foloppe, and A.D. MacKerell Jr., “All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data,” Journal of Computational Chemistry 21, no. 2 (2000): 86–104. doi:10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.