23
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational Quantum Chemical Study, Insilco Molecular Docking and ADMET Study of (3E,5E)-3,5-Bis((1H-Indol-3-yl)Methylene)-1-Benzylpiperidin-4-One Derivatives

, , &
Pages 3807-3824 | Received 06 Feb 2023, Accepted 17 Jul 2023, Published online: 26 Jul 2023

References

  • F. F. Gan, K. K. Kaminska, H. Yang, C. Y. Liew, P. C. Leow, C. L. So, L. N. Tu, A. Roy, C. W. Yap, T. S. Kang, et al. “Identification of Michael Acceptor-Centric Pharmacophores with Substituents That Yield Strong Thioredoxin Reductase Inhibitory Character Correlated to Antiproliferative Activity,” Antioxidants & Redox Signaling 19, no. 11 (2013): 1149–1165. doi:10.1089/ars.2012.4909
  • S. N. A. Bukhari, I. Jantan, V. H. Masand, D. T. Mahajan, M. Sher, M. Naeem-Ul-Hassan, and M. W. Amjad, “Synthesis of α, β-Unsaturated Carbonyl-Based Compounds as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: Characterization, Molecular Modeling, QSAR Studies and Effect against Amyloid β-Induced Cytotoxicity,” European Journal of Medicinal Chemistry 83, no. 83 (2014): 355–365. doi:10.1016/j.ejmech.2014.06.034
  • S. Amslinger, “The Tunable Functionality of α, β-Unsaturated Carbonyl Compounds Enable Their Differential Application in Biological Systems,” ChemMedChem 5, no. 3 (2010): 351–356. doi:10.1002/cmdc.200900499
  • J. R. Dimmock, V. K. Arora, M. J. Duffy, R. S. Reid, T. M. Allen, and G. Y. Kao, “Evaluation of Some N-Acyl Analogues of 3,5-Bis (Arylidene)-4-Piperidones for Cytotoxic Activity, Drug Des,” Discovery 8, no. 4 (1992): 291–299.
  • H. I. El-Subbagh, S. M. Abu-Zaid, M. A. Mahran, F. A. Badria, and A. M. Al-Obaid, “Synthesis and Biological Evaluation of Certain α, β-Unsaturated Ketones and Their Corresponding Fused Pyridines as Antiviral and Cytotoxic Agents,” Journal of Medicinal Chemistry 43, no. 15 (2000): 2915–2921. doi:10.1021/jm000038m
  • N. Li, W. Y. Xin, B. R. Yao, C. H. Wang, W. Cong, F. Zhao, H. J. Li, Y. Hou, Q. G. Meng, and G. G. Hou, “Novel Dissymmetric 3, 5-Bis (Arylidene)-4-Piperidones as Potential Antitumor Agents with Biological Evaluation in Vitro and in Vivo,” European Journal of Medicinal Chemistry 147, no. 147 (2018): 21–33. doi:10.1016/j.ejmech.2018.01.088
  • Q. Chen, Y. Hou, G. G. Hou, J. F. Sun, N. Li, W. Cong, F. Zhao, H. J. Li, and C. H. Wang, “Synthesis Design, Anticancer Activity and Cytotoxicity of Novel 4-Piperi- Done/Cyclohexanone Derivatives,” Research on Chemical Intermediates 42, no. 12 (2016): 8119–8130. doi:10.1007/s11164-016-2583-y
  • S. Prakobwong, J. Khoontawad, P. Yongvanit, C. Pairojkul, Y. Hiraku, P. Sithithaworn, P. Pinlaor, B. B. Aggarwal, and S. Pinlaor, “Curcumin Decreases Cholangio Carcinogenesis in Hamsters by Suppressing Inflammation-Mediated Molecular Events Related to Multistep Carcinogenesis,” International Journal of Cancer 129, no. 1 (2011): 88–100. doi:10.1002/ijc.25656
  • J. A. Bush, K. J. J. Cheung, and G. Li, “Curcumin Induces Apoptosis in Human Melanoma Cells through a Fas Receptor/Caspase-8 Pathway Independent of p53,” Experimental Cell Research 271, no. 2 (2001): 305–314. doi:10.1006/excr.2001.5381
  • D. L. Yin, Y. J. Liang, T. S. Zheng, R. P. Song, J. B. Wang, B. S. Sun, S. H. Pan, L. D. Qu, J. R. Liu, H. C. Jiang, et al. “EF24 Inhibits Tumor Growth and Metastasis via Sup Pressing NF-kappaB Dependent Pathways in Human Cholangiocarcinoma,” Scientific Reports 6, no. 6 (2016): 32167. doi:10.1038/srep32167
  • B. Yao, N. Li, C. Wang, G. Hou, Q. Meng, and K. Yan, “Novel Asymmetric 3,5-Bis (Arylidene) Piperidin-4-One Derivatives: Synthesis, Crystal Structures and Cyto- Toxicity,” Acta Crystallographica. Section C, Structural Chemistry 74, no. Pt 6 (2018): 659–665. doi:10.1107/S2053229618006605
  • Xi-S. Wu, R. Wang, Y.-Li Xing, X.-Q. Xue, Y. Zhang, Y.-Z. Lu, Y. Song, X.-Yu Luo, C. Wu, Yu-L. Zhou, et al. “Discovery and Structural Optimization of 4-(4-(Benzyloxy) Phenyl)-3, 4-Dihydropyrimidin-2 (1H)-Ones as RORc Inhibitors,” Acta Pharmacologica Sinica 37, no. 11 (2016): 1516–1524. doi:10.1038/aps.2016.32
  • Q. Chen, F. Wang, and B. Zhou, “Investigations of Retinoic Acid Receptor-Related Orphan Receptor-Ramma t (ROR γt) Agonists: A Combination of 3D-QSAR, Molecular Docking and Molecular Dynamics,” Journal of Biomolecular Structure and Dynamics. 39, no. 10 (2020): 1–19.
  • H. B. Schlegel, “Optimization of Equilibrium Geometries and Transition Structures,” Advances in Chemical Physics. 67 (2007): 249–286.
  • S. Ponnuswamy, R. Kayalvizhi, S. Sethuvasan, P. Sugumar, and M. N. Ponnuswamy, “Synthesis, Stereochemistry, Crystal Structure, Docking Study and Biological Evaluation of Some New N-Benzylpiperidin-4-Ones,” Journal of Molecular Structure. 1155 (2018): 654–665. doi:10.1016/j.molstruc.2017.11.024
  • K. Paulrasu, A. Duraikannu, M. Palrasu, A. Shanmugasundaram, M. Kuppusamy, and B. Thirunavukkarasu, “Synthesis of 4-methyl-N’-(3-Alkyl-2r,6cdiarylpiperidin-4-Ylidene)-1,2,3-thiadiazole5-Carbohydrazides with Antioxidant, Antitumor and Antimicrobial Activities,” Organic & Biomolecular Chemistry 12, no. 31 (2014): 5911–5921. doi:10.1039/c4ob00739e
  • G. Bitencourt-Ferreira, and W. Filgueira de Azevedo, “Molecular Docking Simulations with ArgusLab,” Methods in Molecular Biology. 2053 (2019): 203–220.
  • S. Yadav, S. K. Pandey, V. K. Singh, Y. Goel, A. Kumar, and S. M.. Singh, “Molecular Docking Studies of 3-Bromopyruvate and Its Derivatives to Metabolic Regulatory Enzymes: Implication in Designing of Novel Anticancer Therapeutic Strategies,” PLoS One 12, no. 5 (2017): e0176403. doi:10.1371/journal.pone.0176403
  • G. Sundararajan, D. Rajaraman, T. Srinivasan, D. Velmurugan, and K. Krishnasamy, “Synthesis, Characterization, Computational Calculation and Biological Studies of Some 2,6-Diaryl-1-(Prop-2-yn-1-yl)Piperidin-4-One Oxime Derivatives Spectrochim,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 139 (2015): 108–118. doi:10.1016/j.saa.2014.12.014
  • S. Savithiri, “Synthesis, Spectral, Stereochemical, Biological, Molecular Docking and DFT Studies of 3-Alkyl/3,5-Dialkyl-2r,6c-di(Naphthyl)Piperidin-4-One Picrates Derivatives,” Journal of Molecular Structure. 1234 (2021): 130–145.
  • V. Mohanraj, and S. Ponnuswamy, “Synthesis, Characterization, Stereochemistry, Biological Investigation and DNA Binding Studies on N-Acyl-t-3-Ethyl-r-2,c-6-Bis(4-Methoxyphenyl)Piperidin-4-Ones,” Journal of Molecular Structure. 1171 (2018): 420–428. doi:10.1016/j.molstruc.2018.05.102
  • D. Rajaraman, G. Sundararajan, A. Kamaraj, H. Saleem, and K. Krishnasamy, “Synthesis, Computational and Spectroscopic Analysis on (E)-(4-(2-(Benzo[d]Thiazol-2-yl)Hydrazono)-3-Methyl-2,6-Diphenylpiperidine-1-yl)(Phenyl)Methanone Using DFT Approach, Spectrochim,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 151 (2015): 480–489. doi:10.1016/j.saa.2015.06.037
  • A. Ramalingam, “Hirshfeld Surface Analysis, Interaction Energy Calculation and Spectroscopical Study of 3-Chloro-3-Methyl-r(2),c(6)-Bis(p-Tolyl)Piperidin-4-One Using DFT Approaches,” Journal of Molecular Structure. 1248 (2022): 131–148.
  • F. Rizwana, S. Muthu, J. Christian Prasana, C. Susan Abraham, and M. Raja, “Spectroscopic (FT-IR, FT-RAMAN) Investigation, Topology (ESP, ELF, LOL) Analyses, Charge Transfer Excitation and Molecular Docking (Dengue, Hcv) Studies on Ribavirin,” Chemical Data Collections 17-18 (2018): 236–250. doi:10.1016/j.cdc.2018.09.003
  • R. S.. Saji, J. C. Prasana, S. Muthu, J. George, T. K. Kuruvilla, and B. R. Raajaraman, “Spectroscopic and Quantum Computational Study on Naproxen Sodium,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 226 (2020): 117614. doi:10.1016/j.saa.2019.117614
  • G. Venkatesh, S. Haseena, J.. S.Al-Otaibi, Y. S.. Mary, P. Vennila, Y. Shyma Mary, and S. A.. Azad, “Observations into the Reactivity, Docking, DFT, and MD Simulations of Fludarabine and Clofarabine in Various Solvents,” Journal of Molecular Liquids. 383 (2023): 122076. doi:10.1016/j.molliq.2023.122076
  • R. Rajamanickam, R. Mannangatty, J. Sampathkumar, S. Kabilan, and B. Diravidamani, “Synthesis, Crystal Structure, DFT and Molecular Docking Studies of N-Acetyl-2,4-[Diaryl-3-Azabicyclo[3.3.1]Nonan-9-yl]-9-Spiro-4′-Acetyl-2′-(Acetylamino)-4′,9-Dihydro-[1′,3′,4′]-Thiadiazoles: A Potential SARS-nCoV-2 Mpro (COVID-19) Inhibitor,” Journal of Molecular Structure 1259 (2022): 132747. doi:10.1016/j.molstruc.2022.132747
  • R. V. Sakthivel, P. Sankudevan, P. Vennila, G. Venkatesh, S. Kaya, and G. Serdaroğlu, “Experimental and Theoretical Analysis of Molecular Structure, Vibrational Spectra and Biological Properties of the New Co(II), Ni(II) and Cu(II) Schiff Base Metal Complexes,” Journal of Molecular Structure. 1233 (2021): 130097. doi:10.1016/j.molstruc.2021.130097
  • X-Yu. Meng, “Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery," Current Computer-Aided Drug Design, 7, no. 2 (2011): 146–157. doi: 10.2174/157340911795677602.
  • P. Manjusha, J. Christian Prasana, S. Muthu, and B. F. Rizwana, “Spectroscopic Elucidation (FT-IR, FT-Raman and UV-Visible) with NBO, NLO, ELF, LOL, Drug Likeness and Molecular Docking Analysis on 1-(2-Ethylsulfonylethyl)-2-Methyl-5-Nitro-Imidazole: An Antiprotozoal Agent,” Computational Biology and Chemistry 88 (2020): 107330. doi:10.1016/j.compbiolchem.2020.107330
  • J. Morin, and J. Marie Pelletier, “Density Functional Theory Principles, Applications and Analysis,” 2013.
  • G. Raja, G. Venkatesh, J. S. Al-Otaibi, P. Vennila, Y. S.. Mary, and Y. Sixto-López, “Synthesis, Characterization, Molecular Docking and Molecular Dynamics Simulations of Benzamide Derivatives as Potential anti-Ovarian Cancer Agents,” Journal of Molecular Structure. 1269, no. 5 (2022): 133785. doi:10.1016/j.molstruc.2022.133785
  • P. Aravindan, K. Sivaraj, C. Kamal, P. Vennila, and G. Venkatesh, “Synthesis, Molecular Structure, Spectral Characterization, Molecular Docking and Biological Activities of (E)-N-(2-Methoxy Benzylidene) Anthracene-2-Amine and Co(II), Cu(II) and Zn(II) Complexes,” Journal of Molecular Structure. 1229 (2021): 129488. doi:10.1016/j.molstruc.2020.129488
  • P. Rajamani, V. Vijayakumar, N. Sundaraganesan, M. Jeeva, and M. Susai Boobalan, “FT-IR, FT-Raman, UV–Visible, NMR, DFT and Molecular Docking Investigation of 1-(Phenyl(Piperidin-1-yl)Methyl)Naphthalene-2-ol,” Results in Chemistry 3 (2021): 100096. doi:10.1016/j.rechem.2021.100096
  • M. Alcolea Palafox, D. Bhat, Y. Goyal, S. Ahmad, I. Hubert Joe, and V. K. Rastogi, “FT-IR and FT-Raman Spectra, MEP and HOMO–LUMO of 2,5-Dichlorobenzonitrile: DFT Study,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 136 Pt B (2015): 464–472. doi:10.1016/j.saa.2014.09.058
  • C. Ravikumar, I. Huber Joe, and V. S. Jayakumar, “Charge Transfer Interactions and Nonlinear Optical Properties of Push–Pull Chromophore Benzaldehyde Phenylhydrazone: A Vibrational Approach,” Chemical Physics Letters. 460, no. 4-6 (2008): 552–558. doi:10.1016/j.cplett.2008.06.047
  • L. A. Anthony, D. Rajaraman, M. Shanmugam, and K. Krishnasamy, “Synthesis, Spectral Techniques, X-Ray Crystal Structure, DFT Method, Hirshfeld Surface Analysis and Molecular Docking Studies of 1-(Furan-2-yl)Methyl)-4,5-Diphenyl-2-(p-Tolyl)-1H-Imidazole,” Chemical Data Collections. 28 (2020): 100421. doi:10.1016/j.cdc.2020.100421
  • F. Weinhold, C. R. Landis, and E. D. Glendening, “What is NBO Analysis and How is It Useful?,” International Reviews in Physical Chemistry 35, no. 3 (2016): 399–440. doi:10.1080/0144235X.2016.1192262
  • M. S. Almatairi, “Structural, Spectroscopic, Hirshfeld Surface and Charge Distribution Analysis of 3-(1H-Imidazole-1-yl)-1-Phenylpropan-1-ol Complemented by Molecular Docking Predictions: An Integrated Experimental and Computational Approach,” Journal of Molecular Structure. 1196 (2019): 578–591.
  • J. V. Turner, and S. Agatonovic-Kustrin, “Comprehensive Medicinal Chemistry II,” ISBN 978-0-08-045044 (2007).
  • A. Pawełczyk, D. Olender, K. Sowa-Kasprzak, and L. Zaprutko, “Linked Drug-Drug Conjugates Based on Triterpene and Phenol Structures. Rational Synthesis, Molecular Properties, Toxicity and Bioactivity Prediction,” Arabian Journal of Chemistry 13, no. 12 (2020): 8793–8806. doi:10.1016/j.arabjc.2020.10.009
  • https://www.molinspiration.com/docu/miscreen/druglikeness.html.
  • F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P. W. Lee, and Y. Tang, “admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties,” Journal of Chemical Information and Modeling 52, no. 11 (2012): 3099–3105. doi:10.1021/ci300367a
  • T. Hou, J. Wang, W. Zhang, and X. Xu, “ADME Evaluation in Drug discovery-Prediction of Oral Absorption by Correlation and Classification,” Journal of Chemical Information and Modeling 47, no. 1 (2007): 208–218. doi:10.1021/ci600343x
  • V. M. Alves, E. Muratov, D. Fourches, J. Strickland, N. Kleinstreuer, C. H. Andrade, and A. Tropsha, “Predicting Chemically-Induced Skin Reactions. Part II: QSAR Models of Skin Permeability and the Relationships between Skin Permeability and Skin Sensitization,” Toxicology and Applied Pharmacology 284, no. 2 (2015): 273–280. 15 no doi:10.1016/j.taap.2014.12.013
  • G. Berellini, C. Springer, N. J. Waters, and F. Lombardo, “In Silico Prediction of Volume of Distribution in Human Using Linear and Nonlinear Models on a 669 Compound Data Set,” Journal of Medicinal Chemistry 52, no. 14 (2009): 4488–4495. doi:10.1021/jm9004658
  • E. M. del Amo, L. Ghemtio, H. Xhaard, M. Yliperttula, A. Urtti, and H. Kidron, “Applying Linear and Non-Linear Methods for Parallel Prediction of Volume of Distribution and Fraction of Unbound Drug,” PloS One 8, no. 10 (2013): e74758. doi:10.1371/journal.pone.0074758
  • C. Suenderhauf, F. Hammann, and J. Huwyler, “Computational Prediction of Blood–Brain Barrier Permeability Using Decision Tree Induction,” Molecules (Basel, Switzerland) 17, no. 9 (2012): 10429–10445. doi:10.3390/molecules170910429
  • C. W. Yap, Z. R. Li, and Y. Z. Chen, “Quantitative Structure-Pharmacokinetic Relationships for Drug Clearance by Using Statistical Learning Methods,” Journal of Molecular Graphics & Modelling 24, no. 5 (2006): 383–395. doi:10.1016/j.jmgm.2005.10.004
  • R. Liu, G. Tawa, and A. Wallqvist, “Locally Weighted Learning Methods for Predicting Dose-Dependent Toxicity with Application to the Human Maximum Recommended Daily Dose,” Chemical Research in Toxicology 25, no. 10 (2012): 2216–2226. doi:10.1021/tx300279f
  • P. Mazzatorta, M. D. Estevez, M. Coulet, and B. Schilter, “Modeling Oral Rat Chronic Toxicity,” Journal of Chemical Information and Modeling 48, no. 10 (2008): 1949–1954. doi:10.1021/ci8001974
  • D. Fourches, J. C. Barnes, N. C. Day, P. Bradley, J. Z. Reed, and A. Tropsha, “Cheminformatics Analysis of Assertions Mined from Literature That Describe Drug-Induced Liver Injury in Different Species,” Chemical Research in Toxicology 23, no. 1 (2010): 171–183. doi:10.1021/tx900326k
  • V. M. Alves, E. Muratov, D. Fourches, J. Strickland, N. Kleinstreuer, C. H. Andrade, ““tropsha, predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds, toxicol,”. Appl. Pharmacol 284, no. 2 (2015): 262–272. doi:10.1016/j.taap.2014.12.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.