120
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Biological Evaluation, and Computational Studies of 6-Fluoro-3-(Piperidin-4-yl)-1,2-Benzisoxazole Sulfonamide Conjugates

ORCID Icon, ORCID Icon, , , , & show all
Pages 4157-4177 | Received 18 Jan 2023, Accepted 07 Aug 2023, Published online: 21 Aug 2023

References

  • K. A. Kumar, and P. Jayaroopa, “Isoxazoles: Molecules with Potential Medicinal Properties,” International Journal of Pharmaceutical Chemical and Biological Sciences 3 (2013): 294–294. www.ijpcbs.com.
  • R. S. Lamani, N. S. Shetty, R. R. Kamble, and I. A. M. Khazi, “Synthesis and Antimicrobial Studies of Novel Methylene Bridged Benzisoxazolyl Imidazo[2,1-b][1,3,4]Thiadiazole Derivatives,” European Journal of Medicinal Chemistry 44, no. 7 (2009): 2828–2833. doi:10.1016/j.ejmech.2008.12.019
  • T. Naoki, and I. Takashi, “Preparation of Indazole and Benzisoxazole Derivatives as Raf Inhibitors for Treatment of Cancer,” WO 2009028655A1 (2009).
  • C. Ziyang, “Preparation of Benzisoxazole Derivatives as Antidiabetic Agents,” CN 105037290A (2015).
  • G. Q. Shi, J. F. Dropinski, B. M. McKeever, S. Xu, J. W. Becker, J. P. Berger, K. L. MacNaul, A. Elbrecht, G. Zhou, T. W. Doebber, et al. “Design and Synthesis of α-Aryloxyphenylacetic Acid Derivatives: A Novel Class of PPARα/γ Dual Agonists with Potent Antihyperglycemic and Lipid Modulating Activity,” Journal of Medicinal Chemistry 48, no. 13 (2005): 4457–4468. doi:10.1021/jm0502135
  • B. L. Deng, M. D. Cullen, Z. Zhou, T. L. Hartman, R. W. Buckheit, C. Pannecouque, E. de Clercq, P. E. Fanwick, and M. Cushman, “Synthesis and anti-HIV Activity of New Alkenyldiarylmethane (ADAM) Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) Incorporating Benzoxazolone and Benzisoxazole Rings,” Bioorganic & Medicinal Chemistry 14, no. 7 (2006): 2366–2374. doi:10.1016/j.bmc.2005.11.014
  • B. L. Deng, Y. Zhao, T. L. Hartman, K. Watson, R. W. Buckheit, C. Pannecouque, E. de Clercq, and M. Cushman, “Synthesis of Alkenyldiarylmethanes (ADAMs) Containing Benzo[d]Isoxazole and Oxazolidin-2-One Rings, a New Series of Potent Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors,” European Journal of Medicinal Chemistry 44, no. 3 (2009): 1210–1214. doi:10.1016/j.ejmech.2008.09.013
  • B. S. Priya, S. N. Swamy, and K. S. Rangappa,  Basappa, “Synthesis and Characterization of Novel 6-Fluoro-4-Piperidinyl-1,2- Benzisoxazole Amides and 6-Fluoro-Chroman-2-Carboxamides: Antimicrobial Studies,” Bioorganic & Medicinal Chemistry 13, no. 7 (2005): 2623–2628. doi:10.1016/j.bmc.2005.01.026
  • A. K. Kabi, R. Gujjarappa, A. Garg, A. Sahoo, A. Roy, S. Gupta, and C. C. Malakar, “Overview on Diverse Biological Activities of Benzisoxazole Derivatives.” Tailored Functional Materials: Select Proceedings of MMETFP (2021): 81–98. doi:10.1007/978-981-19-2572-6_6
  • K. P. Rakesh, C. S. Shantharam, M. B. Sridhara, H. M. Manukumar, and H. L. Qin, “Benzisoxazole: A Privileged Scaffold for Medicinal Chemistry,” MedChemComm 8, no. 11 (2017): 2023–2039. doi:10.1039/c7md00449d
  • S. Aiello, G. Wells, E. L. Stone, H. Kadri, R. Bazzi, D. R. Bell, M. F. G. Stevens, C. S. Matthews, T. D. Bradshaw, and A. D. Westwell, “Synthesis and Biological Properties of Benzothiazole, Benzoxazole, and Chromen-4-One Analogues of the Potent Antitumor Agent 2-(3,4-Dimethoxyphenyl)-5- Fluorobenzothiazole (PMX 610, NSC 721648,” Journal of Medicinal Chemistry 51, no. 16 (2008): 5135–5139. doi:10.1021/jm800418z
  • K. Arakawa, M. Inamasu, M. Matsumoto, K. Okumura, K. Yasuda, H. Akatsuka, S. Kawanami, A. Watanabe, K. Homma, Y. Saiga, et al. “Novel Benzoxazole 2, 4-Thiazolidinediones as Potent Hypoglycemic Agents. Synthesis and Structure-Activity Relationships,” Chemical & Pharmaceutical Bulletin 45, no. 12 (1997): 1984–1993. doi:10.1248/cpb.45.1984
  • J. C. Saunders, and W. R. N. Williamson, “Potential Antiinflammatory Compounds. 2. Acidic Antiinflammatory 1,2-Benzisoxazoles,” Journal of Medicinal Chemistry 22, no. 12 (1979): 1554–1558. doi:10.1021/jm00198a026
  • T. Katagi, “Photochemistry of Organophosphorus Herbicide Butamifos,” Journal of Agricultural and Food Chemistry 41, no. 3 (1993): 496–501. doi:10.1021/jf00027a028
  • L. Davis, R. C. Effland, J. T. Klein, R. W. Dunn, H. M. Geyer, and W. W. Petko, “3-substituted-1,2-Benzisoxazoles: Novel Antipsychotic Agents,” Drug Design and Discovery 8, no. 3 (1992) : 225–240. https://europepmc.org/article/med/1356026
  • N. J. Hrib, J. G. Jurcak, K. L. Burgher, P. G. Conway, H. B. Hartman, L. L. Kerman, J. E. Roehr, and A. T. Woods, “Benzisoxazole and Benzisothiazole-3-Carboxamides as Potential Atypical Antipsychotic Agents,” Journal of Medicinal Chemistry 37, no. 15 (1994) : 2308–2314. doi:10.1021/jm00041a009
  • A. Nuhrich, M. Varache-Lembège, J. Vercauteren, R. Dokhan, P. Renard, and G. Devaux, “Synthesis and Binding Affinities of a Series of 1,2-Benzisoxazole-3-Carboxamides to Dopamine and Serotonin Receptors,” European Journal of Medicinal Chemistry 31, no. 12 (1996): 957–964. doi:10.1016/S0223-5234(97)86174-0
  • C. Brown-Proctor, S. E. Snyder, P. S. Sherman, and M. R. Kilbourn, “Synthesis and Evaluation of 6- [11 C]Methoxy-3-[2-[1-(Phenylmethyl)-4-Piperidinyl]Ethyl]-1,2-Benzisoxazole as an in Vivo Radioligand for Acetylcholinesterase,” Nuclear Medicine and Biology 26, no. 1 (1999): 99–103. doi:10.1016/S0969-8051(98)00078-X
  • P. B. Khedekar, R. H. Bahekar, R. S. Chopade, S. N. Umathe, R. A. Ram Rao, and K. P. Bhusari, “Synthesis and anti-Inflammatory Activity of Alkyl/Arylidene-2-Aminobenzo-Thiazoles and 1-Benzothiazol-2-yl-3-Chloro-4-Substituted-Azetidin-2-Ones,” Arzneimittel-Forschung 53, no. 9 (2003) : 640–647. doi:10.1055/s-0031-1299806
  • H. Hasegawa, “Utilization of Zonisamide in Patients with Chronic Pain or Epilepsy Refractory to Other Treatments: A Retrospective, Open Label, Uncontrolled Study in a VA Hospital,” Current Medical Research and Opinion 20, no. 5 (2004): 577–580. doi:10.1185/030079904125003313
  • C. Viegas-Junior, A. Danuello, V. da Silva Bolzani, E. J. Barreiro, and C. A. M. Fraga, “Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes,” Current Medicinal Chemistry 14, no. 17 (2007): 1829–1852. doi:10.2174/092986707781058805
  • C. Zhao, K. P. Rakesh, L. Ravidar, W. Y. Fang, and H. L. Qin, “Pharmaceutical and Medicinal Significance of Sulfur (SVI)-Containing Motifs for Drug Discovery: A Critical Review,” European Journal of Medicinal Chemistry 162 (2019): 679–734. doi:10.1016/j.ejmech.2018.11.017
  • Y. A. Ammar, A. A. Farag, A. M. Ali, A. Ragab, A. A. Askar, D. M. Elsisi, and A. Belal, “Design, Synthesis, Antimicrobial Activity and Molecular Docking Studies of Some Novel di-Substituted Sulfonylquinoxaline Derivatives,” Bioorganic Chemistry 104 (2020): 104164. doi:10.1016/j.bioorg.2020.104164
  • N. H. El-Dershaby, S. A. El-Hawash, S. E. Kassab, H. G. Dabees, A. E. Abdel Moneim, I. A. Abdel Wahab, M. M. Abd-Alhaseeb, and M. M. M. El-Miligy, “Rational Design of Biodegradable Sulphonamide Candidates Treating Septicaemia by Synergistic Dual Inhibition of COX-2/PGE2 Axis and DHPS Enzyme,” Journal of Enzyme Inhibition and Medicinal Chemistry 37, no. 1 (2022): 1737–1751. doi:10.1080/14756366.2022.2086868
  • V. S. Murthy, Y. Tamboli, V. S. Krishna, D. Sriram, F. X. Zhang, G. W. Zamponi, and V. Vijayakumar, “Synthesis and Biological Evaluation of Novel Benzhydrylpiperazine-Coupled Nitrobenzenesulfonamide Hybrids,” ACS Omega 6, no. 14 (2021): 9731–9740. doi:10.1021/acsomega.1c00369
  • J. T. Kilbile, Y. Tamboli, S. S. Gadekar, I. Islam, C. T. Supuran, and S. B. Sapkal, “An Insight into the Biological Activity and Structure-Based Drug Design Attributes of Sulfonylpiperazine Derivatives,” Journal of Molecular Structure 1278 (2023): 134971. doi:10.1016/j.molstruc.2023.134971
  • A. Bari, A. Iqbal, Z. A. Khan, S. A. Shahzad, and M. Yar, “Synthetic Approaches toward Piperidine Related Structures: A Review,” Synthetic Communications 50, no. 17 (2020): 2572–2589. doi:10.1080/00397911.2020.1776878
  • J. P. Bégué, and D. Bonnet-Delpon, “Recent Advances (1995-2005) in Fluorinated Pharmaceuticals Based on Natural Products,” Journal of Fluorine Chemistry 127, no. 8 (2006): 992–1012. doi:10.1016/j.jfluchem.2006.05.006
  • C. M. Shivaprasad, S. Jagadish, T. R. Swaroop, C. D. Mohan, R. Roopashree, K. S. S. Kumar, and K. S. Rangappa, “Synthesis of New Benzisoxazole Derivatives and Their Antimicrobial, Antioxidant and anti-Inflammatory Activities,” European Journal of Chemistry 5, no. 1 (2014): 91–95. doi:10.5155/eurjchem.5.1.91-95.866
  • S. D. Vaidya, B. Venkata, S. Kumar, V. Kumar, U. N. Bhise, and U. C. Mashelkar, “Synthesis, anti-Bacterial, anti-Asthmatic and anti-Diabetic Activities of Novel N-Substituted-2-(Benzo[d]Isoxazol-3-Ylmethyl)-1H-Benzimidazoles,” Journal of Heterocyclic Chemistry 44, no. 3 (2007): 685–691. doi:10.1002/jhet.5570440327
  • C. S. Shantharam, D. M. Suyoga Vardhan, R. Suhas, M. B. Sridhara, and D. C. Gowda, “Inhibition of Protein Glycation by Urea and Thiourea Derivatives of Glycine/Proline Conjugated Benzisoxazole analogue-Synthesis and Structure-Activity Studies,” European Journal of Medicinal Chemistry 60 (2013): 325–332. doi:10.1016/j.ejmech.2012.12.029
  • Y. Chen, S. Wang, X. Xu, X. Liu, M. Yu, S. Zhao, S. Liu, Y. Qiu, T. Zhang, B. F. Liu, et al. “Synthesis and Biological Investigation of Coumarin Piperazine (Piperidine) Derivatives as Potential Multireceptor Atypical Antipsychotics,” Journal of Medicinal Chemistry 56, no. 11 (2013): 4671–4690. doi:10.1021/jm400408r
  • J. Bolós, L. Anglada, S. Gubert, J. M. Planas, J. Agut, M. Príncep, À. de La Fuente, A. Sacristán, and J. A. Ortiz, “7-[3-(1-piperidinyl)Propoxy]Chromenones as Potential Atypical Antipsychotics. 2. Pharmacological Profile of 7-[3-[4-(6-Fluoro-1,2-Benzisoxazol-3-yl)Piperidin-1-yl] Propoxy]-3-(Hydroxymethyl)Chromen-4-One (Abaperidone, FI-8602,” Journal of Medicinal Chemistry 41, no. 27 (1998): 5402–5409. doi:10.1021/jm9810396
  • Y. Chen, Y. Lan, S. Wang, H. Zhang, X. Xu, X. Liu, M. Yu, B. F. Liu, and G. Zhang, “Synthesis and Evaluation of New Coumarin Derivatives as Potential Atypical Antipsychotics,” European Journal of Medicinal Chemistry 74 (2014): 427–439. doi:10.1016/j.ejmech.2014.01.012
  • R. Aranda, K. Villalba, E. Raviña, C. F. Masaguer, J. Brea, F. Areias, E. Domínguez, J. Selent, L. López, F. Sanz, et al. “Synthesis, Binding Affinity, and Molecular Docking Analysis of New Benzofuranone Derivatives as Potential Antipsychotics,” Journal of Medicinal Chemistry 51, no. 19 (2008): 6085–6094. doi:10.1021/jm800602w
  • Y. Chen, Y. Lan, X. Cao, X. Xu, J. Zhang, M. Yu, X. Liu, B. F. Liu, and G. Zhang, “Synthesis and Evaluation of Amide, Sulfonamide and Urea-Benzisoxazole Derivatives as Potential Atypical Antipsychotics,” MedChemComm 6, no. 5 (2015): 831–838. doi:10.1039/C4MD00578C
  • K. S. Rangappa,   Basappa, “New Cholinesterase Inhibitors: Synthesis and Structure-Activity Relationship Studies of 1,2-Benzisoxazole Series and Novel Imidazolyl-2-Isoxazolines,” Journal of Physical Organic Chemistry 18, no. 8 (2005): 773–778. doi:10.1002/poc.936
  • S. B. Benaka Prasad, K. Vinaya, C. S. Ananda Kumar, S. Swarup, and K. S. Rangappa, “Synthesis of Novel 6-Fluoro-3-(4-Piperidinyl)-1,2-Benzisoxazole Derivatives as Antiproliferative Agents: A Structure-Activity Relationship Study,” Investigational New Drugs 27, no. 6 (2009): 534–542. doi:10.1007/s10637-008-9205-5
  • R. A. Shastri, “Review on Synthesis of 3-Substituted 1,2-Benzisoxazole Derivatives,” Chemical Science Transactions 5, no. 1 (2016): 8–20. doi:10.7598/cst2016.1120
  • A. Villalobos, J. F. Blake, C. K. Biggers, T. W. Butler, D. S. Chapin, Y. L. Chen, J. L. Ives, S. B. Jones, D. R. Liston, A. A. Nagel, et al. “Novel Benzisoxazole Derivatives as Potent and Selective Inhibitors of Acetylcholinesterase,” Journal of Medicinal Chemistry 37, no. 17 (1994) : 2721–2734. doi:10.1021/jm00043a012
  • M. Król, G. Ślifirski, J. Kleps, S. Ulenberg, M. Belka, T. Baczek, A. Siwek, K. Stachowicz, B. Szewczyk, G. Nowak, et al. “Synthesis of Novel Pyrido[1,2-c]Pyrimidine Derivatives with 6-Fluoro-3-(4-Piperidynyl)-1,2-Benzisoxazole Moiety as Potential Ssri and 5-HT1A Receptor Ligands,” International Journal of Molecular Sciences 22, no. 5 (2021): 2329. doi:10.3390/ijms22052329
  • S. Tahlan, K. Ramasamy, S. M. Lim, S. A. A. Shah, V. Mani, and B. Narasimhan, “4-(2-(1H-Benzo[d]Imidazol-2-Ylthio) Acetamido)-N-(Substituted Phenyl)Benzamides: Design, Synthesis and Biological Evaluation,” BMC Chemistry 13, no. 1 (2019): 12. doi:10.1186/S13065-019-0533-7
  • J. Crown, “CDK8: A New Breast Cancer Target,” Oncotarget 8, no. 9 (2017) : 14269–14270. doi:10.18632/oncotarget.15354
  • S. Tahlan, S. Kumar, K. Ramasamy, S. M. Lim, S. A. A. Shah, V. Mani, and B. Narasimhan, “In-Silico Molecular Design of Heterocyclic Benzimidazole Scaffolds as Prospective Anticancer Agents,” BMC Chemistry 13, no. 1 (2019): 90. doi:10.1186/S13065-019-0608-5
  • H. van de Waterbeemd, and E. Gifford, “ADMET in Silico Modelling: Towards Prediction Paradise?,” Nature Reviews. Drug Discovery 2, no. 3 (2003): 192–204. doi:10.1038/nrd1032
  • K. M. Naidu, A. Suresh, J. Subbalakshmi, D. Sriram, P. Yogeeswari, P. Raghavaiah, and K. V. G. Chandra Sekhar, “Design, Synthesis and Antimycobacterial Activity of Various 3-(4-(Substitutedsulfonyl)Piperazin-1-yl)Benzo [d[Isoxazole Derivatives,” European Journal of Medicinal Chemistry 87 (2014): 71–78. doi:10.1016/j.ejmech.2014.09.043
  • S. K. Verma, R. Verma, F. Xue, P. K. Thakur, Y. R. Girish, and K. P. Rakesh, “Antibacterial Activities of Sulfonyl or Sulfonamide Containing Heterocyclic Derivatives and Its Structure-Activity Relationships (SAR) Studies: A Critical Review,” Bioorganic Chemistry 105 (2020): 104400. doi:10.1016/j.bioorg.2020.104400
  • K. Feng, R. E. Quevedo, J. T. Kohrt, M. S. Oderinde, U. Reilly, and M. C. White, “Late-Stage Oxidative C(sp 3)–H Methylation,” Nature 580, no. 7805 (2020): 621–627. doi:10.1038/s41586-020-2137-8
  • C. B. Rajashekar Reddy, S. Rajasekhara Reddy, K. Suthindhiran, and A. Sivakumar, “HDAC and NF-κB Mediated Cytotoxicity Induced by Novel N-Chloro β-Lactams and Benzisoxazole Derivatives,” Chemico-Biological Interactions 246 (2016): 69–76. doi:10.1016/j.cbi.2016.01.010
  • A. M. Soliman, H. M. Karam, M. H. Mekkawy, and M. M. Ghorab, “Antioxidant Activity of Novel Quinazolinones Bearing Sulfonamide: Potential Radiomodulatory Effects on Liver Tissues via NF-κB/PON1 Pathway,” European Journal of Medicinal Chemistry 197 (2020): 112333. doi:10.1016/j.ejmech.2020.112333
  • N. M. Saleh, M. S. A. El-Gaby, K. El ‐Adl, and N. E. A. Abd El-Sattar, “Design, Green Synthesis, Molecular Docking and Anticancer Evaluations of Diazepam Bearing Sulfonamide Moieties as VEGFR-2 Inhibitors,” Bioorganic Chemistry 104 (2020): 104350. doi:10.1016/j.bioorg.2020.104350
  • A. H. Ananth, N. Manikandan, R. K. Rajan, R. Elancheran, K. Lakshmithendral, M. Ramanathan, A. Bhattacharjee, and S. Kabilan, “Design, Synthesis, and Biological Evaluation of 2‐(2‐Bromo‐3‐Nitrophenyl)‐5‐Phenyl‐1, 3, 4‐Oxadiazole Derivatives as Possible anti‐Breast Cancer Agents,” Chemistry & Biodiversity 17, no. 2 (2020): E 1900659. doi:10.1002/cbdv.201900659
  • J. X. Mu, Z. W. Zhai, M. Y. Yang, Z. H. Sun, H. K. Wu, and X. H. Liu, “Synthesis, Crystal Structure, DFT Study and Antifungal Activity of 4-(5-((4-Bromobenzyl) Thio)-4-Phenyl-4H-1,2,4-Triazol-3-yl)Pyridine,” Crystals 6, no. 1 (2015): 4. doi:10.3390/cryst6010004
  • M. Miar, A. Shiroudi, K. Pourshamsian, A. R. Oliaey, and F. Hatamjafari, “Theoretical Investigations on the HOMO–LUMO Gap and Global Reactivity Descriptor Studies, Natural Bond Orbital, and Nucleus-Independent Chemical Shifts Analyses of 3-Phenylbenzo[d]Thiazole-2(3H)-Imine and Its Para-Substituted Derivatives: Solvent and Substituent Effects,” Journal of Chemical Research 45, no. 1-2 (2021): 147–158. doi:10.1177/1747519820932091
  • R. Elancheran, B. Karthikeyan, S. Srinivasan, K. Krishnasamy, and S. Kabilan, “Synthesis, Crystal Structure, DFT and Hirshfeld Surface Analysis of 4-fluoro-N-(1, 3-Dioxoisoindolin-2-yl) Benzamide,” European Journal of Chemistry 14, no. 1 (2023): 1–8. doi:10.5155/eurjchem.14.1.1-8.2335
  • P. D. Leeson, “Molecular Inflation, Attrition and the Rule of Five,” Advanced Drug Delivery Reviews 101 (2016): 22–33. doi:10.1016/j.addr.2016.01.018
  • A. Alex, D. S. Millan, M. Perez, F. Wakenhut, and G. A. Whitlock, “Intramolecular Hydrogen Bonding to Improve Membrane Permeability and Absorption in beyond Rule of Five Chemical Space,” MedChemComm 2, no. 7 (2011): 669–674. doi:10.1039/c1md00093d
  • D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple, “Molecular Properties That Influence the Oral Bioavailability of Drug Candidates,” Journal of Medicinal Chemistry 45, no. 12 (2002): 2615–2623. doi:10.1021/jm020017n
  • D. Lagorce, D. Douguet, M. A. Miteva, and B. O. Villoutreix, “Computational Analysis of Calculated Physicochemical and ADMET Properties of Protein-Protein Interaction Inhibitors,” Scientific Reports 7, no. 1 (2017): 46277. doi:10.1038/srep46277
  • C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 64 (2012): 4–17. doi:10.1016/j.addr.2012.09.019
  • L. Luo, A. Zhong, Q. Wang, and T. Zheng, “Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products,” Marine Drugs 20, no. 1 (2021): 29. doi:10.3390/md20010029
  • Y. Akbaba, E. Bastem, F. Topal, I. Gülçin, A. Maraş, and S. Göksu, “Synthesis and Carbonic Anhydrase Inhibitory Effects of Novel Sulfamides Derived from 1‐Aminoindanes and Anilines,” Archiv Der Pharmazie 347, no. 12 (2014): 950–957. doi:10.1002/ardp.201400257

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.