78
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ultrasound Promoted One-Pot Multicomponent Synthesis of Highly Functionalized Tetrahydropyridine Derivatives

, , , &
Pages 3964-3974 | Received 24 Mar 2023, Accepted 21 Jul 2023, Published online: 09 Aug 2023

References

  • B. Ghasemi, H. Beyzaei, S. Hashemi, and H. Majidiani, “Study of Antibacterial Effect of Novel Thiazole, Imidazole and Tetrahydropyridine Derivatives against Escherichia Coli,” Journal of Medical Bacteriology 4, no. 5 (2015): 7–12.
  • O.A.N. Montoya, L.M. Martins, L.C.S. Filho, A.B. Neto, and F.C. Lavarda, “The Correlation between Electronic Structure and Antimalarial Activity of Tetrahydropyridines,” Journal of the Brazilian Chemical Society 26, no. 2 (2014): 255–65. doi:10.5935/0103-5053.20140263
  • P. Ramaraju, N.A. Mir, D. Singh, and I. Kumar, “Enantioselective Synthesis of 1,2,5,6 Tetrahydropyridine (THPs) via Proline Catalyzed Direct Mannich Cyclization/Domino Oxidation Reduction Sequence: Application for Medicinally Important N-Heterocycles,” RSC Advances 6, no. 65 (2016): 60422–32. doi:10.1039/C6RA12965J
  • C. Srinivas, C.N.S.S.P. Kumar, B.C. Raju, V.J. Rao, V.G.M. Naidu, S. Ramakrishna, and P.V. Diwan, “First Stereo Selective Total Synthesis and Anticancer Activity of New Amide Alkaloids of Roots of Pepper,” Bioorganic & Medicinal Chemistry Letters 19, no. 20 (2009): 5915–18. doi:10.1016/j.bmcl.2009.08.056
  • S. Umamatheswari, B. Balaji, M. Ramanathan, and S. Kabilan, “Synthesis, Antimicrobial Evaluation, and QSAR Studies of Novel Piperidin-4-yl-5-Spiro-Thiadiazoline Derivatives,” Bioorganic & Medicinal Chemistry Letters 20, no. 23 (2010): 6909–14. doi:10.1016/j.bmcl.2010.10.002
  • M. Misra, S.K. Pandey, V.P. Pandey, J. Pandey, R. Tripathi, and R.P. Tripathi, “Organocatalyzed Highly Atom-Economic, One-Pot Synthesis of Tetrahydropyridines as Antimalarials,” Bioorganic & Medicinal Chemistry 17, no. 2 (2009): 625–33. doi:10.1016/j.bmc.2008.11.062
  • A.A. Mohammadi, S. Taheri, A. Amouzegar, R. Ahdenov, M.R Halvagar, and A.S. Sadr, “Diastereoselective Synthesis and Molecular Docking Studies of Novel Fused Tetrahydropyridine Derivatives as New Inhibitors of HIV Protease,” Journal of Molecular Structure 1139 (2017): 166–74. doi:10.1016/j.molstruc.2017.03.029
  • L. Naicker, Venogopala, K. Narayanaswamy, F. Shode, and B. Odhav, “Antimicrobial and Antioxidant Activities of Piperidine Derivatives,” African Journal of Pharmacy and Pharmacology 9, no. 31 (2015): 783–92. doi:10.5897/AJPP2015.4335
  • M.A. Ghaffari, T.W. Ardley, M. Gangapuram, and K.K. Redda, “Synthesis of N-Substituted Carbonylamino-1,2,3,6-Tetrahydropyridines as Potential anti-Inflammatory Agents,” Synthetic Communications 41, no. 7 (2011): 2615–23. doi:10.1080/00397911.2010.515335
  • J.M. Yeung, L.A. Corleto, and E.E. Knaus, “Synthesis of N- [[(Substituted- Phenyl) Carbonyl]a_Ino]-1,2,3,6-Tetrahydropyridines with Analgesic and Hyperglycemic Activity,” Journal of Medicinal Chemistry 25, no. 6 (1982): 720–23. doi:10.1021/jm00348a021
  • B. Ho, A.M. Crider, and J.P. Stables, “Synthesis and Structure-Activity Relationships of Potential Anticonvulsants Based on 2-Piperidinecarboxylic Acid and Related Pharmacophores,” European Journal of Medicinal Chemistry 36, no. 3 (2001): 265–86. doi:10.1016/S0223-5234(00)01206-X
  • Y. Zhou, V.E. Gregor, B.K. Ayida, G.C. Winters, Z. Sun, D. Murphy, G. Haley, D. Bailey, J.M. Froelich, S. Fish, et al. “Synthesis and SAR of 3, 5 Diamino-Piperidine Derivatives: Novel Antibacterial Translation Inhibitor as Aminoglycoside Mimetics,” Bioorganic & Medicinal Chemistry Letters 17, no. 5 (2007): 1206–10. doi:10.1016/j.bmcl.2006.12.024
  • P. Mayurachayakul, W. Pluempanupat, C. Srisuwannaket, and O. Chantarasriwong, “Four Component Synthesis of Polyhydroquinoline under Catalyst and Solvent Free Conventional Heating Condition: Mechanistic Studies,” RSC Advances 7, no. 89 (2017): 56764–770. doi:10.1039/C7RA13120H
  • M. Pramanik, and A. Bhaumik, “Phosphonic Acid Functionalized Ordered Mesoporous Material: A New and Ecofriendly Catalyst for One-Pot Multicomponent Biginelli Reaction under Solvent Free Conditions,” ACS Applied Materials & Interfaces 6, no. 2 (2014): 933–41. doi:10.1021/am404298a
  • S. Rana, M. Brown, A. Dutta, A. Bhaumik, and C. Mukhopadhyay, “Site-Selective Multicomponent Synthesis of Densely Substituted 2-Oxodihydropyrroles Catalyzed by Clean, Reusable and Heterogeneous TiO2 Nanopowder,” Tetrahedron Letters 54, no. 11 (2013): 1371–79. doi:10.1016/j.tetlet.2012.12.109
  • S.K. Kundu, and A. Bhaumik, “Triazine-Based Porous Organic Polymer: A Novel Heterogeneous Basic Organocatalyst for Facile One-Pot Synthesis of 2-Amino-4H-Chromenes,” RSC Advances 5, no. 41 (2015): 32730–39. doi:10.1039/C5RA00951K
  • S. Mishra, and R. Ghos, “Efficient One-Pot Synthesis of Functionalized Piperidine Scaffolds via ZrOCl2 Center Dot 8H(2)O Catalyzed Tandem Reactions of Aromatic Aldehydes with Amines and Acetoacetic Esters,” Tetrahedron Letters 52, no. 22 (2011): 2857–61. doi:10.1016/j.tetlet.2011.03.116
  • M. Ghashang, “Zinc Hydrogen Sulfate Promoted Multi-Component Preparation of Highly Functionalized Piperidines,” Letters in Organic Chemistry 9, no. 7 (2012): 497–502. doi:10.2174/157017812802139564
  • R. Aeluri, M. Alla, V.R. Bommena, R. Murthy, and N. Jain, “Synthesis and Antiproliferative Activity of Polysubstituted Tetrahydropyridine and Piperidin-4-One-3-Carboxylate Derivatives,” Asian Journal of Organic Chemistry 1, no. 1 (2012): 71–9. doi:10.1002/ajoc.201200010
  • A.A. Yelwande, M.E. Navgire, M. Palve, H.S. Patil, M. Farooqui, and J.M. Dinore, “One-Pot Multicomponent Synthesis Approach for Tetrahydropyridines Using Polyaniline-Zirconium Oxide Composites,” Synthetic Communications 52, no. 7 (2022): 1039–49. doi:10.1080/00397911.2022.2063061
  • P. Clarke, A. Zaytsev, and A. Whitwood, “Atom, and Step Economic (PASE) Synthesis of Highly Substituted Piperidines: A Five-Component Condensation,” Synthesis 2008, no. 21 (2008): 3530–32. doi:10.1055/s-0028-1083182
  • B. Umamahesh, V. Sathesh, G. Ramachandran, M. Sathishkumar, and K. Sathiyanarayanan, “LaCl3·7H2O as an Efficient Catalyst for One-Pot Synthesis of Highly Functionalized Piperidines via Multi-Component Organic Reactions,” Catalysis Letters 142, no. 7 (2012): 895–900. doi:10.1007/s10562-012-0829-x
  • M. Abbasi, S.M. Seyedi, H. Sadeghian, M. Akhbari, M. Enayaty, and A. Shiri, “TiCl2·2H2O Catalyzed One-Pot Synthesis of Highly Functionalized Tetrahydropiperidines and Evaluation of Their Antimicrobial Activities,” Heterocyclic Communications 22, no. 3 (2016): 117–21. doi:10.1515/hc-2015-0081
  • M.R. Mousavi, J. Aboonajmi, M.T. Maghsoodlou, and N. Hazeri, “Y(NO3)3.4H2O-Assisted Three-Component Synthesis of Polysubstituted Tetrahydropyridines,” Journal of Chemical Research 38, no. 2 (2014): 76–9. doi:10.3184/174751914X13890195583234
  • R.M. Mir, J. Aboonajmi, M.T. Maghsoodlou, N. Hazeri, H.K. Mostafa, and S.S. Mohyeddin, “La(NO3)3.6H2O Catalyzed One-Pot Highly Diastereoselective Synthesis of Functionalized Piperidine,” Letters in Organic Chemistry 10, no. 3 (2013): 171–77. doi:10.2174/1570178611310030005
  • A. Bamoniri, B.B.F. Mirjalili, and R. Tarazian, “An Efficient Heterogeneous Solid Acid Catalyst for the One Pot Cascade, Five-Component Synthesis of Densely Functionalized Tetrahydropyridines,” Journal of Chemical Sciences 127, no. 5 (2015): 885–95. doi:10.1007/s12039-015-0845-7
  • S. Pal, L.H. Choudhury, and T. Parvin, “VCl3 Catalyzed Imine-Based Multicomponent Reactions for the Facile Access of Functionalized Tetrahydropyridines and b-Amino Carbonyls,” Molecular Diversity 16, no. 1 (2012): 129–43. doi:10.1007/s11030-011-9339-9
  • A. Sambyal, R.K. Bamezai, T.K. Razdan, and V.K. Gupta, “Synthesis and Crystal Structure of (2S, 6R) Ethyl 1, 2, 6-Triphenyl-4- (Phenylamino)-1,2,5,6-Tetrahydropyridine-3- Carboxylate,” Journal of Chemical Crystallography 41, no. 6 (2011): 868–73. doi:10.1007/s10870-011-0015-9
  • N. Hazeri, S. Salahi, M. Lashkari, M.T. Maghsoodlou, E. Esmaeili-Shahri, and E. Mollashahi, “Facile Diastereoselective Synthesis of Functionalized Tetrahydropyridines Using Fe3O4/SiO2/TiO2 Nano-Composites,” Organic Preparations and Procedures International 50, no. 3 (2018): 375–83. doi:10.1080/00304948.2018.1462077
  • S. Mohammadi, D. Ghazanfari, and Z.K. Jaberi, “Antimony Trichloride as a Mild and Accessible Catalyst for the One-Pot Synthesis of Tetrahydropyridines at Room Temperature,” Revenue Roumaine de Chimie 62, no. 11 (2017): 825–29.
  • A.N. Yankin, and M.V. Dmitriev, “Nickel Complexes as Efficient Catalysts in Multicomponent Synthesis of Tetrahydropyridine Derivatives,” Synthetic Communications 50, no. 22 (2020): 3481–89. doi:10.1080/00397911.2020.1803357
  • L.R. Wen, Y.J. Shi, G.Y. Liu, and M. Li, “Modulating the Reactivity of Functionalized N,SKetene Acetal in MCR: Selective Synthesis of Tetrahydropyridines and Thiochromeno[2,3- b]Pyridines via DABCO-Catalyzed Tandem Annulation,” The Journal of Organic Chemistry 77, no. 9 (2012): 4252–60. doi:10.1021/jo202665q
  • G. Lemonnier, and A.B. Charette, “Stereoselective Synthesis of 2,3,6-Trisubstituted Tetrahydropyridines via Tf(2)O-Mediated Grob Fragmentation: Access to Indolizidines (-)-209I and (-)-223J,” The Journal of Organic Chemistry 75, no. 21 (2010): 7465–67. doi:10.1021/jo1015344
  • P.V. Ramachandran, T.E. Burghardt, and L. Bland-Berry, “Synthesis of Functionalized Tetrahydropyridines: Gamma-Aminobutyric Acid Uptake Inhibitor Analogues,” The Journal of Organic Chemistry 70, no. 20 (2005): 7911–18. doi:10.1021/jo0508200
  • A.T. Khan, T. Parvin, and L.H. Choudhury, “Effect of Substituents in the β-Position of 1,3 Dicarbonyl Compound in Bromodimethylsulphonium Bromide-Catalysed Multicomponent Reaction: A Facial Access to Functionalized Piperidines,” The Journal of Organic Chemistry 73, no. 21 (2008): 8398402. doi:10.1021/jo8014962
  • A.T. Khan, M.M. Khan, and K.K.R. Bannuru, “Iodine Catalyzed One-Pot Multicomponent Reaction for Direct Synthesis of Densely Functionalized Piperidines,” Tetrahedron 66, no. 39 (2010): 7762–72. doi:10.1016/j.tet.2010.07.075
  • W.M. Basyouni, K.A.M. El-Bayouki, W.M. Tohamy, and S.Y. Abbas, “Silica Sulfuric Acid: An Efficient, Reusable, Heterogeneous Catalyst, for One-Pot Five Component Synthesis of Highly Functionalized Piperidine Derivatives,” Synthetic Communications 45, no. 9 (2015): 1073–81. doi:10.1080/00397911.2015.1005632
  • R. Ratti, “Ionic Liquid Synthesis and Application in Catalysis,” Advances in Chemistry 2014 (2014): 1–16. doi:10.1155/2014/729842
  • M. Abbasi, “Design, Preparation and Characterization of a New Ionic Liquid, 1,3-Disulfonic Acid Benzimidazolium Chloride, as an Efficient and Recyclable Catalyst for the Synthesis of Tetrahydropyridine under Solvent Free Condition,” RSC Advances 5, no. 83 (2015): 67405–11. doi:10.1039/C5RA10699K
  • P.M. Davanagere, M. De, K. Chanda, and B. Maiti, “Distereo-and Enantioselective Synthesis of Highly Functionalized Tetrahydropyridine by Recyclable Novel Bifunctional C2-Symmetric Ionic Liquid Supported (S)-Proline Organocatalyst,” Catalysts 13, no. 1 (2023): 209. doi:10.3390/catal13010209
  • K. Nikoofar, and F. Shahriyari, “Ultrasound Assisted Aqua-Mediated Synthesis of Multi-Substituted Tetrahydropyridine-3-Carboxylates Using N-Carboxymethyl-3-Pyridinium Hydrogensulfate ([N-CH2CO2H-3-Pic] + H SO4–) as a New Efficient Ionic Liquid Catalyst,” SN Applied Sciences 3, no. 6 (2021): 672. doi:10.1007/s42452-021-04671-9
  • R. Gupta, and R.P. Chaudhary, “N-Methylpyridinium Tosylate Catalyzed Green Synthesis, X-Ray Studies and Antimicrobial Activities of Novel (E)-3-amino2-(e)-(3,4-Dihydronaphthalen-1(2H)-Ylidene)Hydrazono)Thiazolidin-4-Ones,” Phosphorous, Sulphur and Silicon and the Related Element 188, no. 9 (2013): 1296–304. doi:10.1080/10426507.2012.729235
  • D. Gautam, P Gautam, and R.P. Chaudhary, “N-Methylpyridinium Tosylate Catalyzed Green and Efficient Synthesis of Some Novel 2, 4 Disubstituted Thiazoles and 4-Thiazolidinones,” Chinese Chemical Letters 23, no. 11 (2012): 1221–4. doi:10.1016/j.cclet.2012.10.002
  • D. Lingampalle, D. Jawale, R. Waghmare, and R. Mane, “Ionic Liquid Mediated, One-Pot Synthesis of 4-Thiazolidinines,” Synthetic Communications 40, no. 16 (2010): 2397–401. doi:10.1080/00397910903245174

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.