58
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green Synthesis of New Derivatives of Pyrrolopyrimidine by Employing Cu@KF/Clinoptilolite NPs: Study of Antioxidant Activity

, , ORCID Icon &
Pages 3945-3963 | Received 06 Jan 2023, Accepted 25 Jul 2023, Published online: 09 Aug 2023

References

  • (a) E. Petersen and D.R. Schmidt, “Sulfadiazine and Pyrimethamine in the Postnatal Treatment of Congenital Toxoplasmosis: What Are the Options,” Expert Review of anti-Infective Therapy 1, no. 1 (2003): 175–82. doi:10.1586/14787210.1.1.175; (b) E. Nadal and E. Olavarria, “Imatinib Mesylate (Gleevec/Glivec) a Molecular‐Targeted Therapy for Chronic Myeloid Leukaemia and Other Malignancies,” International Journal of Clinical Practice 58, no. 5 (2004): 511–6.
  • T.P. Selvam, C.R. James, P.V. Dniandev, and S.K. Valzita, “A Mini Review of Pyrimidine and Fused Pyrimidine Marketed Drugs,” Research in Pharmacy 2, no. 4 (2012): 1–9.
  • (a) D. Meyer, M.A. Taige, A. Zeller, K. Hohlfeld, S. Ahrens, and T. Strassner, “Palladium Complexes with Pyrimidine-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Structure and Catalytic Activity,” Organometallics 28, no. 7 (2009): 2142–9. doi:10.1021/om8009238; (b) S. Warsink, I.H. Chang, J.J. Weigand, P. Hauwert, J.T. Chen, and C.J. Elsevier, “NHC Ligands with a Secondary Pyrimidyl Donor for Electron-Rich Palladium(0) Complexes,” Organometallics 29, no. 20 (2010): 4555–61.; (c) D. Meyer, A. Zeller, and T. Strassner, “Platinum Complexes with Pyrimidine-Functionalized N-Heterocyclic Carbene Ligands–Synthesis and Solid State Structures,” Journal of Organometallic Chemistry 701 (2012): 56–61.; (d) J.E.H. Pucheta, M. Candy, O. Colin, A. Requet, F. Bourdreux, E. Galmiche-Loire, A. Gaucher, C. Thomassigny, D. Prim, M. Mahfoudh, et al. “Understand, Elucidate and Rationalize the Coordination Mode of Pyrimidylmethylamines: An Intertwined Study Combining NMR and DFT Methods,” Physical Chemistry Chemical Physics 17, no. 14 (2015): 8740–9.
  • (a) Nilam Arunkumar Patil, Somnath Udgire, D. R. Shinde, Prakash D. Patil. Green Synthesis of Gold Nanoparticles using Extract of Vitis vinifera, Buchananialanzan, Juglandaceae, Phoenix Dactylifera Plants, and Evaluation of Antimicrobial Activity. Chemical Methodologies 7 (2023): 15–27; (b) E. Frankland and H. Kolbe, “Ueber die Zersetzungsproducte des Cyanäthyls durch Einwirkung von Kalium,” Annalen der Chemie und Pharmacie 65, no. 3 (1848): 269–87. doi:10.1002/jlac.18480650302
  • A. Pinner, “Ueber die Einwirkung von Acetessigäther auf die Amidine,” Berichte der deutschen chemischen Gesellschaft 17, no. 2 (1884): 2519–20. doi:10.1002/cber.188401702173
  • A. Dömling, “Isocyanide Based Multicomponent Reactions in Combinatorial Chemistry,” Combinatorial Chemistry & High Throughput Screening 1, no. 1 (1998): 1–22. doi:10.2174/138620730101220118143111
  • A. Dömling and I. Ugi, “Multicomponent Reactions with Isocyanides,” Angewandte Chemie International Edition in England 39, no. 18 (2000): 3168–3210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
  • L. Weber, “Multi-Component Reactions and Evolutionary Chemistry,” Drug Discovery Today 7, no. 2 (2002): 143–7. doi:10.1016/S1359-6446(02)00010-7
  • J. Zhu and H. Bienaymé, Multicomponent Reactions (Wiley-VCH, Weinheim, 2005).
  • P. Wipf and C. Kendall, “Novel Applications of Alkenyl Zirconocenes,” Chemistry–A European Journal 8, no. 8 (2002): 1779–84.
  • G. Balme, E. Bossharth, and N. Monteiro, “Cover Picture: Pd‐Assisted Multicomponent Synthesis of Heterocycles,” European Journal of Organic Chemistry 2003, no. 21 (2003): 4101–11. doi:10.1002/ejoc.200300378
  • A. Jacobi von Wangelin, H. Neumann, D. Gordes, S. Klaus, D. Strubing, and M. Beller, “Multicomponent Coupling Reactions for Organic Synthesis: Chemoselective Reactions with Amide-Aldehyde Mixtures,” Chemistry 9, no. 18 (2003): 4286–94. doi:10.1002/chem.200305048
  • S. Heck and A. Dömling, “A Versatile Multi-Component One-Pot Thiazole Synthesis,” Synlett 2000, no. 3 (2000): 424–426. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
  • B. Ganem, “Strategies for Innovation in Multicomponent Reaction Design,” Accounts of Chemical Research 42, no. 3 (2009): 463–72. doi:10.1021/ar800214s
  • (a) A. Shaabani, A.H. Maleki, A. Rezayan, and J. Sarvary, “Recent Progress of Isocyanide-Based Multicomponent Reactions in Iran,” Molecular Diversity 15, no. 1 (2011): 41–68. doi:10.1007/s11030-010-9258-1; (b) C. Altug, A.K. Burnett, E. Caner, Y. Dürüst, M.C. Elliott, R.P.J. Glanville, C. Guy, and A.D. Westwell, “An Efficient One-Pot Multicomponent Approach to 5-Amino-7-Aryl-8-Nitrothiazolo[3,2-a]Pyridines,” Tetrahedron 67, no. 49 (2011): 9522–8.
  • F. Rostami-Charati, R. Hajinasiri, S.Z. Sayyed Alangi, and S. Afshari Sharif Abad, “ZnO-Nanorods as Economical Catalyst for Synthesis of 4-Amino-2-Iminodithiole Derivatives Using Tetramethyl Thiourea in Water,” Chemical Papers 70, no. 7 (2016): 907–12. doi:10.1515/chempap-2016-0030
  • H. Sajjadi-Ghotbabadi, S. Javanshir, and F. Rostami-Charati, “Nano KF/Clinoptilolite: An Effective Heterogeneous Base Nanocatalyst for Synthesis of Substituted Quinolines in Water,” Catalysis Letters 146, no. 2 (2016): 338–44. doi:10.1007/s10562-015-1652-y
  • A. Soleimani, J. Asadi, F. Rostami-Charati, and R. Gharaei, “High Cytotoxicity and Apoptotic Effects of Natural Bioactive Benzofuran Derivative on the MCF-7 Breast Cancer Cell Line,” Combinatorial Chemistry & High Throughput Screening 18, no. 5 (2015): 505–13. doi:10.2174/1386207318666150430114815
  • F. Rostami-Charati, Z.S. Hossaini, F. Sheikholeslami-Farahani, Z. Azizi, and S.A. Siadati, “Synthesis of 9H-Furo[2,3-f]Chromene Derivatives by Promoting ZnO Nanoparticle,” Combinatorial Chemistry & High Throughput Screening 18, no. 9 (2015): 872–80. doi:10.2174/1386207318666150525094109
  • (a) M.N. Elinson, A.I. Ilovaisky, V.M. Merkulova, P.A. Belyakov, A.O. Chizhov, and G.I. Nikishin, “Solvent-Free Cascade Reaction: Direct Multicomponent Assembling of 2-Amino-4H-Chromene Scaffold from Salicylaldehyde, Malononitrile or Cyanoacetate and Nitroalkanes,” Tetrahedron 66, no. 23 (2010): 4043–8. doi:10.1016/j.tet.2010.04.024; (b) M.G. Dekamin and Z. Mokhtari, “Highly Efficient and Convenient Strecker Reaction of Carbonyl Compounds and Amines with TMSCN Catalyzed by MCM-41 Anchored Sulfonic Acid as a Recoverable Catalyst,” Tetrahedron 68, no. 3 (2012): 922–30.
  • L. Weber, “The Application of Multi-Component Reactions in Drug Discovery,” Current Medicinal Chemistry 9, no. 23 (2002): 2085–93. doi:10.2174/0929867023368719
  • a) Y.S. Kurniawan, K.T.A. Priyangga, P.A. Krisbiantoro, and A.C. Imawan, Green Chemistry Influences in Organic Synthesis: a Review. Journal of Multidisciplinary Applied Natural Science 1, no. 1 (2021): 1–12.; (b) K.J. Ardila-Fierro and J.G. Hernández, “Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry,” ChemSusChem 14, no. 10 (2021): 2145–62. doi:10.1002/cssc.202100478; (c) J. Martínez, J.F. Cortés, and R. Miranda, “Green Chemistry Metrics, a Review,” Processes 10, no. 7 (2022): 1274.; (d) M.B. Gawande, V.D.B. Bonifácio, R. Luque, P.S. Branco, and R.S. Varma, “Benign by Design: Catalyst-Free in-Water, on-Water Green Chemical Methodologies in Organic Synthesis,” Chemical Society Reviews 42, no. 12 (2013): 5522.; (e) R.N. Butler and A.G. Coyne, “Water: Nature’s Reaction Enforcer-Comparative Effects for Organic Synthesis in-Water and on-Water,” Chemical Reviews 110, no. 10 (2010): 6302–37.
  • (a) T. Kitanosono, K. Masuda, P. Xu, and S. Kobayashi, “Catalytic Organic Reactions in Water Toward Sustainable Society,” Chemical Reviews 118, no. 2 (2018): 679–746. doi:10.1021/acs.chemrev.7b00417; b) A.K. Kaloti, “Sustainable Green Chemistry in Green Technology Environment,” International Journal of Research in Engineering, Science and Management 5, no. 7 (2022): 78; (c) Z. Fan, W. Zhang, L. Li, Y. Wang, Y. Zou, S. Wang, and Z. Chen, “Recent Developments in Electrode Materials for the Selective Upgrade of Biomass-Derived Platform Molecules into High-Value-Added Chemicals and Fuels,” Green Chemistry 24, no. 20 (2022): 7818–68.; (d) H.C. Hailes, “Reaction Solvent Selection: The Potential of Water as a Solvent for Organic Transformations,” Organic Process Research & Development 11, no. 1 (2007): 114–20.
  • (a) M.O. Simon, and C. Li, “Green Chemistry Oriented Organic Synthesis in Water,” Chemical Society Reviews 41, no. 4 (2012): 1415–27. doi:10.1039/c1cs15222j; (b) S. Narayan, J. Muldoon, M.G. Finn, V.V. Fokin, H.C. Kolb, and K.B. Sharpless, “On Water: Unique Reactivity of Organic Compounds in Aqueous Suspension,” Angewandte Chemie International Edition in English 44, no. 21 (2005): 3275–9.; (c) A. Chanda and V.V. Fokin, “Organic Synthesis on Water,” Chemical Reviews 109, no. 2 (2009): 25–748.; (d) U.M. Lindstrom, “Stereoselective Organic Reactions in Water,” Chemical Reviews 102, no. 8 (2002): 2751–72.; (e) Z. Rahimi, M. Bayat, and H. Hosseini, “New Multicomponent Reactions in Water: A Facile Synthesis of 1,3-Dioxo-2-Indanilidene-Heterocyclic Scaffolds and Indenoquinoxalines Through Reaction of Ninhydrin-Malononitrile Adduct with Diverse N-Binucleophiles,” RSC Advances 12, no. 52 (2022): 33772–9.
  • (a) S. Abdolmohammadi and Z.S. Hossaini, “Fe3O4 MNPs as a Green Catalyst for Syntheses of Functionalized [1,3]-Oxazole and 1H-Pyrrolo-[1,3]-Oxazole Derivatives and Evaluation of Their Antioxidant Activity,” Molecular Diversity 23, no. 4 (2019): 885–96. doi:10.1007/s11030-019-09916-9; (b) S. Rezayati, R. Hajinasiri, Z.S. Hossaini, and S. Abbaspour, “Chemoselective Synthesis of 1,1-Diacetates (Acylals) Using 1,1’-Butylenebispyridinium Hydrogen Sulfate as a New, Halogen-Free and Environmental-Friendly Catalyst Under,” Asian Journal of Green Chemistry 2 (2018): 268–80; (c) I. Yavari, Z.S. Hossaini, and M. Sabbaghan, “Efficient Synthesis of Tetrasubstituted Thiophenes by Reaction of Benzoyl Isothiocyanates, Ethyl Bromopyruvate and Enaminones,” Tetrahedron Letters 49, no. 5 (2008): 844–6.; (d) B. Azizi, M.R. Poor Heravi, Z.S. Hossaini, A. Ebadi, and E. Vessally, “Intermolecular Difunctionalization of Alkenes: Synthesis of β-Hydroxy Sulfides,” RSC Advances 11, no. 22 (2021): 13138–51.
  • (a) S.F. Taheri Hatkehlouei, B. Mirza, and S. Soleimani-Amiri, “Solvent-Free One-Pot Synthesis of Diverse Dihydropyrimidinones/Tetrahydropyrimidinones Using Biginelli Reaction Catalyzed by Fe3O4@C@OSO3H,” Polycyclic Aromatic Compounds 42, no. 4 (2022): 1341–1357. doi:10.1080/10406638.2020.1781203; (b) A. Ebrahimi, S.M. Habibi, A. Sanati, and M. Mohammadi, “A Comparison of C–C Rotational Barrier in [2] Staffane,[2] Tetrahedrane and Ethane,” Chemical Physics Letters 466, no. 1–3 (2008): 32–6.; (c) M. Mohammadi, and A. Khanmohammadi, “Theoretical Investigation on the Non-Covalent Interactions of Acetaminophen Complex in Different Solvents: Study of the Enhancing Effect of the Cation–π Interaction on the,” Theoretical Chemistry Accounts 139, no. 8 (2020): 141.; (d) M. Mohammadi and A. Khanmohammadi, “Molecular Structure, QTAIM and Bonding Character of Cation–π Interactions of Mono- and Divalent Metal Cations (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) with Drug,” Theoretical Chemistry Accounts 138, no. 8 (2019): 101.
  • (a) M.T. Maghsoodlou, N. Hazeri, S.M. Habibi‐Khorassani, G. Marandi, L. Saghatforoush, D. Saravani, N.A. Torbati, F. Rostami‐Charati, K. Khandan‐Barani, B.W. Skelton, et al. “Diastereoselective Synthesis of Chloro‐and Fluoro‐Aniline Containing Phosphonate Esters in a Three‐Component Condensation,” Heteroatom Chemistry 21, no. 4 (2010): 222–7. doi:10.1002/hc.20600; b) M. Kangani, N. Hazeri, Kh Khandan-Barani, M. Lashkari, and M.T. Maghsoodlou, “Lime Juice as an Efficient and Green Catalyst for the Synthesis of 6-Amino-4-Aryl-3-Methyl-1, 4-Dihydropyrano [2, 3-c] Pyrazole-5-Carbonitrile Derivatives,” Iranian Journal of Organic Chemistry 6 (2014): 1187–92; (c) Kh Khandan-Barani, M.T. Maghsoodlou, N. Hazeri, and S.M. Habibi-Khorasani, “One-Pot, Three Component Reactions between Isocyanides and Dialkyl Acetylenedicarboxylates in the Presence of Phenyl Isocyanate: Synthesis of Dialkyl 2-(Alkyl/Arylimino)-2, 5,” Arkivoc 11 (2011): 22–8; (d) E. Ezzatzadeh, “Chemoselective Oxidation of Sulfides to Sulfoxides Using a Novel Zn-DABCO Functionalized Fe3O4 MNPs as Highly Effective Nanomagnetic Catalyst,” Asian Journal of Nanosciences and Materials 4, no. 2 (2021): 125–36.
  • (a) E. Ezzatzadeh, and Z.S. Hossaini, “2D ZnO/Fe3O4 Nanocomposites as a Novel Catalyst‐Promoted Green Synthesis of Novel Quinazoline Phosphonate Derivatives,” Applied Organometallic Chemistry 34, no. 7 (2020): e5596; (b) E. Ezzatzadeh, Z.S. Hossaini, R. Rostamian, S. Vaseghi, and S.F. Mousavi, “Fe3O4 Magnetic Nanoparticles (MNPs) as Reusable Catalyst for the Synthesis of Chromene Derivatives Using Multicomponent Reaction of 4‐Hydroxycumarin,” Journal of Heterocyclic Applied Organometallic Chemistry 54, no. 5 (2017): 2906–11. doi:10.1002/aoc.5947
  • (a) S. Esfahani, J. Akbari, S. Soleimani-Amiri, M. Mirzaei, and A. Ghasemi Gol, “Assessing the Drug Delivery of Ibuprofen by the Assistance of Metal-Doped Graphenes: Insights from Density Functional Theory,” Diamond and Related Materials 135 (2023): 109893. doi:10.1016/j.diamond.2023.109893; (b) E. Hemmati, S. Soleimani-Amiri, and M. Kurdtabar, “A CMC-g-Poly (AA-co-AMPS)/Fe3O4 Hydrogel Nanocomposite as a Novel Biopolymer-Based Catalyst in the Synthesis of 1, 4-Dihydropyridines,” RSC Advances 13, no. 24 (2023): 16567–83; (c) A.S. Shahvelayati and Z. Esmaeeli, “Efficient Synthesis of S-Dipeptidothiouracil Derivatives via a One-Pot, Five-Component Reaction under Ionic Liquid Condition,” Journal of Sulfur Chemistry 33, no. 3 (2012): 319–25.
  • Y. Tonbul, M. Zahmakiran, and S. Özkar, “Iridium(0) Nanoparticles Dispersed in Zeolite Framework: A Highly Active and Long-Lived Green Nanocatalyst for the Hydrogenation of Neat Aromatics at Room Temperature,” Applied Catalysis B: Environmental 148–149 (2014): 466–72. doi:10.1016/j.apcatb.2013.11.017
  • F. Durap, M. Rakap, M. Aydemir, and S. Özkar, “Room Temperature Aerobic Suzuki Cross-Coupling Reactions in DMF/Water Mixture Using Zeolite Confined Palladium(0) Nanoclusters as Efficient and Recyclable Catalyst,” Applied Catalysis A: General 382, no. 2 (2010): 339–44. doi:10.1016/j.apcata.2010.05.021
  • D. Azarifar and F. Soleimanei, “Natural Indian Natrolite Zeolite-Supported Cu Nanoparticles: A New and Reusable Heterogeneous Catalyst for N-Arylation of Sulfonamides with Boronic Acids in Water under Ligand-Free Conditions,” RSC Advances 4, no. 24 (2014): 12119–26. doi:10.1039/c3ra47955b
  • M. Zahmakiran and S. Özkar, “Zeolite-Confined Ruthenium(0) Nanoclusters Catalyst: Record Catalytic Activity, Reusability, and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride,” Langmuir 25, no. 5 (2009): 2667–78. doi:10.1021/la803391c
  • M. Zahmakiran and S. Özkar, “Intrazeolite Ruthenium(0) Nanoclusters: A Superb Catalyst for the Hydrogenation of Benzene and the Hydrolysis of Sodium Borohydride,” Langmuir 24, no. 14 (2008): 7065–7. doi:10.1021/la800874u
  • M. Zahmakiran and S. Özkar, “Zeolite Framework Stabilized Rhodium(0) Nanoclusters Catalyst for the Hydrolysis of Ammonia-Borane in Air: Outstanding Catalytic Activity, Reusability and Lifetime,” Applied Catalysis B: Environmental 89, no. 1–2 (2009): 104–10. doi:10.1016/j.apcatb.2008.12.004
  • H.-Y. Chen, Z. Wei, M. Kollar, F. Gao, Y. Wang, J. Szanyi, and C.H.F. Peden, “A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts,” Journal of Catalysis 329 (2015): 490–8. doi:10.1016/j.jcat.2015.06.016
  • D.W. Crandell, H. Zhu, X. Yang, J. Hochmuth, and M.-H. Baik, “Computational and Spectroscopic Characterization of Key Intermediates of the Selective Catalytic Reduction Cycle of NO on Zeolite-Supported Cu Catalyst,” Inorganica Chimica Acta 430 (2015): 132–43. doi:10.1016/j.ica.2015.02.021
  • M.A. Khalilzadeh, H. Keipour, A. Hosseini, and D. Zareyee, “KF/Clinoptilolite, an Effective Solid Base in Ullmann Ether Synthesis Catalyzed by CuO Nanoparticles,” New Journal of Chemistry 38, no. 1 (2014): 42–5. doi:10.1039/C3NJ00834G
  • M. Amirsoleimani, M.A. Khalilzadeh, and D. Zareyee, “Preparation and Catalytic Evaluation of a Palladium Catalyst Deposited over Modified Clinoptilolite (Pd@MCP) for Chemoselective N-Formylation and N-Acylation of Amines,” Journal of Molecular Structure 1225 (2021): 129076. doi:10.1016/j.molstruc.2020.129076
  • M. Amirsoleimani, M.A. Khalilzadeh, and D. Zareyee, “Nano-Sized Clinoptilolite as a Green Catalyst for the Rapid and Chemoselective N-Formylation of Amines,” Reaction Kinetics, Mechanisms and Catalysis 131, no. 2 (2020): 859–73. doi:10.1007/s11144-020-01886-6
  • J. Balou, M.A. Khalilzadeh, and D. Zareyee, “KF/Nano-Clinoptilolite Catalyzed Aldol-Type Reaction of Aldehydes with Ethyl Diazoacetate,” Catalysis Letters 147, no. 10 (2017): 2612–8. doi:10.1007/s10562-017-2158-6
  • M.A. Khalilzadeh, H. Sadeghifar, and R. Venditti, “Natural Clinoptilolite/KOH: An Efficient Heterogeneous Catalyst for Carboxymethylation of Hemicellulose,” Industrial & Engineering Chemistry Research 58, no. 27 (2019): 11680–8. doi:10.1021/acs.iecr.9b02239
  • J. Balou, M.A. Khalilzadeh, and D. Zareyee, “An Efficient and Reusable Nano Catalyst for the Synthesis of Benzoxanthene and Chromene Derivatives,” Scientific Reports 9, no. 1 (2019): 3605. doi:10.1038/s41598-019-40431-x
  • J. Ghanaat, M.A. Khalilzadeh, and D. Zareyee, “KF/CP NPs as an Efficient Nanocatalyst for the Synthesis of 1,2,4-Triazoles: Study of Antioxidant and Antimicrobial Activity,” Eurasian Chemical Communications 2 (2020): 202–12.
  • R. Oladee, D. Zareyee, and M.A. Khalilzadeh, “KF/Clinoptilolite Nanoparticles as an Efficient Nanocatalyst for the Strecker Synthesis of α-Aminonitriles,” Monatshefte Für Chemie – Chemical Monthly 151, no. 4 (2020): 611–5. doi:10.1007/s00706-020-02574-w
  • (a) A. Alizadeh, M.A. Khalilzadeh, E. Alipour, and D. Zareyee, “Pd (II) Immobilized on Clinoptilolite as a Highly Active Heterogeneous Catalyst for Ullmann Coupling-Type S-Arylation of Thiols with Aryl Halides,” Combinatorial Chemistry & High Throughput Screening 23, no. 7 (2020): 658–66. doi:10.2174/1386207323666200415103239; (b) H. Keipour, M.A. Khalilzadeh, A. Hosseini, A. Pilevar, and D. Zareyee, “An Active and Selective Heterogeneous Catalytic System for Michael Addition,” Chinese Chemical Letters 23, no. 5 (2012): 537–540.; (c) M.A. Khalilzadeh, I. Yavari, and H. Sadeghifar, “N-Methylimidazole-Promoted Efficient Synthesis of 1,3-Oxazine-4-Thiones under Solvent-Free Conditions,” Monatshefte Für Chemie-Chemical Monthly 140 (2009): 467–71.
  • (a) B. Halliwell, “Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning),” Free Radical Research 31, no. 4 (1999): 261–72. doi:10.1080/10715769900300841; (b) F. Ahmadi, M. Kadivar, and M. Shahedi, “Antioxidant Activity of Kelussia Odoratissima Mozaff in Model and Food Systems,” Food Chemistry 105, no. 1 (2007): 57–64.
  • M.A. Babizhayev, A.I. Deyev, V.N. Yermakova, I.V. Brikman, and J. Bours, “Lipid Peroxidation and Cataracts: N-Acetylcarnosine as a Therapeutic Tool to Manage Age-Related Cataracts in Human and in Canine Eyes,” Drugs in R&D 5, no. 3 (2004): 125–39. doi:10.2165/00126839-200405030-00001
  • L. Liu, and M. Meydani, “Combined Vitamin C and E Supplementation Retards Early Progression of Arteriosclerosis in Heart Transplant Patients,” Nutrition Reviews 60, no. 11 (2002): 368–71.
  • (a) E. Ezzatzadeh, Chemoselective oxidation of sulfides to sulfoxides using a novel Zn-DABCO functionalized Fe3O4 MNPs as highly effective nanomagnetic catalyst. Asian Journal of Nanoscience and Materials 4 (2021): 125–36.; (b) E. Ezzatzadeh and Z.S. Hossaini, 2D ZnO/Fe3O4 nanocomposites as a novel catalyst-promoted green synthesis of novel quinazoline phosphonate derivatives. Applied Organometallic Chemistry 34, no. 7 (2020): e5596.; (c) E. Ezzatzadeh, Z.S. Hossaini, R. Rostamian, S. Vaseghi, and S.F. Mousavi, “Fe3O4 Magnetic Nanoparticles (MNPs) as Reusable Catalyst for the Synthesis of Chromene Derivatives Using Multicomponent Reaction of 4-Hydroxycumarin Basis on Cheletropic Reaction,” Journal of Heterocyclic Chemistry 54, no. 5 (2017): 2906–11. doi:10.1002/jhet.2900; (d) E. Ezzatzadeh, E. Pourghasem, and S.F.I. Sofla, “Chemical Composition and Antimicrobial Activity of the Volatile Oils from Leaf, Flower, Stem and Root of Thymus Transcaucasicus from Iran,” Journal of Essential Oil Bearing Plants 17, no. 4 (2014): 577–83.; (e) M. Mohammadi, F. Alirezapour, and A. Khanmohammadi, “DFT Calculation of the Interplay Effects between Cation–π and Intramolecular Hydrogen Bond Interactions of Mesalazine Drug with Selected Transition Metal Ions (Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+),” Theoretical Chemistry Accounts 140, no. 8 (2021): 104.
  • (a) M. Masoudi, M. Anary-Abbasinejad, and M. Mohammadi, “An Efficient One-Pot Synthesis of Polyfunctionalized 2H-Pyrroline Derivatives by Reaction of β-Enaminocarbonyls, Arylglyoxals and Amines,” Journal of the Iranian Chemical Society 13, no. 2 (2016): 315–21. doi:10.1007/s13738-015-0739-0; (b) A. Khanmohammadi and M. Mohammadi, “Theoretical Study of Various Solvents Effect on 5-Fluorouracil-Vitamin B3 Complex Using PCM Method,” Journal of the Chilean Chemical Society 64, no. 1 (2019): 4337–44.; (c) M.A. Poor, A. Darehkordi, M. Anary-Abbasinejad, and M. Mohammadi, “Gabapentin-Base Synthesis and Theoretical Studies of Biologically Active Compounds: N-Cyclohexyl-3-Oxo-2-(3-Oxo-2-Azaspiro[4.5] Decan-2-yl)-3-Arylpropanamides and N-(Tert-Butyl)-2-(3-Oxo-2-Azaspiro[4.5]Decan-2-yl)-2-Arylacetamide Derivatives,” Journal of Molecular Structure 1152 (2018): 44–52.
  • (a) N. Karami Hezarcheshmeh, F. Godarzbod, N.F. Hamedani, and S. Vaseghi, “Ag/CdO/Fe3O4 @MWCNTs Promoted Green Synthesis of Novel Triazinopyrrolothiazepine: Investigation of Antioxidant and Antimicrobial Activity,” Polycyclic Aromatic Compounds (2023): 1–23. doi:10.1080/10406638.2022.2162553; (b) N. Karami Hezarcheshmeh and J. Azizian, “Regioselective One-Pot Synthesis and Antioxidant Activity Study of Trichloro Isatins and Dichloro Isatins,” Polycyclic Aromatic Compounds 42, no. 10 (2022): 7686–96.; (c) N.K. Hezarcheshmeh and J. Azizian, “Solvent-Free Synthesis of New Spiropyrroloindole Compounds Using Fe3O4/TiO2/MWCNTs MNCs via Multicomponent Reactions: Assessment of New Spiropyrroloindole Antioxidant Activity,” Molecular Diversity 26, no. 4 (2022): 2011–24.; (d) N.F. Hamedani, M. Ghazvini, F. Sheikholeslami‐Farahani, and M.T. Bagherian‐Jamnani, “ZnO Nanorods as Efficient Catalyst for the Green Synthesis of Thiophene Derivatives: Investigation of Antioxidant and Antimicrobial Activity,” Journal of Heterocyclic Chemistry 57, no. 4 (2020): 1588–98.
  • (a) F. Sheikholeslami-Farahani and A.S. Shahvelayati, “Synthesis of Unsaturated α-Acyloxybenzothiazoleamides via the Passerini Three-Component Reaction,” Combinatorial Chemistry & High Throughput Screening 16, no. 9 (2013): 726–30. doi:10.2174/13862073113169990041[PMC]; (b) F. Sheikholeslami-Farahani and A.S. Shahvelayati, “Solvent-Free One-Pot Synthesis Of Highly Functionalized Benzothiazolediamides via Ugi Four-Component Reaction,” Bulgarian Chemical Communications 47, no. 3 (2015): 830–6; (c) E. Ezzatzadeh, F. Sheikholeslami-Farahani, K. Yadollahzadeh, and S. Rezayati, “Highly Efficient Reusable Carboxy Group Functionalized Imidazolium Salts for a Simple and Cost-Effective Preparation of Pyrano[2,3-d]Pyrimidinone Derivatives,” Combinatorial Chemistry & High Throughput Screening 24, no. 9 (2021): 1465–75.
  • (a) S. Soleimani‐Amiri, F. Shafaei, A. Varasteh Moradi, F. Gholami‐Orimi, and Z. Rostami, “A Novel Synthesis and Antioxidant Evaluation of Functionalized [1,3]‐Oxazoles Using Fe3O4‐Magnetic Nanoparticles,” Journal of Heterocyclic Chemistry 56, no. 10 (2019): 2744–52. doi:10.1002/jhet.3640; (b) M. Koohi, S. Soleimani-Amiri, and M. Shariati, “Novel X- and Y-Substituted Heterofullerenes X4Y4C12 Developed from the Nanocage C20, Where X = B, Al, Ga, Si and Y = N, P, as, Ge: A Comparative Investigation on Their Structural, Stability, and Electronic Properties at DFT,” Structural Chemistry 29, no. 3 (2018): 909–20.; (c) M. Koohi, S. Soleimani Amiri, and B.N. Haerizade, “Substituent Effect on Structure, Stability, and Aromaticity of Novel BnNmC20-(n+m) Heterofullerenes,” Journal of Physical Organic Chemistry 30, no. 11 (2017): e3682.; (d) S. Soleimani‐Amiri, Z. Hossaini, M. Arabkhazaeli, H. Karami, and S. Afshari Sharif Abad, “Green Synthesis of Pyrimido‐Isoquinolines and Pyrimido‐Quinoline Using ZnO Nanorods as an Efficient Catalyst: Study of Antioxidant Activity,” Journal of the Chinese Chemical Society 66, no. 4 (2019): 438–45.
  • (a) M. Ghashghaee, M. Ghambarian, and Z. Azizi, "Chemistry of Black Phosphorus," in Black Phosphorus. (Germany: Springer, 2020) 59–72.; (b) M. Abniki, Z. Azizi, and H.A. Panahi, “Design of 3-Aminophenol-Grafted Polymer-Modified Zinc Sulphide Nanoparticles as Drug Delivery System,” IET Nanobiotechnology 15, no. 8 (2021): 664–73. doi:10.1049/nbt2.12063[PMC]; (c) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Quantum-Chemical Calculations on Graphitic Carbon Nitride (g-C3N4) Single-Layer Nanostructures: Polymeric Slab vs. quantum Dot,” Structural Chemistry 31, no. 3 (2020): 1137–48.; (d) Z. Azizi, M. Ghashghaee, and M. Ghambarian, “Black Phosphorus: Synthesis, Properties and Applications,” (2020): 157–169.
  • (a) M.Z. Kassaee, M.R. Momeni, F.A. Shakib, M. Ghambarian, and S.M. Musavi, “Novel α-Spirocyclic (Alkyl)(Amino)Carbenes at the Theoretical Crossroad of Flexibility and Rigidity,” Structural Chemistry 21, no. 3 (2010): 593–8. doi:10.1007/s11224-010-9585-y; (b) M. Ghashghaee and M. Ghambarian, “Ethene Protonation over Silica-Grafted Metal (Cr, Mo, and W) Oxide Catalysts: A Comparative Nanocluster Modeling Study,” Russian Journal of Inorganic Chemistry 63, no. 12 (2018): 1570–7.; (c) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Theoretical Insights into Hydrogen Sensing Capabilities of Black Phosphorene Modified through ZnO Doping and Decoration,” International Journal of Hydrogen Energy 45, no. 33 (2020): 16918–28.; (d) M. Ghadiri, M. Ghashghaee, and M. Ghambarian, “Influence of NiO Decoration on Adsorption Capabilities of Black Phosphorus Monolayer toward Nitrogen Dioxide: Periodic DFT Calculations,” Molecular Simulation 46, no. 14 (2020): 1062–72.; (e) M. Ghambarian, Z. Azizi, and M. Ghashghaee, "Functionalization and Doping of Black Phosphorus." Black Phosphorus: Synthesis, Properties and Applications (2020): 1–30.
  • (a) M. Kangani, N. Hazeri, Kh Khandan-Barani, M. Lashkari, and M.T. Maghsoodlou, A one-pot, three component synthesis of ketenimines under solvent-free conditions. Iranian Journal of Organic Chemistry 6 (2014): 1187–92.; (b) Kh Khandan-Barani, M.T. Maghsoodlou, N. Hazeri, and S.M. Habibi-Khorasani, One-pot, three component reactions between isocyanides and dialkyl acetylenedicarboxylates in the presence of phenyl isocyanate: synthesis of dialkyl 2-(alkyl/arylimino)-2,5-dihydro-5- oxo-1-phenyl-1H-pyrrole-3,4-dicarboxylate. Arkivoc 11 (2011): 22–8.; (c) Kh Khandan-Barani, M. Kangani, M. Mirbaluchzehi, and Z. Siroos, “Synthesis of Tetrahydrobenzo[b]Pyran and 3,4-Dihydropyrimidinone Derivatives Using Glutamic Acid as an Efficient Catalyst,” Inorganic and Nano-Metal Chemistry 47, no. 5 (2017): 751–5. doi:10.1080/15533174.2016.1212233; (d) Kh Khandan-Barani and A. Motamedi-Asl, Lactic acid, as an efficient catalyst for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthols under thermal solvent-free conditions. Iranian Journal of Catalysis 5, no. 4 (2015): 339–43.
  • (a) F. Zamani Hargalani, A. Karbassi, S.M. Monavari, and P. Abroomand Azar, Origin and partitioning of heavy metals in sediments of the Anzali Wetland. Environmental Sciences 11, no. 2 (2013).; (b) R.N. Mahmonir, V. Abdossi, F. Zamani Hargalani, and K. Larijani The Response of Hypericum perfpratum L. to the Application of Selenium and Nano-selenium. Research Square (2021).; (c) R.N. Mahmonir, A. Vahid, F. Zamani Hargalani, and K. Larijani, “The effect of nano selenium foliar application on some secondary metabolites of Hypericum perforatum L,” Journal of Medicinal Plants 21, no. 81 (2022): 67–78; (d) E. Ezzatzadeh, F.Z. Hargalani, and F. Shafaei, “Bio-Fe3O4-MNPs Promoted Green Synthesis of Pyrido[2,1-a]Isoquinolines and Pyrido[1,2-a]Quinolines: Study of Antioxidant and Antimicrobial Activity,” Journal of Medicinal Plants 42, no. 7 (2022): 3908–23. doi:10.52547/jmp.21.81.67
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–8. doi:10.1021/jf00018a005
  • G.C. Yen and P.D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–32. doi:10.1021/jf00039a005
  • A. Yildirim, A. Mavi, and A. A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. Extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–9. doi:10.1021/jf0103572
  • A.M. Bidchol, A. Wilfred, P. Abhijna, and R. Harish, “Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica Oleracea L. var. italic,” Food and Bioprocess Technology 4, no. 7 (2011): 1137–43. doi:10.1007/s11947-009-0196-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.