60
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green Synthesis and Biological Study of New Imidazothiazines Using New MCRs: A Combined Experimental and Theoretical Investigation

, &
Pages 4215-4238 | Received 02 Dec 2022, Accepted 03 Aug 2023, Published online: 22 Aug 2023

References

  • P.N. Kalaria, S.C. Karad, and D.K. Raval, “A Review on Diverse Heterocyclic Compounds as the Privileged Scaffolds in Antimalarial Drug Discovery,” European Journal of Medicinal Chemistry 158 (2018): 917–936. doi:10.1016/j.ejmech.2018.08.040
  • N. Desai, A. Trivedi, U. Pandit, A. Dodiya, V.K. Rao, and P. Desai, “Hybrid Bioactive Heterocycles as Potential Antimicrobial Agents: A Review,” Mini Reviews in Medicinal Chemistry 16, no. 18 (2016): 1500–1526. doi:10.2174/1389557516666160609075620
  • M.M. Fouad, E.R. El-Bendary, G.M. Suddek, I.A. Shehata, and M.M. El-Kerdawy, “Synthesis and in Vitro Antitumor Evaluation of Some New Thiophenes and Thieno[2,3-d]Pyrimidine Derivatives,” Bioorganic Chemistry 81 (2018): 587–598. doi:10.1016/j.bioorg.2018.09.022
  • P. Martins, J. Jesus, S. Santos, L.R. Raposo, C. Roma-Rodrigues, P.V. Baptista, and A.R. Fernandes, “Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box,” Molecules 20, no. 9 (2015): 16852–16891. doi:10.3390/molecules200916852
  • N. Siddiqui, S. Bawa, R. Ali, O. Afzal, M.J. Akhtar, B. Azad, and R. Kumar,   Andalip, “Antidepressant Potential of Nitrogen-Containing Heterocyclic Moieties: An Updated Review,” Journal of Pharmacy & Bioallied Sciences 3, no. 2 (2011): 194–212. doi:10.4103/0975-7406.80765
  • A.S. Sokolova, O.I. Yarovaya, N.I. Bormotov, L.N. Shishkina, and N.F. Salakhutdinov, “Synthesis and Antiviral Activity of Camphor-Based 1,3-Thiazolidin-4-One and Thiazole Derivatives as Orthopoxvirus-Reproduction Inhibitors,” MedChemComm 9, no. 10 (2018): 1746–1753. doi:10.1039/c8md00347e
  • A. Goel, N. Agarwal, F.V. Singh, A. Sharon, P. Tiwari, M. Dixit, R. Pratap, A.K. Srivastava, P.R. Maulik, and V. Ram, “Antihyperglycemic Activity of 2-Methyl-3,4,5-Triaryl-1H-Pyrroles in SLM and STZ Models,” Bioorganic & Medicinal Chemistry Letters 14, no. 5 (2004): 1089–1092. doi:10.1016/j.bmcl.2004.01.009
  • M. Amir, S.A. Javed, and H. Kumar, “Pyrimidine as Antiinflammatory Agent: A Review,” Indian Journal of Pharmaceutical Sciences 69, no. 3 (2007): 337–343. doi:10.4103/0250-474X.34540
  • W. Li, S.J. Zhao, F. Gao, Z.S. Lv, J.Y. Tu, and Z. Xu, “Synthesis and in Vitro anti-Tumor, anti-Mycobacterial and anti-HIV Activities of Diethylene-Glycol-Tethered Bis-Isatin Derivatives,” ChemistrySelect 3, no. 36 (2018): 10250–10254. doi:10.1002/slct.201802185
  • X. Zhao, S.T. Chaudhry, and J. Mei, “Heterocyclic Building Blocks for Organic Semiconductors.” In Heterocyclic Chemistry in the 21st Century a Tribute to Alan Katritzky, Vol. 121 (Elsevier Science, 2017), 133–171.
  • T.A. Khattab, and M.A. Rehan, “A Review on Synthesis of Nitrogen-Containing Heterocyclic Dyes for Textile Fibers – Part 2: Fused Heterocycles.” Egyptian Journal of Chemistry 61 (2018): 989–1018.
  • C. Lamberth, and J. Dinges, Bioactive Heterocyclic Compound Classes: Agrochemicals (Weinheim: Wiley-VCH Verlag GmbH & Co, KGaA, 2012).
  • S. Zhi, X. Ma, and W. Zhang, “Consecutive Multicomponent Reactions for the Synthesis of Complex Molecules,” Organic & Biomolecular Chemistry 17, no. 33 (2019): 7632–7650. doi:10.1039/c9ob00772e
  • I. A. Ibarra, A. Islas-Jácome, and E. González-Zamora, “Synthesis of Polyheterocycles via Multicomponent Reactions,” Organic & Biomolecular Chemistry 16, no. 9 (2018): 1402–1418. doi:10.1039/c7ob02305g
  • L. F. Tietze, C. Bsasche, and K. M. Gericke, Domino Reactions in Organic Synthesis (Weinheim: Wiley-VCH, 2006).
  • L. Weber, M. Illgen, and M. Almstetter, “Discovery of New Multi Component Reactions with Combinatorial Methods,” Synlett 1999, no. 3 (1999): 366–374. doi:10.1055/s-1999-2612
  • R.P. Herrera, and E. Marqués-López, Multicomponent Reactions: Concepts and Applications for Design and Synthesis (Hoboken: Wiley, 2015).
  • (a) S.B. Hoyt, C. London, D. Gorin, M.J. Wyvratt, M.H. Fisher, C. Abbadie, J.P. Felix, M.L. Garcia, X. Li, K.A. Lyons, et al. “Discovery of a Novel Class of Benzazepinone Na(v)1.7 Blockers: Potential Treatments for Neuropathic Pain,” Bioorganic & Medicinal Chemistry Letters 17, no. 16 (2007): 4630–4634. doi:10.1016/j.bmcl.2007.05.076; (b) B.M. Smith, J.M. Smith, J.H. Tsai, J.A. Schultz, C.A. Gilson, S.A. Estrada, R.R. Chen, D.M. Park, E.B. Prieto, C.S. Gallardo, et al. “Discovery and SAR of New Benzazepines as Potent and Selective 5-HT(2C) Receptor Agonists for the Treatment of Obesity,” Bioorganic & Medicinal Chemistry Letters 15, no. 5 (2005): 1467–1470. doi:10.1016/j.bmcl.2004.12.080; (c) M. Seto, N. Miyamoto, K. Aikawa, Y. Aramaki, N. Kanzaki, Y. Iizawa, M. Baba, and M. Shiraishi, “Orally Active CCR5 Antagonists as anti-HIV-1 Agents. Part 3: Synthesis and Biological Activities of 1-Benzazepine Derivatives Containing a Sulfoxide Moiety,” Bioorganic & Medicinal Chemistry 13, no. 2 (2005): 363–386. doi:10.1016/j.bmc.2004.10.021; (d) M. Seto, Y. Aramaki, T. Okawa, N. Miyamoto, K. Aikawa, N. Kanzaki, S.-I. Niwa, Y. Iizawa, M. Baba, and M. Shiraishi, “Orally Active CCR5 Antagonists as anti-HIV-1 Agents: Synthesis and Biological Activity of 1-Benzothiepine 1,1-Dioxide and 1-Benzazepine Derivatives Containing a Tertiary Amine Moiety,” Chemical & Pharmaceutical Bulletin 52, no. 5 (2004): 577–590. doi:10.1248/cpb.52.577; (e) K. Kondo, K. Kan, Y. Tanada, M. Bando, T. Shinohara, M. Kurimura, H. Ogawa, S. Nakamura, T. Hirano, Y. Yamamura, et al. “Characterization of Orally Active Nonpeptide Vasopressin V(2) Receptor Agonist. Synthesis and Biological Evaluation of Both the (5R)- and (5S)-Enantioisomers of 2-[1-(2-Chloro-4-Pyrrolidin-1-yl-Benzoyl)-2,3,4,5-Tetrahydro-1H-1-Benzazepin- 5-yl]-N-Isopropylacetamide,” Journal of Medicinal Chemistry 45, no. 17 (2002): 3805–3808. doi:10.1021/jm020133q; (f) M. Kawase, S. Saito, and N. Motohashi, “Chemistry and Biological Activity of New 3-Benzazepines,” International Journal of Antimicrobial Agents 14, no. 3 (2000): 193–201. doi:10.1016/s0924-8579(99)00155-7; (g) J.R. Fuchs, and R.L. Funk, “Total Synthesis of (+/−)-Lennoxamine and (+/−)-Aphanorphine by Intramolecular Electrophilic Aromatic Substitution Reactions of 2-Amidoacroleins,” Organic Letters 3, no. 24 (2001): 3923–3925. (h) C. Schultz, A. Link, M. Leost, D.W. Zaharevitz, R. Gussio, E.A. Sausville, L. Meijer, and C. Kunick, “Paullones, a Series of Cyclin-Dependent Kinase Inhibitors: Synthesis, Evaluation of CDK1/Cyclin B Inhibition, and in Vitro Antitumor Activity,” Journal of Medicinal Chemistry 42, no. 15 (1999): 2909–2919. doi:10.1021/jm9900570; (i) J. McNulty, J.J. Nair, C. Codina, J. Bastida, S. Pandey, J. Gerasimoff, and C. Griffin, “Selective Apoptosis-Inducing Activity of Crinum-Type Amaryllidaceae Alkaloids,” Phytochemistry 68, no. 7 (2007): 1068–1074. doi:10.1016/j.phytochem.2007.01.006; (j) J.H. Chang, H. Kang, I. Jung, and C. Cho, “Total Synthesis of (±)-Galanthamine via a C3-Selective Stille Coupling and IMDA Cycloaddition Cascade of 3, 5-Dibromo-2-Pyrone.” Organic Letters 12, no. 9 (2010): 12–2016. (k) D. Enders, A. Lenzen, and G. Raabe, “Asymmetric Synthesis of the 1-Epi Aglycon of the Cripowellins a and B,” Angewandte Chemie 44, no. 24 (2005): 3766–3769. doi:10.1002/anie.200500556; (l)J.C. Cedrón, A. Estévez-Braun, A.G. Ravelo, D. Gutiérrez, N. Flores, M.A. Bucio, N. Pérez-Hernández, and P. Joseph-Nathan, “Bioactive Montanine Derivatives from Halide-Induced Rearrangements of Haemanthamine-Type Alkaloids. Absolute Configuration by VCD,” Organic Letters 11, no. 7 (2009): 1491–1494. doi:10.1021/ol900065x; (m) S. Soto, E. Vaz, C. Dell’Aversana, R. Álvarez, L. Altucci, and Á.R. de Lera, “New Synthetic Approach to Paullones and Characterization of Their SIRT1 Inhibitory Activity,” Organic & Biomolecular Chemistry 10, no. 10 (2012): 2101–2112. doi:10.1039/c2ob06695e
  • (a) A.M. Egert-Schmidt, J. Dreher, U. Dunkel, S. Kohfeld, L. Preu, H. Weber, J.E. Ehlert, B. Mutschler, F. Totzke, C. Schachtele, et al. “Identification of 2-Anilino-9-Methoxy-5,7-Dihydro-6H-Pyrimido[5,4-d][1]Benzazepin-6-Ones as Dual PLK1/VEGF-R2 Kinase Inhibitor Chemotypes by Structure-Based Lead Generation,” Journal of Medicinal Chemistry 53, no. 6 (2010): 2433–2442. doi:10.1021/jm901388c; (b) R.A. Hughes, T. Harris, E. Altmann, D. Mcallister, R. Vlahos, A. Robertson, M. Cushman, Z. Wang, and A.G. Stewart, “2-Methoxyestradiol and Analogs as Novel Antiproliferative Agents: Analysis of Three-Dimensional Quantitative Structure-Activity Relationships for DNA Synthesis Inhibition and Estrogen Receptor Binding,” Molecular Pharmacology 61, no. 5 (2002): 1053–1069. doi:10.1124/mol.61.5.1053; (c) T. Tashima, Y. Toriumi, Y. Mochizuki, T. Nonomura, S. Nagaoka, K. Furukawa, H. Tsuru, S. Adachi- Akahane, and T. Ohwada, “Design, Synthesis, and BK Channel-Opening Activity of Hexahydrodibenzazepinone Derivatives,” Bioorganic & Medicinal Chemistry 14, no. 23 (2006): 8014–8031. doi:10.1016/j.bmc.2006.07.042; (d) T. Miki, M. Kori, A. Fujishima, H. Mabuchi, R. Tozawa, M. Nakamura, Y. Sugiyama, and H. Yukimasa, “Syntheses of Fused Heterocyclic Compounds and Their Inhibitory Activities for Squalene Synthase,” Bioorganic & Medicinal Chemistry 10, no. 2 (2002): 385–400. doi:10.1016/s0968-0896(01)00289-9; (e) J.A. Lowe, D.L. Hageman, S.E. Drozda, S. McLean, D.K. Bryce, R.T. Crawford, S. Zorn, J. Morrone, and J. Bordner, “5-Phenyl-3-Ureidobenzazepin-2-Ones as cholecystokinin-B Receptor Antagonists,” Journal of Medicinal Chemistry 37, no. 22 (1994): 3789–3811. doi:10.1021/jm00048a015
  • P. Cuijpers, M. Sijbrandij, S.L. Koole, G. Andersson, A.T. Beekman, and C.F. Reynolds, III “The Efficacy of Psychotherapy and Pharmacotherapy in Treating Depressive and Anxiety Disorders: A Meta-Analysis of Direct Comparisons,” World Psychiatry 12, no. 2 (2013): 137–148. doi:10.1002/wps.20038
  • J.I. Andrés, J. Alcázar, J M. Alonso, A. Díaz, J. Fernández, P. Gil, L. Iturrino, E. Matesanz, T.F. Meert, A. Megens, et al. “Synthesis and Structure − Activity Relationship of 2-(Aminoalkyl)-2, 3, 3a, 8-Tetrahydrodibenzo [c, f] Isoxazolo [2, 3-a] Azepine Derivatives: A Novel Series of 5-HT2A/2C Receptor Antagonists. Part 1,” Bioorganic & Medicinal Chemistry Letters 12, no. 2 (2002): 243–248. doi:10.1016/s0960-894x(01)00721-1
  • K. Rickels, N. DeMartinis, F. García-España, D.J. Greenblatt, L.A. Mandos, and M. Rynn, “Imipramine and Buspirone in Treatment of Patients with Generalized Anxiety Disorder Who Are Discontinuing Longterm Benzodiazepine Therapy,” The American Journal of Psychiatry 157, no. 12 (2000): 1973–1979. doi:10.1176/appi.ajp.157.12.1973
  • K. Rickels, H.R. Chung, I.B. Csanalosi, A.M. Hurowitz, J. London, K. Wiseman, M. Kaplan, and J.D. Amsterdam, “Alprazolam, Diazepam, Imipramine, and Placebo in Outpatients with Major Depression,” Archives of General Psychiatry 44, no. 10 (1987): 862–866. doi:10.1001/archpsyc.1987.01800220024005
  • J. Nielsen, C.U. Correll, P. Manu, and J.M. Kane, “Termination of Clozapine Treatment Due to Medical Reasons: When is It Warranted and How Can It Be Avoided?,” The Journal of Clinical Psychiatry 74, no. 06 (2013): 603–613. doi:10.4088/JCP.12r08064
  • K. Ahmed, and J.L. Turk, “Effect of Anticancer Agents Neothramycin, Aclacinomycin, FK-565 and FK-156 on the Release of Interleukin-2 and Interleukin-1 in Vitro,” Cancer Immunology, Immunotheraphy 28 (1989): 87–92.
  • A.W. White, R. Almassy, A.H. Calvert, N.J. Curtin, R.J. Griffin, Z. Hostomsky, K. Maegley, D.R. Newell, S. Srinivasan, and B.T. Golding, “Resistance-Modifying Agents. 9. Synthesis and Biological Properties of Benzimidazole Inhibitors of the DNA Repair Enzyme Poly (ADP-Ribose) Polymerase,” Journal of Medicinal Chemistry 43, no. 22 (2000): 4084–4097. doi:10.1021/jm000950v
  • A. Musella, E. Bardhi, C. Marchetti, L. Vertechy, G. Santangelo, C. Sassu, F. Tomao, F. Rech, R. D'Amelio, M. Monti, et al. “Rucaparib: An Emerging Parp Inhibitor for Treatment of Recurrent Ovarian Cancer,” Cancer Treatment Reviews 66 (2018): 7–14. doi:10.1016/j.ctrv.2018.03.004
  • P.D. Johnson, P.A. Aristoff, G.E. Zurenko, R.D. Schaadt, B.H. Yagi, C.W. Ford, J.C. Hamel, D. Stapert, and J.K. Moerman, “Synthesis and Biological Evaluation of Benzazepine Oxazolidinone Antibacterials,” Bioorganic & Medicinal Chemistry Letters 13, no. 23 (2003): 4197–4200. doi:10.1016/j.bmcl.2003.07.017
  • R. Wang, R.-X. Jin, Z.-Y. Qin, K.-J. Bian, and X.-S. Wang, “Novel and Facile Synthesis of 1-Benzazepines via Copper-Catalyzed Oxidative C (sp 3)−H/C (sp 2)−H Cross-Coupling,” Chemical Communications 53, no. 90 (2017): 12229–12232. doi:10.1039/c7cc07027f
  • M. Shalini, P. Yogeeswari, D. Sriram, and J. Stables, “Cyclization of the Semicarbazone Template of Aryl Semicarbazones: Synthesis and Anticonvulsant Activity of 4, 5-Diphenyl-2H-1, 2, 4-Triazol-3 (4H)-One,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 63, no. 3 (2009): 187–193. doi:10.1016/j.biopha.2006.04.002
  • M. Seto, N. Miyamoto, K. Aikawa, Y. Aramaki, N. Kanzaki, Y. Iizawa, M. Baba, and M. Shiraishi, “Orally Active CCR5 Antagonists as anti-HIV-1 Agents. Part 3: Synthesis and Biological Activities of 1- Benzazepine Derivatives Containing a Sulfoxide Moiety,” Bioorganic & Medicinal Chemistry 13, no. 2 (2005): 363–386. doi:10.1016/j.bmc.2004.10.021
  • S. Chumpradit, M.P. Kung, J.J. Billings, and H.F. Kung, “Synthesis and Resolution of (±)-7-Chloro-8-Hydroxy-1-(3′-Iodophenyl)-3-Methyl-2, 3, 4, 5-Tetrahydro-1H-3-Benzazepine (TISCH): A High Affinity and Selective Iodinated Ligand for CNS D1 Dopamine Receptor [Erratum to Document Cited in CA114 (13): 122017d],” Journal of Medicinal Chemistry 34, no. 12 (1991): 3405–3405. doi:10.1021/jm00116a013
  • United States Environmental Protection Agency. Green Chemistry. 2006. https://www.epa.gov/greenchemistry/basics-green-chemistry#definition (accessed August 12, 2022).
  • P.T. Anastas, and J.C. Warner, Green Chemistry: Theory and Practice (Oxford: Oxford University Press, 1998), 135.
  • A.B. Djurišić, X. Chen, Y.H. Leung, and A. Man, “ZnO Nanostructures: Growth, Properties and Applications,” Journal of Materials Chemistry 22, no. 14 (2012): 6526–6535. doi:10.1039/c2jm15548f
  • (a) B. Halliwell, “Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning),” Free Radical Research 31, no. 4 (1999): 261–272. doi:10.1080/10715769900300841; (b) F. Ahmadi, M. Kadivar, and M. Shahedi, “Antioxidant Activity of Kelussia Odoratissima Mozaff. in Model and Food Systems,” Food Chemistry 105, no. 1 (2007): 57–64. doi:10.1016/j.foodchem.2007.03.056
  • M.A. Babizhayev, A.I. Deyev, V.N. Yermakova, I.V. Brikman, and J. Bours, “Lipid Peroxidation and Cataracts: N-Acetylcarnosine as a Therapeutic Tool to Manage Age-Related Cataracts in Human and in Canine Eyes,” Drugs in R&D 5, no. 3 (2004): 125–139. doi:10.2165/00126839-200405030-00001
  • L. Liu, and M. Meydani, “Combined Vitamin C and E Supplementation Retards Early Progression of Arteriosclerosis in Heart Transplant Patients.” Nutrition Reviews 60 (2002): 368–371.
  • (a) E. Ezzatzadeh, Z.S. Hossaini, R. Rostamian, S. Vaseghi, and S.F. Mousavi, “Fe 3 O 4 Magnetic Nanoparticles (MNPs) as Reusable Catalyst for the Synthesis of Chromene Derivatives Using Multicomponent Reaction of 4-Hydroxycumarin Basis on Cheletropic Reaction,” Journal of Heterocyclic Chemistry 54, no. 5 (2017): 2906–2911. doi:10.1002/jhet.2900; (b) M. Mohammadi, F. Alirezapour, and A. Khanmohammadi, “DFT Calculation of the Interplay Effects between Cation–π and Intramolecular Hydrogen Bond Interactions of Mesalazine Drug with Selected Transition Metal Ions (Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+),” Theoretical Chemistry Accounts 140, no. 8 (2021): 104. doi:10.1007/s00214-021-02813-1; (c) M. Mohammadi, and A. Khanmohammadi, “Molecular Structure, QTAIM and Bonding Character of Cation–π Interactions of Mono- and Divalent Metal Cations (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) with Drug of Acetaminophen,” Theoretical Chemistry Accounts 138, no. 8 (2019): 101. doi:10.1007/s00214-019-2492-4; (d) M. Masoudi, M. Anary-Abbasinejad, and M. Mohammadi, “An Efficient One-Pot Synthesis of Polyfunctionalized 2H-Pyrroline Derivatives by Reaction of β-Enaminocarbonyls, Arylglyoxals and Amines,” Journal of the Iranian Chemical Society 13, no. 2 (2016): 315–321. doi:10.1007/s13738-015-0739-0; (e) A. Khanmohammadi, and M. Mohammadi, “Theoretical Study of Various Solvents Effect on 5-Fluorouracil-Vitamin B3 Complex Using Pcm Method,” Journal of the Chilean Chemical Society 64, no. 1 (2019): 4337–4344. doi:10.4067/s0717-97072019000104337; (f) M.A. Poor, A. Darehkordi, M. Anary-Abbasinejad, and M. Mohammadi, “Gabapentin-Base Synthesis and Theoretical Studies of Biologically Active Compounds: N-Cyclohexyl-3-Oxo-2-(3-Oxo-2-Azaspiro[4.5] Decan-2-yl)-3-Arylpropanamides and N-(Tert-Butyl)-2-(3-Oxo-2-Azaspiro[4.5]Decan-2-yl)-2-Arylacetamide Derivatives,” Journal of Molecular Structure 1152 (2018): 44–52. doi:10.1016/j.molstruc.2017.09.061
  • (a) N. Karami Hezarcheshmeh, F. Godarzbod, N.F. Hamedani, and S. Vaseghi, “Ag/CdO/Fe 3 O 4 @MWCNTs Promoted Green Synthesis of Novel Triazinopyrrolothiazepine: Investigation of Antioxidant and Antimicrobial Activity,” Polycyclic Aromatic Compounds (2023): 1–23. doi:10.1080/10406638.2022.2162553; (b) N. Karami Hezarcheshmeh, and J. Azizian, “Regioselective One-Pot Synthesis and Antioxidant Activity Study of Trichloro Isatins and Dichloro Isatins,” Polycyclic Aromatic Compounds 42, no. 10 (2022): 7686–7696. doi:10.1080/10406638.2021.2006250; (c) N.K. Hezarcheshmeh, and J. Azizian, “Solvent-Free Synthesis of New Spiropyrroloindole Compounds Using Fe3O4/TiO2/MWCNTs MNCs via Multicomponent Reactions: Assessment of New Spiropyrroloindole Antioxidant Activity,” Molecular Diversity 26, no. 4 (2022): 2011–2024. doi:10.1007/s11030-021-10311-6; (d)N.F. Hamedani, M. Ghazvini, F. Sheikholeslami‐Farahani, and M.T. Bagherian‐Jamnani, “ZnO Nanorods as Efficient Catalyst for the Green Synthesis of Thiophene Derivatives: Investigation of Antioxidant and Antimicrobial Activity,” Journal of Heterocyclic Chemistry 57, no. 4 (2020): 1588–1598.
  • (a) S. Soleimani‐Amiri, F. Shafaei, A. Varasteh Moradi, F. Gholami‐Orimi, and Z. Rostami, “A Novel Synthesis and Antioxidant Evaluation of Functionalized [1,3]‐Oxazoles Using Fe 3 O 4 ‐Magnetic Nanoparticles,” Journal of Heterocyclic Chemistry 56, no. 10 (2019): 2744–2752. doi:10.1002/jhet.3640; (b) M. Koohi, S. Soleimani-Amiri, and M. Shariati, “Novel X- and Y-Substituted Heterofullerenes X4Y4C12 Developed from the Nanocage C20, Where X = B, Al, Ga, Si and Y = N, P, as, Ge: A Comparative Investigation on Their Structural, Stability, and Electronic Properties at DFT,” Structural Chemistry 29, no. 3 (2018): 909–920. doi:10.1007/s11224-017-1071-3; (c) M. Koohi, S. Soleimani Amiri, and B.N. Haerizade, “ Substituent Effect on Structure, Stability, and Aromaticity of Novel B n N m C 20-(n + m) Heterofullerenes,” Journal of Physical Organic Chemistry 30, no. 11 (2017): e3682. doi:10.1002/poc.3682; (d) S. Soleimani‐Amiri, Z. Hossaini, M. Arabkhazaeli, H. Karami, and S. Afshari Sharif Abad, “Green Synthesis of Pyrimido‐Isoquinolines and Pyrimido‐Quinoline Using ZnO Nanorods as an Efficient Catalyst: Study of Antioxidant Activity,” Journal of the Chinese Chemical Society 66, no. 4 (2019): 438–445. doi:10.1002/jccs.201800199
  • (a) M. Ghashghaee, M. Ghambarian, and Z. Azizi, Black Phosphorus: Synthesis, Properties and Applications (Cham: Springer, 2020): 59–72. (b) M. Abniki, Z. Azizi, and H.A. Panahi, “Design of 3-Aminophenol-Grafted Polymer-Modified Zinc Sulphide Nanoparticles as Drug Delivery System,” IET Nanobiotechnology 15, no. 8 (2021): 664–673. doi:10.1049/nbt2.12063; (c) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Quantum-Chemical Calculations on Graphitic Carbon Nitride (g-C3N4) Single-Layer Nanostructures: Polymeric Slab vs. quantum Dot,” Structural Chemistry 31, no. 3 (2020): 1137–1148. doi:10.1007/s11224-020-01496-x; (d) Z. Azizi, M. Ghashghaee, and M. Ghambarian, Black Phosphorus: Synthesis, Properties and Applications (Cham: Springer, 2020), 157–169.
  • (a) M. Z. Kassaee, M. R. Momeni, F. A. Shakib, M. Ghambarian, and S. M. Musavi, “Novel α-Spirocyclic (Alkyl)(Amino)Carbenes at the Theoretical Crossroad of Flexibility and Rigidity,” Structural Chemistry 21, no. 3 (2010): 593–598. doi:10.1007/s11224-010-9585-y; (b) M. Ghashghaee, and M. Ghambarian, “Ethene Protonation over Silica-Grafted Metal (Cr, Mo, and W) Oxide Catalysts: A Comparative Nanocluster Modeling Study,” Russian Journal of Inorganic Chemistry 63, no. 12 (2018): 1570–1577. doi:10.1134/S0036023618160015; (c) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Theoretical Insights into Hydrogen Sensing Capabilities of Black Phosphorene Modified through ZnO Doping and Decoration,” International Journal of Hydrogen Energy 45, no. 33 (2020): 16918–16928. doi:10.1016/j.ijhydene.2020.04.138; (d) M. Ghadiri, M. Ghashghaee, and M. Ghambarian, “Influence of NiO Decoration on Adsorption Capabilities of Black Phosphorus Monolayer toward Nitrogen Dioxide: Periodic DFT Calculations,” Molecular Simulation 46, no. 14 (2020): 1062–1072. doi:10.1080/08927022.2020.1802023; (e) M. Ghambarian, Z. Azizi, and M. Ghashghaee, Black Phosphorus: Synthesis, Properties and Applications (Cham: Springer, 2020): 1–30.
  • (a) F. Zamani Hargalani, A. Karbassi, S.M. Monavari, and P. Abroomand Azar, “Origin and partitioning of heavy metals in sediments of the Anzali Wetland.” Environmental Sciences 11, no. 2 (2013), 1. (b) R.N. Mahmonir, V. Abdossi, F. Zamani Hargalani, and K. Larijani, “The Response of Hypericum perfpratum L. to the Application of Selenium and Nano-selenium,”2021, doi:10.21203/rs.3.rs-708123/v1. (c) R.N. Mahmonir, A. Vahid, F. Zamani Hargalani, and K. Larijani, “The Effect of Nano Selenium Foliar Application on Some Secondary Metabolites of Hypericum perforatum L.” Journal of Medicinal Plants 21, no. 81 (2022): 67–78. (d) E. Ezzatzadeh, F.Z. Hargalani, and F. Shafaei, “Bio-Fe 3 O 4 -MNPs Promoted Green Synthesis of Pyrido[2,1- a ]Isoquinolines and Pyrido[1,2- a ]Quinolines: Study of Antioxidant and Antimicrobial Activity,” Journal of Medicinal Plants 42, no. 7 (2022): 3908–3923. doi:10.52547/jmp.21.81.67
  • (a) S. Abdolmohammadi, and Z.S. Hossaini, “Fe3O4 MNPs as a Green Catalyst for Syntheses of Functionalized [1,3]-Oxazole and 1H-Pyrrolo-[1,3]-Oxazole Derivatives and Evaluation of Their Antioxidant Activity,” Molecular Diversity 23, no. 4 (2019): 885–896. doi:10.1007/s11030-019-09916-9; (b) S. Rezayati, R. Hajinasiri, Z.S. Hossaini, and S. Abbaspour, “Chemoselective Synthesis of 1, 1-Diacetates (Acylals) Using 1, 1’-Butylenebispyridinium Hydrogen Sulfate as a New, Halogen-Free and Environmental-Friendly Catalyst under,” Asian Journal of Green Chemistry 2 (2018): 268–280. (c) I. Yavari, Z.S. Hossaini, and M. Sabbaghan, “Efficient Synthesis of Tetrasubstituted Thiophenes by Reaction of Benzoyl Isothiocyanates, Ethyl Bromopyruvate and Enaminones,” Tetrahedron Letters 49, no. 5 (2008): 844–846. doi:10.1016/j.tetlet.2007.11.174; (d) B. Azizi, M.R. Poor Heravi, Z.S. Hossaini, A. Ebadi, and E. Vessally, “Intermolecular Difunctionalization of Alkenes: Synthesis of β-Hydroxy Sulfides,” RSC Advances 11, no. 22 (2021): 13138–13151. doi:10.1039/d0ra09848e
  • (a) I. Yavari, Z.S. Hossaini, and E. Karimi, “A Synthesis of Dialkyl Phosphorylsuccinates from the Reaction of NH-Acids with Dialkyl Acetylenedicarboxylates in the Presence of Trialkyl (Aryl) Phosphites,” Monatshefte Für Chemie - Chemical Monthly 138, no. 12 (2007): 1267–1271. doi:10.1007/s00706-007-0711-5; (b) F. Sheikholeslami-Farahani, Z. S. Hossaini, and F. Rostami-Charati, “Solvent-Free Synthesis of Substituted Thiopyrans via Multicomponent Reactions of α-Haloketones,” Chinese Chemical Letters 25, no. 1 (2014): 152–154. 27. doi:10.1016/j.cclet.2013.10.016; (c) S. Soleimani‐Amiri, F. Shafaei, A. Varasteh Moradi, F. Gholami‐Orimi, and Z. Rostami, “A Novel Synthesis and Antioxidant Evaluation of Functionalized [1,3]‐Oxazoles Using Fe3O4‐Magnetic Nanoparticles,” Journal of Heterocyclic Chemistry 56, no. 10 (2019): 2744–2752. doi:10.1002/jhet.3640; (d) S. Soleimani‐Amiri, Z. Hossaini, M. Arabkhazaeli, H. Karami, and S. Afshari Sharif Abad, “Green Synthesis of Pyrimido‐Isoquinolines and Pyrimido‐Quinoline Using ZnO Nanorods as an Efficient Catalyst: Study of Antioxidant Activity,” Journal of the Chinese Chemical Society 66, no. 4 (2019): 438–445. doi:10.1002/jccs.201800199
  • (a) S.F. Taheri Hatkehlouei, B. Mirza, and S. Soleimani-Amiri, “Solvent-Free One-Pot Synthesis of Diverse Dihydropyrimidinones/Tetrahydropyrimidinones Using Biginelli Reaction Catalyzed by Fe3O4@C@OSO3H,” Polycyclic Aromatic Compounds 42, no. 4 (2022): 1341–1357. doi:10.1080/10406638.2020.1781203; (b) A. Ebrahimi, S.M. Habibi, A. Sanati, and M. Mohammadi, “A Comparison of C–C Rotational Barrier in [2] Staffane,[2] Tetrahedrane and Ethane,” Chemical Physics Letters 466, no. 1–3 (2008): 32–36. doi:10.1016/j.cplett.2008.10.037; (c) M. Mohammadi, and A. Khanmohammadi, “Theoretical Investigation on the Non-Covalent Interactions of Acetaminophen Complex in Different Solvents: Study of the Enhancing Effect of the Cation–π Interaction on the,” Theoretical Chemistry Accounts 139, no. 8 (2020): 141. doi:10.1007/s00214-020-02650-8; (d) M. Mohammadi, and A. Khanmohammadi, “Molecular Structure, QTAIM and Bonding Character of Cation–π Interactions of Mono- and Divalent Metal Cations (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) with Drug,” Theoretical Chemistry Accounts 138, no. 8 (2019): 101. doi:10.1007/s00214-019-2492-4
  • (a) M.T. Maghsoodlou, N. Hazeri, S.M. Habibi‐Khorassani, G. Marandi, L. Saghatforoush, D. Saravani, N.A. Torbati, F. Rostami‐Charati, K. Khandan‐Barani, B.W. Skelton, et al. “Diastereoselective Synthesis of Chloro‐and Fluoro‐Aniline Containing Phosphonate Esters in a Three‐Component Condensation,” Heteroatom Chemistry 21, no. 4 (2010): 222–227. doi:10.1002/hc.20600; (b) M. Kangani, N. Hazeri, K. Khandan-Barani, M. Lashkari, and M.T. Maghsoodlou, “Lime Juice as an Efficient and Green Catalyst for the Synthesis of 6-Amino-4-Aryl-3-Methyl-1, 4-Dihydropyrano [2, 3-c] Pyrazole-5-Carbonitrile Derivatives,” Iranian Journal of Organic Chemistry 6 (2014): 1187–1192. (c) K. Khandan-Barani, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorasani, and S.S. Sajadikhah, “One-Pot, Three Component Reactions between Isocyanides and Dialkyl Acetylenedicarboxylates in the Presence of Phenyl Isocyanate: Synthesis of Dialkyl 2-(Alkyl/Arylimino)-2, 5,” Arkivoc 2011, no. 11 (2011): 22–28. doi:10.3998/ark.5550190.0012.b02; (d) E. Ezzatzadeh, “Chemoselective Oxidation of Sulfides to Sulfoxides Using a Novel Zn-DABCO Functionalized Fe3O4 MNPs as Highly Effective Nanomagnetic Catalyst,” Asian Journal of Nanoscience and Material 4 (2021): 125–136.
  • (a) E. Ezzatzadeh, and Z.S. Hossaini, “2D ZnO/Fe3O4 Nanocomposites as a Novel Catalyst‐Promoted Green Synthesis of Novel Quinazoline Phosphonate Derivatives,” Applied Organometallic Chemistry 34, no. 7 (2020): e5596. doi:10.1002/aoc.5596; (b) E. Ezzatzadeh, Z.S. Hossaini, R. Rostamian, S. Vaseghi, and S.F. Mousavi, “Fe3O4 Magnetic Nanoparticles (MNPs) as Reusable Catalyst for the Synthesis of Chromene Derivatives Using Multicomponent Reaction of 4‐Hydroxycumarin,” Journal of Heterocyclic Chemistry 54, no. 5 (2017): 2906–2911. doi:10.1002/jhet.2900
  • (a) S. Esfahani, J. Akbari, S. Soleimani-Amiri, M. Mirzaei, and A. Ghasemi Gol, “Assessing the Drug Delivery of Ibuprofen by the Assistance of Metal-Doped Graphenes: Insights from Density Functional Theory,” Diamond and Related Materials 135 (2023): 109893. doi:10.1016/j.diamond.2023.109893; (b) E. Hemmati, S. Soleimani-Amiri, and M. Kurdtabar, “A CMC-g-Poly (AA-co-AMPS)/Fe3O4 Hydrogel Nanocomposite as a Novel Biopolymer-Based Catalyst in the Synthesis of 1, 4-Dihydropyridines,” RSC Advances 13, no. 24 (2023): 16567–16583. doi:10.1039/d3ra01389h; (c) A.S. Shahvelayati, and Z. Esmaeeli, “Efficient Synthesis of S-Dipeptidothiouracil Derivatives via a One-Pot, Five-Component Reaction under Ionic Liquid Condition,” Journal of Sulfur Chemistry 33, no. 3 (2012): 319–325. doi:10.1080/17415993.2012.662982
  • (a) M. Balar, Z. Azizi, and M. Ghashghaee, “Theoretical Identification of Structural Heterogeneities of Divalent Nickel Active Sites in NiMCM-41 Nanoporous Catalysts,” Journal of Nanostructure in Chemistry 6, no. 4 (2016): 365–372. doi:10.1007/s40097-016-0208-z; (b) M. Ghambarian, Z. Azizi, and M. Ghashghaee, “Remarkable Improvement in Phosgene Detection with a Defect-Engineered Phosphorene Sensor: First-Principles Calculations,” Physical Chemistry Chemical Physics 22, no. 17 (2020): 9677–9684. doi:10.1039/d0cp00427h; (c) M.Z. Kassaee, M.R. Momeni, F.A. Shakib, M. Ghambarian, and S.M. Musavi, “Novel α-Spirocyclic (Alkyl)(Amino) Carbenes at the Theoretical Crossroad of Flexibility and Rigidity,” Structural Chemistry 21, no. 3 (2010): 593–598. doi:10.1007/s11224-010-9585-y
  • (a) S. Seifi Mansour, E. Ezzatzadeh, and R. Safarkar, “In Vitro Evaluation of Its Antimicrobial Effect of the Synthesized Fe3O4 Nanoparticles Using Persea Americana Extract as a Green Approach on Two Standard Strains,” Asian Journal of Green Chemistry 3 (2019): 353–365. (b) M. Ghashghaee, M. Ghambarian, and Z. Azizi, “Theoretical Insights into Sensing of Hexavalent Chromium on Buckled and Planar Polymeric Carbon Nitride Nanosheets of Heptazine and Triazine Structures,” Molecular Simulation 46, no. 1 (2020): 54–61. doi:10.1080/08927022.2019.1674447
  • (a) S. Soleimani‐Amiri, M. Arabkhazaeli, Z. Hossaini, S. Afrashteh, and A.A. Eslami, “Synthesis of Chromene Derivatives via Three‐Component Reaction of 4‐Hydroxycumarin Catalyzed by Magnetic Fe3O4 Nanoparticles in Water,” Journal of Heterocyclic Chemistry 55, no. 1 (2018): 209–213. doi:10.1002/jhet.3028; (b) S. Abdolmohammadi, and Z.S. Hossaini, “Fe3O4 MNPs as a Green Catalyst for Syntheses of Functionalized [1,3]-Oxazole and 1H-Pyrrolo-[1,3]-Oxazole Derivatives and Evaluation of Their Antioxidant Activity,” Molecular Diversity 23, no. 4 (2019): 885–896. doi:10.1007/s11030-019-09916-9; (c) S. Rezayati, R. Hajinasiri, Z.S. Hossaini, and S. Abbaspour, “Chemoselective Synthesis of 1, 1-Diacetates (Acylals) Using 1, 1'-Butylenebispyridinium Hydrogen Sulfate as a New, Halogen-Free and Environmental-Friendly Catalyst under,” Asian J Green Chem 2 (2018): 268–280. (d) I. Yavari, Z.S. Hossaini, and M. Sabbaghan, “Efficient Synthesis of Tetrasubstituted Thiophenes by Reaction of Benzoyl Isothiocyanates, Ethyl Bromopyruvate and Enaminones,” Tetrahedron Letters 49, no. 5 (2008): 844–846. doi:10.1016/j.tetlet.2007.11.174
  • (a) S. Soleimani Amiri, M. Koohi, and B. Mirza, “Characterizations of B and N Heteroatoms as Substitutional Doping on Structure, Stability, and Aromaticity of Novel Heterofullerenes Evolved from the Smallest Fullerene Cage,” Journal of Physical Organic Chemistry 29, no. 10 (2016): 514–522. doi:10.1002/poc.3573; (b) M. Koohi, S. Soleimani Amiri, and M. Shariati, “Silicon Impacts on Structure, Stability and Aromaticity of C20-nSin Heterofullerenes (n= 1–10): a Density Functional Perspective,” Journal of Molecular Structure 1127 (2017): 522–531. doi:10.1016/j.molstruc.2016.08.012; (c) H. Ghavidel, B. Mirza, and S.A. Soleimani-Amiri, “Novel, Efficient, and Recoverable Basic Fe3O4@C Nano-Catalyst for Green Synthesis of 4H-Chromenes in Water via One-Pot Three Component Reactions,” Polycyclic Aromatic Compounds 41, no. 3 (2021): 604–625. doi:10.1080/10406638.2019.1607413
  • (a)K. Khandan-Barani, M.T. Maghsoodlou, A. Hassanabadi, M.R. Hosseini-Tabatabaei, J. Saffari, and M. Kangani, “Synthesis of Maleate Derivatives in Isocyanide-Base MCRs: Reaction of 2-Mercaptobenzoxazole with Alkyl Isocyanides and Dialkyl Acetylenedicarboxylates,” Research on Chemical Intermediates 41, no. 5 (2015): 3011–3016. doi:10.1007/s11164-013-1409-4; (b) A. Hassanabadi, and K. Khandan-Barani, “Three-Component and One-Pot Reaction between Phenacyl Bromide and Primary Amines in the Presence of Carbon Disulfide,” Journal of Chemical Research 37, no. 2 (2013): 71–72. doi:10.3184/174751912X13568926198645; (c) H. R. Masoodi, S. Bagheri, M. Mohammadi, M. Zakarianezhad, B. Makiabadi, “The Influence of Cation–π and Anion–π Interactions on Some NMR Data of s-Triazine… HF Hydrogen Bonding: A Theoretical Study,” Chemical Physics Letters 588 (2013): 31–36. doi:10.1016/j.cplett.2013.09.067
  • (a) S. Sahebnasagh, J.F. Kakhki, and M. Ebrahimi, “Mohammad Reza Bozorgmehr; Mohamad Reza Abedi. Pre-Concentration and Determination of Fluoxetine in Hospital Wastewater and Human Hair Samples Using Solid-Phase µ-Extraction by Silver Nanoparticles Followed by Spectro-Fluorimetric,” Chemical Methodologies 5 (2021): 211–218. (b) E. Haddadzadeh, and M.K. Mohammadi, “One-Pot Synthesize of Phenyl Phenanthro Imidazole Derivatives Catalyzed by Lewis Acid in the Presence of Ammonium Acetate,” Chemical Methodologies 4 (2020): 324–332. (c) A. Moghimi, and M. Abniki, “The Dispersive Solid-Phase Extraction of Fluoxetine Drug from Biological Samples by the Amine-Functionalized Carbon Nanotubes with HPLC Method,” Chemical Methodologies 5 (2021): 250–258. (d) Muhiebes, R. M., and E. O. Al-Tamimi, “Modification of Creatinine to Form New Oxazepane Ring and Study Their Antioxidant Activity,” Chemical Methodologies 5 (2021): 416–421. (e) A. Mohammadi, E. Heydari-Bafrooei, M.M. Foroughi, and M. Mohammadi, “Heterostructured Au/MoS2-MWCNT Nanoflowers: A Highly Efficient Support for the Electrochemical Aptasensing of Solvated Mercuric Ion,” Microchemical Journal 158 (2020): 105154. doi:10.1016/j.microc.2020.105154
  • (a) R. Tayebee, and   Gohari, “The Dual Role of Ammonium Acetate as Reagent and Catalyst in the Synthesis of 2, 4, 5-Triaryl-1H-Imidazoles,” Eurasian Chemical Communications, no. 2 (2020): 581–586. (b) M. Nikpassand, and L. Zare Fekri, “Catalyst-Free Synthesis of Mono and Bis Spiro Pyrazolopyridines in DSDABCO as a Novel Media,” Chemical Methodologies 4, no. 4 (2020): 437–446. doi:10.33945/SAMI/CHEMM.2020.4.6; (c) H. Aghahosseini, and A. Ramazani, “Magnetite L-Proline as a Reusable Nano-Biocatalyst for Efficient Synthesis of 4H-Benzo[b]Pyrans in Water: A Green Protocol,” Eurasian Chemical Communications 2, no. 3 (2020): 410–419. doi:10.33945/SAMI/ECC.2020.3.11
  • (a) F. Raoufi, H. Aghaei, and M. Ghaedi, “Cu-Metformin Grafted on Multi Walled Carbon Nanotubes: Preparation and Investigation of Catalytic Activity,” Eurasian Chemical Communications, no. 2 (2020): 226–233. (b) F. Hakimi, M. Fallah-Mehrjardi, and E. Golrasan, “Yttrium Aluminum Garnet (YAG: Al5Y3O12) as an Efficient Catalyst for the Synthesis of Benzimidazole and Benzoxazole Derivatives,” Chemical Methodologies 4, no. 3 (2020): 234–244. (c) F. Kamali, and F. Shirini, “Effective and Convenient Synthesis of 2-Amino-4H-Chromenes Promoted by Melamine as a Recyclable Organocatalyst,” Eurasian Chemical Communications, 3 (2021): 278–290.
  • (a) E. Haddazadeh, and M.K. Mohammadi, “One-Pot Synthesize of Phenyl Phenanthro Imidazole Derivatives Catalyzed by Lewis Acid in the Presence of Ammonium Acetate,” Chemical Methodologies 4 (2020): 324–332. (b) M. Rohaniyan, A. Davoodnia, A. Khojastehnezhad, and S.A. Beyramabadi, “Catalytic Evaluation of Newly Prepared GO-SB-H2PMo as an Efficient and Reusable Nanocatalyst for the Neat Synthesis of Amidoalkyl Naphthols,” Eurasian Chemical Communications, 2 (2020): 329–339. (c) B. Baghernejad, and L. Nazari, “Synthesis of Indeno [1,2-b] Pyridine Derivatives in the Precense of Nano CeO2/ZnO,” Eurasian Chemical Communications, 3 (2021): 319–326. doi:10.22034/ecc.2021.277002.1145
  • (a) T. A. Rehan, N. Al-Lami, and R. Shakeeb Alanee, “Anti-Cancer and Antioxidant Activities of Some New Synthesized 3-Secondary Amine Derivatives Bearing Imidazo [1,2-A] Pyrimidine,” Eurasian Chemical Communications, 3 (2021): 339–351. (b) Z. Ebrahimi, A. Davoodnia, A. Motavalizadehkakhky, and J. Mehrzad, “Synthesis, Characterization, and Molecular Structure Investigation of New Tetrahydrobenzo[b]Thiophene-Based Schiff Bases: A Combined Experimental and Theoretical Study,” Eurasian Chemical Communications, 2 (2020): 170–180.
  • (a) Z. Mohammed Abd Al-Mohson, “Synthesis of Novel Pyrazole Derivatives Containing Tetrahydrocarbazole, Antimicrobail Evaluation and Molecular Properties,” Eurasian Chemical Communications, 3 (2021): 425–434. (b) A.R. Moosavi-Zare, M.A. Zolfigol, and Z. Rezanejad, “The Synthesis of α,α′-Bis(Arylidene)Cycloalkanones Using Sulfonic Acid Functionalized Pyridinium Chloride,” Chemical Methodologies 4 (2020): 614–622. (c) F. Hakimi, M. Fallah-Mehrjardi, and E. Golrasan, “Yttrium Aluminum Garnet (YAG: Al5Y3O12) as an Efficient Catalyst for the Synthesis of Benzimidazole and Benzoxazole Derivatives,” Chemical Methodologies 4 (2020): 234–244. (d) A. Khazaei, A.R. Moosavi-Zare, H. Afshar-Hezarkhani, and V. Khakyzadeh, “Programming of Fe-Catalyzed Cascade Knoevenagel-Michael-Cyclocondensation Reaction: Create out Pseudo Acridine Derivatives under Solvent Free Conditions,” Eurasian Chemical Communications, 2 (2020): 27–34. (e) J. Ghanaat, M.A. Khalilzadeh, and D. Zareyee, “KF/CP NPs as an Efficient Nanocatalyst for the Synthesis of 1,2,4-Triazoles: Study of Antioxidant and Antimicrobial Activity,” Eurasian Chemical Communications, 2 (2020): 202–212. doi:10.33945/SAMI/ECC.2020.2.6; (f) A.R. Moosavi-Zare, and H. Afshar-Hezarkhani, “Application of [Pyridine-1-SO3H-2-COOH]Cl as an Efficient Catalyst for the Preparation of Hexahyroquinolines,” Eurasian Chemical Communications, 2 (2020): 465–474.
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–948. doi:10.1021/jf00018a005
  • G.C. Yen, and P.D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–632. doi:10.1021/jf00039a005
  • A. Yildirim, A. Mavi, and A.A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–4089. doi:10.1021/jf0103572
  • A.D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” The Journal of Chemical Physics 98, no. 7 (1993): 5648–5652. doi:10.1063/1.464913
  • C. Lee, W. Yang, and R.G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–789. doi:10.1103/physrevb.37.785
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, and D.J. Fox, Gaussian 09 (Revision A.02) (Wallingford, CT: Gaussian Inc, 2009).
  • P. Umadevi, and P. Lalitha, “Synthesis and Antimicrobial Evaluation of Amino Substituted 1, 3, 4 Oxo and Thiadiazoles,” International Journal of Pharmacy and Pharmaceutical Sciences 4 (2012): 523–527.
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–592. doi:10.1002/jcc.22885
  • A.R. Saundane, and M.K. Nandibeoor, “Synthesis, Characterization, and Biological Evaluation of Schiff Bases Containing Indole Moiety and Their Derivatives,” Monatshefte Für Chemie - Chemical Monthly 146, no. 10 (2015): 1751–1761. doi:10.1007/s00706-015-1440-9
  • A.M. Bidchol, A. Wilfred, P. Abhijna, and R. Harish, “Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica Oleracea L. var. italica,” Food and Bioprocess Technology 4, no. 7 (2011): 1137–1143. doi:10.1007/s11947-009-0196-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.