82
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fluorescent Materials Containing Polycyclic Aromatic Compounds: synthesis, Fluorimetric Detection of Nitroaromatic Compounds and Color Properties

Pages 4044-4064 | Received 16 Mar 2023, Accepted 28 Jul 2023, Published online: 11 Aug 2023

References

  • N. Kalva, C. H. Tran, M. W. Lee, R. Augustine, S. J. Lee, and I. Kim, “Aggregation-Induced Emission-Active Hyperbranched Polymers Conjugated with Tetraphenylethylene for Nitroaromatic Explosive Detection,” Dyes and Pigments 194 (2021) : 109617. doi:10.1016/j.dyepig.2021.109617
  • W. Y. Li Y, “Chinese Expert Consensus on Perioperative Medication in Laser Corneal Refractive Surgeries (2019),” Chinese Medical Science Journal, 35 no. 1, (2020) : 84–96.
  • R. Liu, Z. Li, Z. Huang, K. Li, and Y. Lv, “Biosensors for Explosives: State of Art and Future Trends,” TrAC Trends in Analytical Chemistry 118 (2019) : 123–137. doi:10.1016/j.trac.2019.05.034
  • L. D. Bastatas, E. Echeverria-Mora, P. Wagle, P. Mainali, A. Austin, and D. N. McIlroy, “Emergent Electrical Properties of Ensembles of 1D Nanostructures and Their Impact on Room Temperature Electrical Sensing of Ammonium Nitrate Vapor,” ACS Sensors 3, no. 11 (2018): 2367–2374. doi:10.1021/acssensors.8b00746
  • L. Guo, Z. Yang, and X. Dou, “Artificial Olfactory System for Trace Identification of Explosive Vapors Realized by Optoelectronic Schottky Sensing,” Advanced Materials. 29 (2017) : 1604528. doi:10.1002/adma.201604528
  • Z. Yang, X. Dou, S. Zhang, L. Guo, B. Zu, Z. Wu, and H. Zeng, “A High-Performance Nitro-Explosives Schottky Sensor Boosted by Interface Modulation,” Advanced Functional Materials 25, no. 26 (2015): 4039–4048. doi:10.1002/adfm.201501120
  • P.-C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) Chemical Sensing Based on Aligned Single-Walled Carbon Nanotubes and ZnO Nanowires,” Advanced Materials 22, no. 17 (2010): 1900–1904. doi:10.1002/adma.200904005
  • Rachel M. Hebert and Allison M. Jackovitz, “Wildlife Toxicity Assessment for Picric Acid (2,4,6-Trinitrophenol),” in Wildlife Toxicity Assessments for Chemicals of Military Concern, edited by Marc A. Williams, Gunda Reddy, Michael J. Quinn, Jr., and Mark S. Johnson, (New York: Elsevier, 2015), 271–277.
  • A. Panigrahi, B. P. Sahu, S. Mandani, D. Nayak, S. Giri, and T. K. Sarma, “AIE Active Fluorescent Organic Nanoaggregates for Selective Detection of Phenolic-Nitroaromatic Explosives and Cell Imaging,” Journal of Photochemistry and Photobiology A: Chemistry 374 (2019) : 194–205. doi:10.1016/j.jphotochem.2019.01.029
  • J. F. Wyman, M. P. Serve, D. W. Hobson, L. H. Lee, and D. “E. ”. Uddin, “Acute Toxicity, Distribution, and Metabolism of 2,4,6‐Trinitrophenol (Picric Acid) in Fischer 344 Rats,” Journal of Toxicology and Environmental Health 37, no. 2 (1992): 313–327. doi:10.1080/15287399209531672
  • P. Kovacic, and R. Somanathan, “Nitroaromatic Compounds: Environmental Toxicity, Carcinogenicity, Mutagenicity, Therapy and Mechanism,” Journal of Applied Toxicology 34, no. 8 (2014): 810–824. doi:10.1002/jat.2980
  • S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, and S. K. Ghosh, “Highly Selective Detection of Nitro Explosives by a Luminescent Metal-Organic Framework,” Angewandte Chemie (International ed. in English) 52, no. 10 (2013): 2881–2885. doi:10.1002/anie.201208885
  • G. He, H. Peng, T. Liu, M. Yang, Y. Zhang, and Y. Fang, “A Novel Picric Acid Film Sensor via Combination of the Surface Enrichment Effect of Chitosan Films and the Aggregation-Induced Emission Effect of Siloles,” Journal of Materials Chemistry 19, no. 39 (2009): 7347. doi:10.1039/b906946a
  • A. K. M. Jamil, A. Sivanesan, E. L. Izake, G. A. Ayoko, and P. M. Fredericks, “Molecular Recognition of 2,4,6-Trinitrotoluene by 6-Aminohexanethiol and Surface-Enhanced Raman Scattering Sensor,” Sensors and Actuators B: Chemical 221 (2015) : 273–280. doi:10.1016/j.snb.2015.06.046
  • M. Elsner, M. A. Jochmann, T. B. Hofstetter, D. Hunkeler, A. Bernstein, T. C. Schmidt, and A. Schimmelmann, “Current Challenges in Compound-Specific Stable Isotope Analysis of Environmental Organic Contaminants,” Analytical and Bioanalytical Chemistry 403, no. 9 (2012): 2471–2491. doi:10.1007/s00216-011-5683-y
  • M. Walsh, “Determination of Nitroaromatic, Nitramine, and Nitrate Ester Explosives in Soil by Gas Chromatography and an Electron Capture Detector,” Talanta 54, no. 3 (2001): 427–438. doi:10.1016/s0039-9140(00)00541-5
  • Igor A. Popov, Hao Chen, Oleg N. Kharybin, Eugene N. Nikolaev, and R. Graham Cooks, “Detection of Explosives on Solid Surfaces by Thermal Desorption and Ambient Ion/Molecule Reactions,” Chemical Communications, no. 15 (2005): 1953–1955. doi:10.1039/b419291e
  • S. Hallowell, “Screening People for Illicit Substances: A Survey of Current Portal Technology,” Talanta 54, no. 3 (2001): 447–458. doi:10.1016/s0039-9140(00)00543-9
  • M. Najarro, M. E. Dávila Morris, M. E. Staymates, R. Fletcher, and G. Gillen, “Optimized Thermal Desorption for Improved Sensitivity in Trace Explosives Detection by Ion Mobility Spectrometry,” The Analyst 137, no. 11 (2012): 2614–2622. doi:10.1039/c2an16145a
  • S. Babaee, and A. Beiraghi, “Micellar Extraction and High Performance Liquid Chromatography-Ultra Violet Determination of Some Explosives in Water Samples,” Analytica Chimica Acta 662, no. 1 (2010): 9–13. doi:10.1016/j.aca.2009.12.032
  • X. Sun, Y. Wang, and Y. Lei, “Fluorescence Based Explosive Detection: From Mechanisms to Sensory Materials,” Chemical Society Reviews 44, no. 22 (2015): 8019–8061. doi:10.1039/c5cs00496a
  • L. Zhou, H. Zhang, Y. Luan, S. Cheng, and L.-J. Fan, “Amplified Detection of Iron Ion Based on Plasmon Enhanced Fluorescence and Subsequently Fluorescence Quenching,” Nano-Micro Letters 6, no. 4 (2014): 327–334. doi:10.1007/s40820-014-0005-5
  • T. Naddo, Y. Che, W. Zhang, K. Balakrishnan, X. Yang, M. Yen, J. Zhao, J. S. Moore, and L. Zang, “Detection of Explosives with a Fluorescent Nanofibril Film,” Journal of the American Chemical Society 129, no. 22 (2007): 6978–6979. doi:10.1021/ja070747q
  • Y. Zhang, B. Li, H. Ma, L. Zhang, and W. Zhang, “An RGH–MOF as a Naked Eye Colorimetric Fluorescent Sensor for Picric Acid Recognition,” Journal of Materials Chemistry C 5, no. 19 (2017): 4661–4669. doi:10.1039/C7TC00936D
  • X.-L. Huang, L. Liu, M.-L. Gao, and Z.-B. Han, “A Luminescent Metal–Organic Framework for Highly Selective Sensing of Nitrobenzene and Aniline,” RSC Advances 6, no. 91 (2016): 87945–87949. doi:10.1039/C6RA19133A
  • S. Xu, and H. Lu, “Mesoporous Structured MIPs@CDs Fluorescence Sensor for Highly Sensitive Detection of TNT,” Biosensors & Bioelectronics 85 (2016) : 950–956. doi:10.1016/j.bios.2016.06.020
  • R. Freeman, T. Finder, L. Bahshi, R. Gill, and I. Willner, “Functionalized CdSe/ZnS QDs for the Detection of Nitroaromatic or RDX Explosives,” Advanced Materials 24, no. 48 (2012): 6416–6421. doi:10.1002/adma.201202793
  • S. Rochat, and T. M. Swager, “Conjugated Amplifying Polymers for Optical Sensing Applications,” ACS Applied Materials & Interfaces 5, no. 11 (2013): 4488–4502. doi:10.1021/am400939w
  • H. Zhou, X. Wang, T. T. Lin, J. Song, B. Z. Tang, and J. Xu, “Poly(Triphenyl Ethene) and Poly(Tetraphenyl Ethene): Synthesis, Aggregation-Induced Emission Property and Application as Paper Sensors for Effective Nitro-Compounds Detection,” Polymer Chemistry 7, no. 41 (2016): 6309–6317. doi:10.1039/C6PY01358A
  • A. S. Tanwar, S. Hussain, A. H. Malik, M. A. Afroz, and P. K. Iyer, “Inner Filter Effect Based Selective Detection of Nitroexplosive-Picric Acid in Aqueous Solution and Solid Support Using Conjugated Polymer,” ACS Sensors 1, no. 8 (2016): 1070–1077. doi:10.1021/acssensors.6b00441
  • D. Zhao, and T. M. Swager, “Sensory Responses in Solution vs Solid State: A Fluorescence Quenching Study of Poly(Iptycenebutadiynylene)s,” Macromolecules 38, no. 22 (2005): 9377–9384. doi:10.1021/ma051584y
  • G. Nagarjuna, A. Kumar, A. Kokil, K. G. Jadhav, S. Yurt, J. Kumar, and D. Venkataraman, “Enhancing Sensing of Nitroaromatic Vapours by Thiophene-Based Polymer Films,” Journal of Materials Chemistry 21, no. 41 (2011): 16597. doi:10.1039/c1jm12949j
  • Y. Huang, J. Xing, Q. Gong, L.-C. Chen, G. Liu, C. Yao, Z. Wang, H.-L. Zhang, Z. Chen, and Q. Zhang, “Reducing Aggregation Caused Quenching Effect through Co-Assembly of PAH Chromophores and Molecular Barriers,” Nature Communications 10, no. 1 (2019): 169. doi:10.1038/s41467-018-08092-y
  • J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, B. Z. Tang, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, et al. “Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole, Chem,” Chemical Communications (Cambridge, England), no. 18 (2001) : 1740–1741. doi:10.1039/b105159h
  • M. A. H. Nawaz, L. Meng, H. Zhou, J. Ren, S. A. Shahzad, A. Hayat, and C. Yu, “Tetraphenylethene Probe Based Fluorescent Silica Nanoparticles for the Selective Detection of Nitroaromatic Explosives,” Analytical Methods : Advancing Methods and Applications 13, no. 6 (2021): 825–831. doi:10.1039/d0ay01945c
  • X. Wang, Y. Guo, D. Li, H. Chen, and R. Sun, “Fluorescent Amphiphilic Cellulose Nanoaggregates for Sensing Trace Explosives in Aqueous Solution,” Chemical Communications 48, no. 45 (2012): 5569–5571. doi:10.1039/c2cc30208j
  • X. Zhang, X. Zhang, B. Yang, J. Hui, M. Liu, Z. Chi, S. Liu, J. Xu, and Y. Wei, “Novel Biocompatible Cross-Linked Fluorescent Polymeric Nanoparticles Based on an AIE Monomer,” Journal of Materials Chemistry C. 2, no. 5 (2014): 816–820. doi:10.1039/C3TC31852D
  • S. Kim, H. E. Pudavar, A. Bonoiu, and P. N. Prasad, “Aggregation-Enhanced Fluorescence in Organically Modified Silica Nanoparticles: A Novel Approach toward High-Signal-Output Nanoprobes for Two-Photon Fluorescence Bioimaging,” Advanced Materials 19, no. 22 (2007): 3791–3795. doi:10.1002/adma.200700098
  • Yuning Hong, Matthias Häussler, Jacky W. Y. Lam, Zhen Li, King Keung Sin, Yongqiang Dong, Hui Tong, Jianzhao Liu, Anjun Qin, Reinhard Renneberg, et al. “Label-Free Fluorescent Probing of G-Quadruplex Formation and Real-Time Monitoring of DNA Folding by a Quaternized Tetraphenylethene Salt with Aggregation-Induced Emission Characteristics,” Chemistry) 14, no. 21 (2008): 6428–6437. doi:10.1002/chem.200701723
  • G. Anders, and I. Borges, “Topological Analysis of the Molecular Charge Density and Impact Sensitivy Models of Energetic Molecules,” The Journal of Physical Chemistry. A 115, no. 32 (2011): 9055–9068. doi:10.1021/jp204562d
  • B. M. Rice, and J. J. Hare, “A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules,” The Journal of Physical Chemistry A 106, no. 9 (2002): 1770–1783. doi:10.1021/jp012602q
  • M.-L. Hu, M. Joharian, S. A. A. Razavi, A. Morsali, D.-Z. Wu, A. Azhdari Tehrani, J. Wang, P. C. Junk, and Z.-F. Guo, “Phenolic Nitroaromatics Detection by Fluorinated Metal-Organic Frameworks: Barrier Elimination for Selective Sensing of Specific Group of Nitroaromatics,” Journal of Hazardous Materials 406 (2021) : 124501. doi:10.1016/j.jhazmat.2020.124501
  • T.H. Förster, K. Kasper, “Ein konzentrationsumschlag der fluoreszenz des pyrens,” Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 59, no.10 (1955): 976–980. doi:10.1002/bbpc.19550591018
  • S. Nishizawa, Y. Kato, and N. Teramae, “Fluorescence Sensing of Anions via Intramolecular Excimer Formation in a Pyrophosphate-Induced Self-Assembly of a Pyrene-Functionalized Guanidinium Receptor [9],” Journal of the American Chemical Society 121, no. 40 (1999): 9463–9464. doi:10.1021/ja991497j
  • M. Belletête, J. Bouchard, M. Leclerc, and G. Durocher, “Photophysics and Solvent-Induced Aggregation of 2,7-Carbazole-Based Conjugated Polymers,” Macromolecules 38, no. 3 (2005): 880–887. doi:10.1021/ma048202t
  • G. F. Zhang, H. Wang, M. P. Aldred, T. Chen, Z. Q. Chen, X. Meng, and M. Q. Zhu, “General Synthetic Approach toward Geminal-Substituted Tetraarylethene Fluorophores with Tunable Emission Properties: X-Ray Crystallography, Aggregation-Induced Emission and Piezofluorochromism,” Chemistry of Materials 26, no. 15 (2014): 4433–4446. doi:10.1021/cm501414b
  • L. Gai, H. Chen, B. Zou, H. Lu, G. Lai, Z. Li, and Z. Shen, “Ratiometric Fluorescence Chemodosimeters for Fluoride Anion Based on Pyrene Excimer/Monomer Transformation,” Chemical Communications 48, no. 87 (2012): 10721–10723. doi:10.1039/c2cc35967g
  • Peter Reynders, Wolfgang Kuehnle, and Klaas A. Zachariasse, “Ground-State Dimers in Excimer-Forming Bichromophoric Molecules. 1. bis(Pyrenylcarboxy)Alkanes,” Journal of the American Chemical Society 112, no. 10 (1990): 3929–3939. doi:10.1021/ja00166a032
  • K. A. Zachariasse, A. L. Maçanita, and W. Kühnle, “Chain Length Dependence of Intramolecular Excimer Formation with 1,n-Bis(1-Pyrenylcarboxy)Alkanes for n = 1-16, 22, and 32,” The Journal of Physical Chemistry B 103, no. 43 (1999): 9356–9365. doi:10.1021/jp991611k
  • A. Kathiravan, K. Sundaravel, M. Jaccob, G. Dhinagaran, A. Rameshkumar, D. Arul Ananth, and T. Sivasudha, “Pyrene Schiff Base: Photophysics, Aggregation Induced Emission, and Antimicrobial Properties,” The Journal of Physical Chemistry. B 118, no. 47 (2014): 13573–13581. doi:10.1021/jp509697n
  • P. Beyazkilic, A. Yildirim, and M. Bayindir, “Formation of Pyrene Excimers in Mesoporous Ormosil Thin Films for Visual Detection of Nitro-Explosives,” ACS Applied Materials & Interfaces 6, no. 7 (2014): 4997–5004. doi:10.1021/am406035v
  • L. Mosca, S. Karimi Behzad, and P. Anzenbacher, “Small-Molecule Turn-On Fluorescent Probes for RDX,” Journal of the American Chemical Society 137, no. 25 (2015): 7967–7969. doi:10.1021/jacs.5b04643
  • J. S. Yang, C. S. Lin, and C. Y. Hwang, “Cu2+-Induced Blue Shift of the Pyrene Excimer Emission: A New Signal Transduction Mode of Pyrene Probes,” Organic Letters 3, no. 6 (2001): 889–892. doi:10.1021/ol015524y
  • M. Shyamal, P. Mazumdar, S. Maity, G. P. Sahoo, G. Salgado-Morán, and A. Misra, “Pyrene Scaffold as Real-Time Fluorescent Turn-on Chemosensor for Selective Detection of Trace-Level Al(III) and Its Aggregation-Induced Emission Enhancement,” The Journal of Physical Chemistry. A 120, no. 2 (2016): 210–220. doi:10.1021/acs.jpca.5b09107
  • L. Zang, C. Liang, Y. Wang, W. Bu, H. Sun, and S. Jiang, “A Highly Specific Pyrene-Based Fluorescent Probe for Hypochlorite and Its Application in Cell Imaging,” Sensors and Actuators B: Chemical 211 (2015) : 164–169. doi:10.1016/j.snb.2015.01.046
  • A. Kumar, A. Pandith, and H. S. Kim, “Pyrene-Appended Imidazolium Probe for 2,4,6-Trinitrophenol in Water, Sensors,” Sensors and Actuators B: Chemical 231 (2016) : 293–301. doi:10.1016/j.snb.2016.03.033
  • J. Chao, M. Li, Y. Zhang, C. Yin, and F. Huo, “A Simple Fluorescent pH Probe and Its Application in Cells,” Chemical Papers 73, no. 6 (2019): 1481–1488. doi:10.1007/s11696-019-00699-9
  • M. Kose, H. Kırpık, and A. Kose, “Fluorimetric Detections of Nitroaromatic Explosives by Polyaromatic Imine Conjugates,” Journal of Molecular Structure. 1185 (2019) : 369–378. doi:10.1016/j.molstruc.2019.03.003
  • D. Udhayakumari, S. Velmathi, P. Venkatesan, and S.-P. Wu, “A Pyrene-Linked Thiourea as a Chemosensor for Cations and Simple Fluorescent Sensor for Picric Acid,” Analytical Methods 7, no. 3 (2015): 1161–1166. doi:10.1039/C4AY02529F
  • D. Olender, J. Żwawiak, and L. Zaprutko, “Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines,” Pharmaceuticals 11, no. 2 (2018): 54. doi:10.3390/ph11020054
  • T. Huang, G. Sun, L. Zhao, N. Zhang, R. Zhong, and Y. Peng, “Quantitative Structure‐Activity Relationship (QSAR) Studies on the Toxic Effects of Nitroaromatic Compounds (NACs): a Systematic Review,” International Journal of Molecular Sciences. 22 (2021): 8557. doi: 10.3390/ijms22168557
  • K.S. Ju, and R. E. Parales, “Nitroaromatic Compounds, from Synthesis to Biodegradation,” Microbiology and Molecular Biology Reviews 74, no. 2 (2010): 250–272. doi:10.1128/MMBR.00006-10
  • Tadeusz Marek Krygowski, and Beata Tamara Stepień, “Sigma- and Pi-Electron Delocalization: Focus on Substituent Effects,” Chemical Reviews 105, no. 10 (2005): 3482–3512. doi:10.1021/cr030081s
  • C. L. Zhang, Y. Y. Yu, Z. Fang, S. Naraginti, Y. Zhang, and Y. C. Yong, “Recent Advances in Nitroaromatic Pollutants Bioreduction by Electroactive Bacteria,” Process Biochemistry. 70 (2018) : 129–135. doi:10.1016/j.procbio.2018.04.019
  • C. Jia, T. He, and G.M. Wang, “Zirconium-Based Metal-Organic Frameworks for Fluorescent Sensing,” Coordination Chemistry Reviews. 476 (2023) : 214930. doi:10.1016/j.ccr.2022.214930
  • M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk, “Luminescent Metal-Organic Frameworks,” Chemical Society Reviews 38, no. 5 (2009): 1330–1352. doi:10.1039/b802352m
  • Y. Cui, B. Chen, and G. Qian, “Lanthanide Metal-Organic Frameworks for Luminescent Sensing and Light-Emitting Applications,” Coordination Chemistry Reviews. 273-274 (2014) : 76–86. doi:10.1016/j.ccr.2013.10.023
  • P. Kumar, A. Deep, and K. H. Kim, “Metal Organic Frameworks for Sensing Applications, TrAC - Trends,” Analytical Chemistry. 73 (2015) : 39–53. doi:10.1016/j.trac.2015.04.009
  • Deepak Kukkar, Kowsalya Vellingiri, Ki-Hyun Kim, and Akash Deep, “A. Deep, Recent Progress in Biological and Chemical Sensing by Luminescent Metal-Organic Frameworks,” Sensors and Actuators B: Chemical 273 (2018) : 1346–1370. doi:10.1016/j.snb.2018.06.128
  • J. Dong, D. Zhao, Y. Lu, and W. Y. Sun, “Photoluminescent Metal-Organic Frameworks and Their Application for Sensing Biomolecules,” Journal of Materials Chemistry A 7, no. 40 (2019): 22744–22767. doi:10.1039/C9TA07022B
  • B. Mohan, S. Kumar, S. Ma, H. You, and P. Ren, “Mechanistic Insight into Charge and Energy Transfers of Luminescent Metal–Organic Frameworks Based Sensors for Toxic Chemicals, Adv,” Sustain. Syst 5 (2021): 1–23.
  • A. Hazra, S. Bej, A. Mondal, N. C. Murmu, and P. Banerjee, “Discerning Detection of Mutagenic Biopollutant TNP from Water and Soil Samples with Transition Metal-Containing Luminescence Metal–Organic Frameworks,” ACS Omega 5, no. 26 (2020): 15949–15961. doi:10.1021/acsomega.0c01194
  • M. N. Ahamad, M. Shahid, M. Ahmad, and F. Sama, “Cu(II) MOFs Based on Bipyridyls: Topology, Magnetism, and Exploring Sensing Ability toward Multiple Nitroaromatic Explosives,” ACS Omega 4, no. 4 (2019): 7738–7749. doi:10.1021/acsomega.9b00715
  • X. Chen, and B. Chen, “Macroscopic and Spectroscopic Investigations of the Adsorption of Nitroaromatic Compounds on Graphene Oxide, Reduced Graphene Oxide, and Graphene Nanosheets,” Environmental Science & Technology 49, no. 10 (2015): 6181–6189. doi:10.1021/es5054946
  • N. Venkatramaiah, S. Kumar, and S. Patil, “Femtogram Detection of Explosive Nitroaromatics: Fluoranthene-Based Fluorescent Chemosensors,” Chemistry 18, no. 46 (2012): 14745–14751. doi:10.1002/chem.201201764
  • H. Aseel, and Abad Al-Ameer, “Preparation, Characterization and Antibacterial Studies of Schiff Base Derivatives with 4-Bromo-2,6-Dimethylaniline and Study Their Complexes with Some Transition Metal Ions,” Int. J. Drug Deliv. Technol 11 (2021) : 190–194.
  • R. Batool, N. Riaz, H. M. Junaid, M. T. Waseem, Z. A. Khan, S. Nawazish, U. Farooq, C. Yu, and S. A. Shahzad, “Fluorene-Based Fluorometric and Colorimetric Conjugated Polymers for Sensitive Detection of 2,4,6-Trinitrophenol Explosive in Aqueous Medium,” ACS Omega 7, no. 1 (2022): 1057–1070. doi:10.1021/acsomega.1c05644
  • S. J. Toal, and W. C. Trogler, “Polymer Sensors for Nitroaromatic Explosives Detection,” Journal of Materials Chemistry 16, no. 28 (2006): 2871. doi:10.1039/b517953j
  • A. C. Vaiana, H. Neuweiler, A. Schulz, J. Wolfrum, M. Sauer, and J. C. Smith, “Fluorescence Quenching of Dyes by Tryptophan: Interactions at Atomic Detail from Combination of Experiment and Computer Simulation,” Journal of the American Chemical Society 125, no. 47 (2003): 14564–14572. doi:10.1021/ja036082j
  • Y. Li, T. Liu, H. Liu, M.-Z. Tian, and Y. Li, “Self-Assembly of Intramolecular Charge-Transfer Compounds into Functional Molecular Systems,” Accounts of Chemical Research 47, no. 4 (2014): 1186–1198. doi:10.1021/ar400264e
  • F. Xiao, and J. J. Pignatello, “π+-π Interactions between (Hetero)Aromatic Amine Cations and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials,” Environmental Science & Technology 49, no. 2 (2015): 906–914. doi:10.1021/es5043029
  • H. Boaz, and G. K. Rollefson, “The Quenching of Fluorescence. Deviations from the Stern-Volmer Law,” Journal of the American Chemical Society 72, no. 8 (1950): 3435–3443. doi:10.1021/ja01164a032
  • S. Westland, “Review of the CIE System of Colorimetry and Its Use in Dentistry,” Journal of Esthetic and Restorative Dentistry: Official Publication of the American Academy of Esthetic Dentistry. [et al.] 15 Suppl 1 (2003) : S5–S12. doi:10.1111/j.1708-8240.2003.tb00313.x
  • A. D. Broadbent, “A Critical Review of the Development of the CIE1931 RGB Color-Matching Functions, Color Res,” Appl 29 (2004) : 267–272.
  • N. K. Gondia, and S. K. Sharma, “Quantum Yield and Photometric Parameters of Some Transition Metal Ion Schiff Base Complexes,” Optical and Quantum Electronics. 49 (2017) : 303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.