72
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and in-Silico Studies of Some New Thiazole Carboxamide Derivatives with Theoretical Investigation

, , , , &
Pages 3990-4008 | Received 06 Feb 2023, Accepted 26 Jul 2023, Published online: 11 Aug 2023

References

  • A. Ayati, S. Emami, A. Asadipour, A. Shafiee, and A. Foroumadi, “Recent Applications of 1, 3-Thiazole Core Structure in the Identification of New Lead Compounds and Drug Discovery,” European Journal of Medicinal Chemistry 97 (2015): 699–718. doi:10.1016/j.ejmech.2015.04.015
  • A.M. Borcea, I. Ionuț, O. Crișan, and O. Oniga, “An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives,” Molecules 26, no. 3 (2021): 624. doi:10.3390/molecules26030624
  • N.S. Mahajan, S.R. Pattan, R.L. Jadhav, N.V. Pimpodkar, and A.M. Manikrao, “Synthesis of Some Thiazole Compounds of Biological Interest Containing Mercapto Group,” Polycyclic Aromatic Compounds 6, no. 2 (2023): 1–14.
  • K.M. Basavaraja, B. Somasekhar, and S. Appalaraju, “Synthesis and Biological Activity of Some 2-[3-Substituted-2-Thione-1,3,4-Thiadiazole-5-yl] Aminobenzothiazoles,” Indian Journal of Heterocyclic Chemistry 18, no. 1 (2008): 69–72.
  • T. Karabasanagouda, A.V. Adhikari, D. Ramgopal, and G. Parameshwarappa, “Synthesis of Some New 2-(4- Alkylthiophenoxy)-4-Substituted-1, 3-Thiazoles as Possible anti-Inflammatory and Antimicrobial Agents,” Indian Journal of Chemistry 47B (2008): 144–152.
  • T.F. Reji, S.K.C. Devi, K.K. Thomas, K.G. Sreejalekshmi, S.L. Manju, M. Francis, S.K. Philip, A. Bharathan, and K.N. Rajasekharan, “Synthesis and Cytotoxicity Studies of Thiazole. Synthesis and Cytotoxicity Studies of Thiazole Analogs of the Anticancer Marine Alkaloid Dendrodoine,” Indian Journal of Chemistry 47B (2008): 1145–1150.
  • T. Orujova, A. Ece, G. Akalın Çiftçi, A. Özdemir, and M.D. Altıntop, “A New Series of Thiazole‐Hydrazone Hybrids for Akt‐Targeted Therapy of Non‐Small Cell Lung Cancer,” Drug Development Research 84, no. 2 (2023): 185–199. doi:10.1002/ddr.22022
  • M.Altıntop, A.Ozdemir, S.Ilgın, and O.Atli, “Synthesis and Biological Evaluation of New Pyrazole-Based Thiazolyl Hydrazone Derivatives as Potential Anticancer Agents,” Letters in Drug Design & Discovery 11, no. 7 (2014): 833–839. doi:10.2174/1570180811666140226235350
  • P.C. Sharma, K.K. Bansal, A. Sharma, D. Sharma, and A. Deep, “Thiazole-Containing Compounds as Therapeutic Targets for Cancer Therapy,” European Journal of Medicinal Chemistry 188 (2020): 112016. doi:10.1016/j.ejmech.2019.112016
  • A.A. Chowki, C.S. Magdum, P.L. Ladda, and S.K. Mohite, “Synthesis and Antitubercular Activity of 6-Nitro-2-[4-Formyl-3-(Substituted Phenyl) Pyrazol-1-yl] Benzothiazoles,” International Journal of Chemical Science 6, no. 3 (2008): 1600–1605.
  • K.P. Bhusari, P.B. Khedekar, S.N. Umathe, R.H. Bahekar, and R.R.A. Raghum, “Synthesis of 8-Bromo-9-Substituted-1, 3-Benzothiazolo-[5, 1-b]-1, 3, 4-Triazoles and Their Anthelmintic Activity,” Indian Journal of Heterocyclic Chemistry 9, no. 4 (2000): 275–278.
  • R. Basawaraj, M. Suresh, and S.S. Sangapure, “Synthesis and Pharmacological Activities of Some 2-Arylamino/Arylidene Hydrazino-4-(5’-Chloro-3’-Methylbenzofuran-2’-yl) Thiazoles,” Indian Journal of Heterocyclic Chemistry 15 (2005): 153–156.
  • S. Chang, Z. Zhang, X. Zhuang, J. Luo, X. Cao, H. Li, Z. Tu, X. Lu, X. Ren, and K. Ding, “New Thiazole Carboxamides as Potent Inhibitors of Akt Kinases,” Bioorganic & Medicinal Chemistry Letters 22, no. 2 (2012): 1208–1212. doi:10.1016/j.bmcl.2011.11.080
  • K. Liaras, M. Fesatidou, and A. Geronikaki, “Thiazoles and Thiazolidinones as COX/LOX Inhibitors,” Molecules 23, no. 3 (2018): 685. doi:10.3390/molecules23030685
  • K.D. Hargrave, F.K. Hess, and J.T. Oliver, “N-(4-Substituted-Thiazolyl) Oxamic Acid Derivatives, New Series of Potent, Orally Active Antiallergy Agents,” Journal of Medicinal Chemistry 26, no. 8 (1983): 1158–1163. doi:10.1021/jm00362a014
  • W.C. Patt, H.W. Hamilton, M.D. Taylor, M.J. Ryan, D.G. Taylor, C.J.C. Connolly, A.M. Doherty, S.R. Klutchko, I. Sircar, B.A. Steinbaugh, et al. “Structure-Activity Relationships of a Series of 2-Amino-4-Thiazole-Containing Renin Inhibitors,” Journal of Medicinal Chemistry 35, no. 14 (1992): 2562–2572. doi:10.1021/jm00092a006
  • P.K. Sharma, S.N. Sawnhney, A. Gupta, G.B. Singh, and S. Bani, “Synthesis and Antiinflammatory Activity of Some 3-(2-Thiazolyl)-1, 2-Benzisothiazoles,” Indian Journal of Chemistry 37B (1998): 376–381.
  • J.C. Jaen, L.D. Wise, B.W. Caprathe, H. Tecle, S. Bergmeier, C.C. Humblet, T.G. Heffner, L.T. Meltzer, and T.A. Pugsley, “4-(1, 2, 5, 6-Tetrahydro-1-Alkyl-3-Pyridinyl)-2-Thiazolamines: A Novel Class of Compounds with Central Dopamine Agonist Properties,” Journal of Medicinal Chemistry 33, no. 1 (1990): 311–317. doi:10.1021/jm00163a051
  • K. Tsuji, and H. Ishikawa, “Synthesis and anti-Pseudomonal Activity of New 2-Isocephems with a Dihydroxypyridone Moiety at C-7,” Bioorganic & Medicinal Chemistry Letters 4, no. 13 (1994): 1601–1606. doi:10.1016/S0960-894X(01)80574-6
  • F.W. Bell, A.S. Cantrell, M. Hogberg, S.R. Jaskunas, N.G. Johansson, C.L. Jordon, M.D. Kinnick, P. Lind, J.M. Morin, R. Noreen, et al. “Phenethylthiazolethiourea (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs,” Journal of Medicinal Chemistry 38, no. 25 (1995): 4929–4936. doi:10.1021/jm00025a010
  • C.A.G.N. Montalbetti, and V. Falque, “Amide Bond Formation and Peptide Coupling,” Tetrahedron 61, no. 46 (2005): 10827–10852. doi:10.1016/j.tet.2005.08.031
  • D.I. Ugwu, U.C. Okoro, and N.K. Mishra, “Synthesis, Characterization and Anthelmintic Activity Evaluation of Pyrimidine Derivatives Bearing Carboxamide and Sulphonamide Moieties,” Journal of the Serbian Chemical Society 83, no. 4 (2018): 401–409. doi:10.2298/JSC170127109U
  • D.I. Ugwu, B.E. Ezema, F.U. Eze, and D.I. Ugwuja, “Synthesis and Structural Activity Relationship Study of Antitubercular Carboxamides,” International Journal of Medicinal Chemistry 2014 (2014): 614808. doi:10.1155/2014/614808
  • D.I. Ugwu, U.C. Okoro, and N.K. Mishra, “Synthesis, Characterization and in Vivo Antitrypanosomal Activities of New Carboxamides Bearing Quinoline Moiety,” PLoS One 13, no. 1 (2018): e0191234. doi:10.1371/journal.pone.0191234
  • B.L. Hogan, M. Williams, A. Idiculla, T. Veysoglu, and E. Parente, “Development and Validation of a Liquid Chromatographic Method for the Determination of the Related Substances of Ramipril in Altace Capsules,” Journal of Pharmaceutical and Biomedical Analysis 23, no. 4 (2000): 637–651. doi:10.1016/s0731-7085(00)00342-3
  • A. Graul, and J. Castaner, “Atovarstatin Calcium,” Drugs of the Future 22, no. 9 (1997): 956–968. doi:10.1358/dof.1997.022.09.423212
  • V.S. Ananthanarayanan, S. Tetreault, and A. Saint-Jean, “Interaction of Calcium Channel Antagonists with Calcium: Spectroscopic and Modeling Studies on Diltiazem and Its Ca2+ Complex,” Journal of Medicinal Chemistry 36, no. 10 (1993): 1324–1332. doi:10.1021/jm00062a004
  • M. de Gasparo, and S. Whitebread, “Binding of Valsartan to Mammalian Angio-Tensin ATI Receptors,” Regulatory Peptides 59, no. 3 (1995): 303–311. doi:10.1016/0167-0115(95)00085-p
  • A.A. Patchett, “Excursions in Drug Discovery,” Journal of Medicinal Chemistry 36, no. 15 (1993): 2051–2058. doi:10.1021/jm00067a001
  • R. Jr. Roskoski, “Sti-571: An Anticancer Protein-Tyrosine Kinase Inhibitor,” Biochemical and Biophysical Research Communications 309, no. 4 (2003): 709–717. doi:10.1016/j.bbrc.2003.08.055
  • N. A. Kheder, D. R. Emam, and H. Ather, “Synthesis and Antibacterial Activities of Some New Heterocycles Attached to Pyridinecarboxamide Moiety of Potential Biological Activity,” Heterocycles 94, no. 4 (2017): 665–675. doi:10.3987/COM-16-13610
  • E.S. Darwish, N.A. Kheder, and A.M. Farag, “Synthesis and Antimicrobial Evaluation of Some New Pyridine Based Heterocycles,” Heterocycles 81, no. 10 (2010): 2247–2256. doi:10.3987/COM-10-11999
  • A.M. Farag, N.A. Kheder, A.M. Fahim, and K.M. Dawood, “Regioselective Synthesis and Computational Calculation Studies of Some New Pyrazolyl-Pyridine and Bipyridine Derivatives,” Journal of Heterocyclic Chemistry (2023). doi:10.1002/jhet.4705
  • N.A. Kheder, S.M. Riyadh, and A.M. Asiry, “Azoles and Bis-Azoles: Synthesis and Biological Evaluation as Antimicrobial and anti-Cancer Agents,” Chemical & Pharmaceutical Bulletin 61, no. 5 (2013): 504–510. doi:10.1248//cpb.c12-00939
  • S.M. Riyadh, N.A. Kheder, and A.M. Asiry, “Synthesis, Anticancer, and Antimicrobial Activities of Some New Antipyrine-Based Heterocycles,” Monatshefte Für Chemie - Chemical Monthly 144, no. 10 (2013): 1559–1567. doi:10.1007/s00706-013-1028-1
  • N.A. Kheder, S.M. Riyadh, and A.M. Asiry, “A Facile and Convenient Synthesis of Novel Pyridine Derivatives Incorporating Antipyrine Moiety and Investigation of Their Antimicrobial Activities,” Heterocycles 85, no. 9 (2012): 2259–2268. doi:10.3987/COM-12-12520
  • A.M. Abdallah, S.M. Gomha, M.E. Zaki, T.Z. Abolibda, and N.A. Kheder, “A Green Synthesis, DFT Calculations, and Molecular Docking Study of Some New Indeno [2, 1-b]Quinoxalines Containing Thiazole Moiety,” Journal of Molecular Structure 1292 (2023): 136044. doi:10.1016/j.molstruc.2023.136044
  • A.A. El-Barbary, D.R. Imam, M.M.T. El–Tahawy, S.M. El-Hallouty, N.A. Kheder, and A.I. Khodair, “Unexpected Synthesis, Characterization, Biological Evaluations, and Computational Details of Novel Nucleosides Containing Triazine-Pyrrole Hybrid,” Journal of Molecular Structure 1272 (2023): 134182. doi:10.1016/j.molstruc.2022.134182
  • F.A. Al-Aizari, H.A. Ghabbour, N.A. Kheder, S.M. Soliman, M.Z. Hassan, S. Tasqeeruddin, and Y.N. Mabkhot, “Synthesis, X-Ray Structure Analysis, Computational Investigations, and in Vitro Biological Evaluation of New Thiazole-Based Heterocycles as Possible Antimicrobial Agents,” Polycyclic Aromatic Compounds (2023). doi:10.1080/10406638.2023.2172053
  • (a) N. Razzaghi-Asl, O. Firuzi, B. Hemmateenejad, K. Javidnia, N. Edraki, and R. Miri, “Design and Synthesis of Novel 3, 5-bis-N-(Aryl/Heteroaryl) Carbamoyl-4-Aryl-1, 4-Dihydropyridines as Small Molecule BACE-1 Inhibitors,” Bioorganic & Medicinal Chemistry 21, no. 22 (2013): 6893–6909. (b) M. Sagha, F. Mousaei, M. Salahi, and N. Razzaghi-Asl, “Synthesis of New 2-Aminothiazolyl/Benzothiazolyl-Based 3,4-Dihydropyrimidinones and Evaluation of Their Effects on Adenocarcinoma Gastric Cell Migration,” Molecular Diversity 26, no. 2 (2022) 1039: –1051. doi:10.1016/j.bmc.2013.09.033
  • S. Makhseed, H. Ibrahim, R. Abdel-Motaleb, A. Makhlouf, and A.-H. Elnagdi, “Utility of Cyanoacetamides as Precursors to Pyrazolo[3,4-d]Pyrimidin-4-Ones, 2-Aryl-6-Substituted 1,2,3 Triazolo[4,5-d]Pyrimidines and Pyrazolo[1,5-a]Pyrimidine-3-Carboxamides,” Heterocycles 71, no. 9 (2007): 1951–1966. doi:10.3987/COM-07-11083
  • D.L. Temple, J.P. Yevich, R.R. Covington, C.A. Hanning, R.J. Seidehamel, H.K. Mackey, and M.J. Bartek, “Synthesis of 3,4-Dihydro-4-Oxothieno[2,3-d]Pyrimidine- 2-Carboxylates, a New Series of Orally Active Antiallergy Agents,” Journal of Medicinal Chemistry 22, no. 5 (1979): 505–510. doi:10.1021/jm00191a009
  • A. Jotterand, German Patent no. 2, 359, 008, 06 (June 1974), [Chem. Abstr., 81 (1974): 137599].
  • K. Gewald, E. Schinke, and H. Böttcher, “Heterocyclen Aus CH-Aciden Nitrilen, VIII. 2-Amino-Thiophene Aus Methylenaktiven Nitrilen, Carbonylverbindungen Und Schwefel,” Chemische Berichte 99, no. 1 (1966): 94–100. doi:10.1002/cber.19660990116
  • J.M. Tinsley, Name Reactions in Heterocyclic Chemistry (Hoboken, NJ: Wiley: 2005), 193–198.
  • N.P. Peet, S. Sunder, R.J. Barbuch, and A.P. Vinogradoff, “Mechanistic Observations in the Gewald Syntheses of 2-Aminothiophenes,” Journal of Heterocyclic Chemistry 23, no. 1 (1986): 129–134. doi:10.1002/jhet.5570230126
  • A.H.M. Hussein, A.A. Khames, A.B.A. El-Adasy, A.A. Atalla, M. Abdel-Rady, M.I. Hassan, M.A. Abou-Salim, Y.A.M.M. Elshaier, and A. Barakat, “Multifunctional Isosteric Pyridine Analogs-Based 2-Aminothiazole: Design, Synthesis, and Potential Phosphodiesterase-5 Inhibitory Activity,” Molecules 264 (2021): 902. doi:10.3390/molecules26040902
  • A. Weissberger, The Chemistry of Heterocyclic Compounds (New York: Wiley, 1962), 510.
  • C.D. Johnson, “2.04 - Pyridines and Their Benzo Derivatives: (i) Structure,” in Comprehensive Heterocyclic Chemistry, edited by A.R. Katritzky, C.W. Rees, (New York: Pergamon, 1984), 99–164.
  • A.H.M. Hussein, A.-B A. El-Adasy, A.A. Khames, A.A. Atalla, and M. Abdel-Rady, “3-Oxobutanamides in Heterocyclic Synthesis, Synthesis Approaches for New Pyridines, Pyrimidines and Their Fused Derivatives,” ChemistrySelect 2, no. 4 (2017): 1625–1629. doi:10.1002/slct.201601424
  • M.C. Seidel, G.C. Van Tuyle, and W.D. Weir, “Reactions of 2-Acetoacetylamine Pyridines with Triethylorthoformate and Zinc Chloride,” The Journal of Organic Chemistry 35, no. 5 (1970): 1475–1480. doi:10.1021/jo00830a047
  • S.S. Hayotsyan, A.H. Hastratyan, A.Kh Khachatryan, A.E. Badasyan, S.G. Końkova, H.A. Panosyan, and M.S. Sargsyan, “The Role of retro-Michael Reaction in the Synthesis of 5-Carbamoyl-2-Pyridones by Reaction of Dialkyl Ethoxymethylidenemalonates with Acetoacetamides,” Chemistry of Heterocyclic Compounds 51, no. 7 (2015): 682–687. doi:10.1007/s10593-015-1757-7
  • S.S. Hayotsyan, A.A. Sargsyan, S.G. Konkova, A.K. Khachatryan, A.E. Badasyan, K.A. Avagyan, H.A. Panosyan, A.G. Ayvazyan, and M.S. Sargsyan, “Synthesis of Ethyl 5-(Arylcarbamoyl)-6-Methyl-2-Oxo-1,2-Dihydropyridine-3-Carboxylates,” Russian Journal of Organic Chemistry 55, no. 4 (2019): 469–472. doi:10.1134/S1070428019040080
  • A. Shawali, and A. Osman, “Synthesis and Reactions of Phenylcarbamoylaryl Hydrazidic Chlorides,” Tetrahedron 27, no. 12 (1971): 2517–2528. doi:10.1016/S0040-4020(01)90753-7
  • J. Bojarska, M. Remko, M. Breza, I.D. Madura, K. Kaczmarek, J. Zabrocki, and W.M. Wolf, “A Supramolecular Approach to Structure-Based Design with a Focus on Synthons Hierarchy in Ornithine-Derived Ligands: Review, Synthesis, Experimental and in Silico Studies,” Molecules 25, no. 5 (2020): 1135. ‏ doi:10.3390/molecules25051135
  • A.J. Lucas, J.L. Sproston, P. Barton, and R.J. Riley, “Estimating Human ADME Properties, Pharmacokinetic Parameters and Likely Clinical Dose in Drug Discovery,” Expert Opinion on Drug Discovery 14, no. 12 (2019): 1313–1327. doi:10.1080/17460441.2019.1660642
  • F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P.W. Lee, and Y. Tang, “admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties,” Journal of Chemical Information and Modeling 52, no. 11 (2012): 3099–3105. doi:10.1021/ci300367a
  • S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, et al. “PubChem Substance and Compound Databases,” Nucleic Acids Research 44, no. D1 (2016): D1202–D1213., doi:10.1093/nar/gkv951
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7 (2017): 42717. doi:10.1038/srep42717
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 64 (2012): 4–17. doi:10.1016/j.addr.2012.09.019
  • S. Vilar, G. Cozza, and S. Moro, “Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery,” Current Topics in Medicinal Chemistry 8, no. 18 (2008): 1555–1572. doi:10.2174/156802608786786624
  • A. M. Fahim, and A. M. Farag. "Synthesis, antimicrobial evaluation, molecular docking and theoretical calculations of novel pyrazolo [1, 5-a] pyrimidine derivatives." Journal of Molecular Structure 1199 (2020): 127025.‏
  • K. Yen, J. Travins, F. Wang, M.D. David, E. Artin, K. Straley, A. Padyana, S. Gross, B. DeLaBarre, E. Tobin, et al. “AG-221, a First-in-Class Therapy Targeting Acute Myeloid Leukemia Harboring Oncogenic IDH2 Mutations,” Cancer Discovery 7, no. 5 (2017): 478–493. doi:10.1158/2159-8290.CD-16-1034
  • A. Frisch, Gaussian 09W Reference. (Wallingford, USA: Gaussian, Inc., 2009), 470.
  • A. Fahim, and E. Ismael, “Synthesis, Antimicrobial Activity and Quantum Calculations of Novel Sulphonamide Derivatives,” Egyptian Journal of Chemistry 62, no. 8 (2019): 1427–1440. ‏
  • P.K. Chattaraj, A. Cedillo, and R.G. Parr, “Chemical Softness in Model Electronic Systems: Dependence on Temperature and Chemical Potential,” Chemical Physics 204, no. 2–3 (1996): 429–437. ‏ doi:10.1016/0301-0104(95)00276-6
  • W. Gordy, and W.O. Thomas, “Electronegativities of the Elements,” The Journal of Chemical Physics 24, no. 2 (1956): 439–444. doi:10.1063/1.1742493
  • A.E. Hanna, and M. Tinkham, “Variation of the Coulomb Staircase in a Two-Junction System by Fractional Electron Charge,” Physical Review. B, Condensed Matter 44, no. 11 (1991): 5919–5922. ‏doi:10.1103/physrevb.44.5919
  • R.G. Parr, and R.G. Pearson, “Absolute Hardness: Companion Parameter to Absolute Electronegativity,” Journal of the American Chemical Society 105, no. 26 (1983): 7512–7516. doi:10.1021/ja00364a005
  • L.R. Domingo, M.J. Aurell, P. Pérez, and R. Contreras, “Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels–Alder Reactions,” Tetrahedron 58, no. 22 (2002): 4417–4423. ‏doi:10.1016/S0040-4020(02)00410-6
  • A. Vela, and J.L. Gazquez, “A Relationship between the Static Dipole Polarizability, the Global Softness, and the Fukui Function,” Journal of the American Chemical Society 112, no. 4 (1990): 1490–1492. ‏doi:10.1021/ja00160a029
  • A. Ino, T. Mizokawa, A. Fujimori, K. Tamasaku, H. Eisaki, S. Uchida, T. Kimura, T. Sasagawa, and K. Kishio, “Chemical Potential Shift in Overdoped and Underdoped La 2− x Sr x CuO4,” Physical Review Letters 79, no. 11 (1997): 2101–2104. doi:10.1103/PhysRevLett.79.2101
  • Y.V. Suleimanov, and W.H. Green, “Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods,” Journal of Chemical Theory and Computation 11, no. 9 (2015): 4248–4259. doi:10.1021/acs.jctc.5b00407
  • A.M. Fahim, R.E. Abouzeid, S.A. Al Kiey, and S. Dacrory, “Development of Semiconductive Foams Based on Cellulose-Benzenesulfonate/CuFe2O4-Nanoparticles and Theoretical Studies with DFT/B3PW91/LANDZ2 Basis Set,” Journal of Molecular Structure 1247 (2022): 131390. ‏ doi:10.1016/j.molstruc.2021.131390
  • A.M. Fahim, A.M. Farag, A. Mermer, H. Bayrak, and Y. Şirin, “Synthesis of Novel β-Lactams: Antioxidant Activity, Acetylcholinesterase Inhibition and Computational Studies,” Journal of Molecular Structure 1233 (2021): 130092. ‏doi:10.1016/j.molstruc.2021.130092
  • A.M. Fahim, H.S. Magar, and N.H. Mahmoud, “Synthesis, Antimicrobial, Antitumor Activity, Docking Simulation, Theoretical Studies, and Electrochemical Analysis of Novel Cd (II), Co (II), Cu (II), and Fe (III) Complexes Containing Barbituric Moiety,” Applied Organometallic Chemistry 37, no. 4 (2023): e7023. ‏doi:10.1002/aoc.7023
  • F.N. El-Shall, A.M. Fahim, and S. Dacrory, “Making a New Bromo-Containing Cellulosic Dye with Antibacterial Properties for Use on Various Fabrics Using Computational Research,” Scientific Reports 13, no. 1 (2023): 10066. doi:10.1038/s41598-023-36688-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.