37
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An In-Silico Investigation on the Molecular Interactions between Ellagic Acid and PfDHFR-TS

ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 4081-4102 | Received 26 Jul 2022, Accepted 28 Jul 2023, Published online: 14 Aug 2023

References

  • S. Sarkar, A. A. Siddiqui, S. Mazumder, R. De, S. J. Saha, C. Banerjee, M. S. Iqbal, S. Adhikari, A. Alam, S. Roy, et al. “Ellagic Acid, a Dietary Polyphenol, Inhibits Tautomerase Activity of Human Macrophage Migration Inhibitory Factor and Its Pro-Inflammatory Responses in Human Peripheral Blood Mononuclear Cells,” Journal of Agricultural and Food Chemistry 63, no. 20 (2015): 4988–98. doi:10.1021/acs.jafc.5b00921
  • J. Sharifi-Rad, C. Quispe, C. M. S. Castillo, R. Caroca, M. A. Lazo-Vélez, H. Antonyak, A. Polishchuk, R. Lysiuk,. P. Oliinyk, L. De Masi, et al. “Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential,” Oxidative Medicine and Cellular Longevity 2022 (2022): 3848084. doi:10.1155/2022/3848084
  • J. L. Ríos, R. Giner, M. Marín, and M. Recio, “A Pharmacological Update of Ellagic Acid,” Planta Medica 84, no. 15 (2018): 1068–93. doi:10.1055/a-0633-9492
  • P. N. Soh, B. Witkowski, D. Olagnier, M.-L. Nicolau, M. C. Garcia-Alvarez, A. Berry, and F. Benoit-Vical, “In Vitro and in Vivo Properties of Ellagic Acid in Malaria Treatment,” Antimicrobial Agents and Chemotherapy 53, no. 3 (2009): 1100–6. doi:10.1128/AAC.01175-08
  • P. Njomnang Soh, B. Witkowski, A. Gales, A. Huyghe, A. Berry, B. Pipy, and F. Benoit-Vical, “Implication of Glutathione in the in Vitro Antiplasmodial Mechanism of Action of Ellagic Acid,” PLoS One 7, no. 9 (2012): e45906. doi:10.1371/journal.pone.0045906
  • S. Mohanty, A. C. Gupta, A. K. Maurya, K. Shanker, A. Pal, and D. U. Bawankule, “Ameliorative Effects of Dietary Ellagic Acid against Severe Malaria Pathogenesis by Reducing Cytokine Storms and Oxidative Stress,” Frontiers in Pharmacology 12 (2021): 777400. doi:10.3389/fphar.2021.777400
  • N. Sturm, Y. Hu, H. Zimmermann, K. Fritz-Wolf, S. Wittlin, S. Rahlfs, and K. Becker, “Compounds Structurally Related to Ellagic Acid Show Improved Antiplasmodial Activity,” Antimicrobial Agents and Chemotherapy 53, no. 2 (2009): 622–30. doi:10.1128/AAC.00544-08
  • L. Herrmann, U. Bockau, A. Tiedtke, M. W. Hartmann, and T. Weide, “The Bifunctional Dihydrofolate Reductase Thymidylate Synthase of Tetrahymena Thermophila Provides a Tool for Molecular and Biotechnology Applications,” BMC Biotechnology 6, no. 1 (2006): 21. doi:10.1186/1472-6750-6-21
  • B. Tarnchompoo, P. Chitnumsub, A. Jaruwat, P. J. Shaw, J. Vanichtanankul, S. Poen, R. Rattanajak, C. Wongsombat, A. Tonsomboon, S. Decharuangsilp, et al. “Hybrid Inhibitors of Malarial Dihydrofolate Reductase with Dual Binding Modes That Can Forestall Resistance,” ACS Medicinal Chemistry Letters 9, no. 12 (2018): 1235–40. doi:10.1021/acsmedchemlett.8b00389
  • J. H. Zothantluanga, M. Abdalla, M. Rudrapal, Q. Tian, D. Chetia, and J. Li, “Computational Investigations for Identification of Bioactive Molecules from Baccaurea Ramiflora and Bergenia Ciliata as Inhibitors of SARS-CoV-2 M Pro,” Polycyclic Aromatic Compounds 43, no. 3 (2023): 2459–87. doi:10.1080/10406638.2022.2046613
  • J. H. Zothantluanga, “Molecular Docking Simulation Studies, Toxicity Study, Bioactivity Prediction, and Structure-Activity Relationship Reveals Rutin as a Potential Inhibitor of SARS-CoV-2 3CL Pro,” Journal of Scientific Research 65, no. 05 (2021): 96–104. doi:10.37398/JSR.2021.650511
  • M. Rudrapal, I. Celik, J. Khan, M. A. Ansari, M. N. Alomary, R. Yadav, T. Sharma, T. E. Tallei, P. K. Pasala, R. K. Sahoo, et al. “Identification of Bioactive Molecules from Triphala (Ayurvedic Herbal Formulation) as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro) through Computational Investigations,” Journal of King Saud University Science 34, no. 3 (2022): 101826. doi:10.1016/j.jksus.2022.101826
  • J. H. Zothantluanga, N. Gogoi, A. Shakya, D. Chetia, and H. Lalthanzara, “Computational Guided Identification of Potential Leads from Acacia Pennata (L.) Willd. as Inhibitors for Cellular Entry and Viral Replication of SARS-CoV-2,” Future Journal of Pharmaceutical Sciences 7, no. 1 (2021): 201. doi:10.1186/s43094-021-00348-7
  • M. Rudrapal, I. Celik, S. Chinnam, M. Azam Ansari, J. Khan, S. Alghamdi, M. Almehmadi, J. H. Zothantluanga, and S. J. Khairnar, “Phytocompounds as Potential Inhibitors of SARS-CoV-2 Mpro and PLpro through Computational Studies,” Saudi Journal of Biological Sciences 29, no. 5 (2022): 3456–3465. doi:10.1016/j.sjbs.2022.02.028
  • S. Bhimaneni, and A. Kumar, “Abscisic Acid and Aloe-Emodin against NS2B-NS3A Protease of Japanese Encephalitis Virus,” Environmental Science and Pollution Research International 29, no. 6 (2022): 8759–66. doi:10.1007/s11356-021-16229-8
  • V. Navyashree, K. Kant, and A. Kumar, “Natural Chemical Entities from Arisaema Genus Might Be a Promising Break-through against Japanese Encephalitis Virus Infection: A Molecular Docking and Dynamics Approach,” Journal of Biomolecular Structure & Dynamics 39, no. 4 (2021): 1404–16. doi:10.1080/07391102.2020.1731603
  • K. Kant, U. R. Lal, A. Kumar, and M. Ghosh, “A Merged Molecular Docking, ADME-T and Dynamics Approaches towards the Genus of Arisaema as Herpes Simplex Virus Type 1 and Type 2 Inhibitors,” Computational Biology and Chemistry 78 (2019): 217–26. doi:10.1016/j.compbiolchem.2018.12.005
  • M. Sarma, M. Abdalla, J. H. Zothantluanga, F. Abdullah Thagfan, A. K. Umar, D. Chetia, T. N. Almanaa, and S. T. Al-Shouli, “Multi-Target Molecular Dynamic Simulations Reveal Glutathione-S-Transferase as the Most Favorable Drug Target of Knipholone in Plasmodium falciparum,” Journal of Biomolecular Structure & Dynamics (2023): 1–17. doi:10.1080/07391102.2023.2175378
  • L. L. C. Schrodinger, Schrödinger Release 2020-1: Maestro Desmond Interoperability Tools; Schrödinger (New York, NY: L.L.C.Schrodinger, 2020).
  • L. L. C. Schrodinger, Release 2020-4: Desmond Molecular Dynamics System, D.E. Shaw Research, New York, NY (New York, NY: L.L.C.Schrodinger, 2020).
  • K. J. Bowers, D. E. Chow, H. Xu; R, O. Dror; M, P. Eastwood; B, A. Gregersen, J. L. Klepeis, I. Kolossvary; M, A. Moraes; F, D. Sacerdoti, et al. “Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters” (paper presented at the ACM/IEEE SC 2006 Conference (SC’06), pp 43–43, Tampa, FL, 11–17 November 2006).
  • M. S. Zubair, S. Maulana, A. Widodo, R. Pitopang, M. Arba, and M. Hariono, “GC-MS, LC-MS/MS, Docking and Molecular Dynamics Approaches to Identify Potential SARS-CoV-2 3-Chymotrypsin-Like Protease Inhibitors from Zingiber Officinale Roscoe,” Molecules 26, no. 17 (2021): 5230. doi:10.3390/molecules26175230
  • J. H. Zothantluanga, S. K. Aswin,  Rudrapal, and D. Cheita, “Antimalarial Flavonoid-Glycoside from Acacia Pennata with Inhibitory Potential against PfDHFR-TS: An in-Silico Study,” Biointerface Research in Applied Chemistry 12, no. 4 (2022): 4871–87. doi:10.33263/BRIAC124.48714887
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7, no. 1 (2017): 42717. doi:10.1038/srep42717
  • P. Banerjee, A. O. Eckert, A. K. Schrey, and R. Preissner, “ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals,” Nucleic Acids Research 46, no. W1 (2018): W257–63. doi:10.1093/nar/gky318
  • T. Sander, J. Freyss, M. von Korff, and C. Rufener, “DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis,” Journal of Chemical Information and Modeling 55, no. 2 (2015): 460–73. doi:10.1021/ci500588j
  • N. Chaianantakul, R. Sirawaraporn, and W. Sirawaraporn, “Insights into the Role of the Junctional Region of Plasmodium falciparum Dihydrofolate Reductase-Thymidylate Synthase,” Malaria Journal 12, no. 1 (2013): 91. doi:10.1186/1475-2875-12-91
  • L. K. Kyei, E. N. Gasu, G. B. Ampomah, J. O. Mensah, and L. S. Borquaye, “An in Silico Study of the Interactions of Alkaloids from Cryptolepis Sanguinolenta with Plasmodium falciparum Dihydrofolate Reductase and Dihydroorotate Dehydrogenase,” Journal of Chemistry 2022 (2022): 1–26. doi:10.1155/2022/5314179
  • Y. Melaku, M. Solomon, R. Eswaramoorthy, U. Beifuss, V. Ondrus, and Y. Mekonnen, “Synthesis, Antiplasmodial Activity and in Silico Molecular Docking Study of Pinocembrin and Its Analogs,” BMC Chemistry 16, no. 1 (2022): 36. doi:10.1186/s13065-022-00831-z
  • P. M. Quan, L. T. T. Huong; T, Q. Toan; N, P. Hung; P, H. Nam; N, T. Kiet; N, X. Ha; D, T. T. Le; T, N. T. An; P, L. Show, et al. “Cannabis Sativa L. Chemical Compositions as Potential Plasmodium falciparum Dihydrofolate Reductase-Thymidinesynthase Enzyme Inhibitors: An in Silico Study for Drug Development,” Open Chemistry 19, no. 1 (2021): 1235–41. doi:10.1515/chem-2021-0102
  • N. Nagasundaram, C. George Priya Doss, C. Chakraborty, V. Karthick, D. Thirumal Kumar, V. Balaji, A. Lu, Z. Ge, and H. Zhu, “Mechanism of Artemisinin Resistance for Malaria PfATP6 L263 Mutations and Discovering Potential Antimalarials: An Integrated Computational Approach,” Scientific Reports 6, no. 1 (2016) : 30106. doi:10.1038/srep30106
  • M. Thillainayagam, K. Malathi, and S. Ramaiah, “In - Silico Molecular Docking and Simulation Studies on Novel Chalcone and Flavone Hybrid Derivatives with 1, 2, 3-Triazole Linkage as Vital Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase,” Journal of Biomolecular Structure & Dynamics 36, no. 15 (2018): 3993–4009. doi:10.1080/07391102.2017.1404935
  • A. M. Dhote, V. R. Patil, D. K. Lokwani, N. D. Amnerkar, V. G. Ugale, N. B. Charbe, B. A. Bhongade, and S. C. Khadse, “Strategic Analyses to Identify Key Structural Features of Antiviral/Antimalarial Compounds for Their Binding Interactions with 3CLpro, PLpro and RdRp of SARS-CoV-2: In Silico Molecular Docking and Dynamic Simulation Studies,” Journal of Biomolecular Structure & Dynamics 40, no. 22 (2022): 11914–31. doi:10.1080/07391102.2021.1965912
  • A. K. Umar, J. H. Zothantluanga, K. Aswin, S. Maulana, M. Sulaiman Zubair, H. Lalhlenmawia, M. Rudrapal, and D. Chetia, “Antiviral Phytocompounds “Ellagic Acid” and “(+)-Sesamin” of Bridelia Retusa Identified as Potential Inhibitors of SARS-CoV-2 3CL Pro Using Extensive Molecular Docking, Molecular Dynamics Simulation Studies, Binding Free Energy Calculations, and Bioactivi,” Structural Chemistry 33, no. 5 (2022): 1445–65. doi:10.1007/s11224-022-01959-3
  • I. M. M. Othman, M. H. Mahross, M. A. M. Gad-Elkareem, M. Rudrapal, N. Gogoi, D. Chetia, K. Aouadi, M. Snoussi, and A. Kadri, “Toward a Treatment of Antibacterial and Antifungal Infections: Design, Synthesis and in Vitro Activity of Novel Arylhydrazothiazolylsulfonamides Analogues and Their Insight of DFT, Docking and Molecular Dynamic Simulations,” Journal of Molecular Structure 1243 (2021): 130862. doi:10.1016/j.molstruc.2021.130862
  • A. Daina, and V. Zoete, “A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules,” Chemmedchem 11, no. 11 (2016): 1117–21. doi:10.1002/cmdc.201600182
  • Y. Duarte, M. Rojas, J. Canan, E. G. Pérez, F. González-Nilo, and J. García-Colunga, “Different Classes of Antidepressants Inhibit the Rat Α7 Nicotinic Acetylcholine Receptor by Interacting within the Ion Channel: A Functional and Structural Study,” Molecules 26, no. 4 (2021): 998. doi:10.3390/molecules26040998
  • D. Chen, N. Oezguen, P. Urvil, C. Ferguson, S. M. Dann, and T. C. Savidge, “Regulation of Protein-Ligand Binding Affinity by Hydrogen Bond Pairing,” Science Advances 2, no. 3 (2016) : e1501240. doi:10.1126/sciadv.1501240
  • A. Mahmoud, A. Mostafa, A. A. Al-Karmalawy, A. Zidan, H. S. Abulkhair, S. H. Mahmoud, M. Shehata, M. M. Elhefnawi, and M. A. Ali, “Telaprevir is a Potential Drug for Repurposing against SARS-CoV-2: Computational and in Vitro Studies,” Heliyon 7, no. 9 (2021): e07962. doi:10.1016/j.heliyon.2021.e07962
  • J. H. Zothantluanga, and D. Chetia, “A Beginner’s Guide to Molecular Docking,” Sciences of Phytochemistry 1, no. 2 (2022): 37–40. doi:10.58920/sciphy01020037
  • J. Li, R. Abel, K. Zhu, Y. Cao, S. Zhao, and R. A. Friesner, “The VSGB 2.0 Model: A Next Generation Energy Model for High Resolution Protein Structure Modeling,” Proteins 79, no. 10 (2011): 2794–812. doi:10.1002/prot.23106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.