110
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

One Pot Synthesis of “3-(4,5-Diphenyl-1H-Imidazol-2-yl)-2-Phenoxyquinolines” and Their Potential as α-Glucosidase Inhibitors: Molecular Docking and MDS Investigation

, , , , &
Pages 4239-4260 | Received 19 Dec 2022, Accepted 03 Aug 2023, Published online: 22 Aug 2023

References

  • A. Chaudhury, C. Duvoor, V. S. Reddy Dendi, S. Kraleti, A. Chada, R. Ravilla, A. Marco, N. S. Shekhawat, M. T. Montales, K. Kuriakose, et al. “Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management,” Frontiers in Endocrinology 8, no. 2017 (2017): 6. doi:10.3389/fendo.2017.00006
  • D. Breitmeier, S. Günther, and H. Heymann, “Acarbose and 1-Deoxynojirimycin Inhibit Maltose and Maltooligosaccharide Hydrolysis of Human Small Intestinal Glucoamylase–Maltase in Two Different Substrate-Induced Modes,” Archives of Biochemistry and Biophysics 346, no. 1 (1997): 7–14. doi:10.1006/abbi.1997.0274
  • M. Akmal, and R. Wadhwa, Alpha Glucosidase Inhibitors. (Treasure Island, Florida: Stat Pearls Publishing, 2022).
  • N. J. Liverton, J. W. Butcher, C. F. Claiborne, D. A. Claremon, B. E. Libby, K. T. Nguyen, S. M. Pitzenberger, H. G. Selnick, G. R. Smith, A. Tebben, et al. “Design and Synthesis of Potent, Selective, and Orally Bioavailable Tetrasubstitutedimidazole Inhibitors of p38 Mitogen-Activated Protein Kinase,” Journal of Medicinal Chemistry 42, no. 12 (1999): 2180–2190. doi:10.1021/jm9805236
  • C. Zhang, S. Sarshar, E. J. Moran, S. Krane, J. C. Rodarte, K. D. Benbatoul, R. Dixon, and A. M. Mjalli, “2,4,5-Trisubstituted Imidazoles: Novel Nontoxic Modulators of P-Glycoprotein Mediated Multidrug Resistance. Part 2,” Bioorganic & Medicinal Chemistry Letters 10, no. 23 (2000): 2603–2605. doi:10.1016/s0960-894x(00)00521-7
  • A. R. Katritzky, C. A. Ramsden, J. A. Joule, and V. V. Zhdankin, Handbook of Heterocyclic Chemistry (Elsevier, 2010).
  • A. Behmaneshfar, M. Ghashang, M. R. M. Shafiee, A. Saffar-Teluri, A. Fazlinia, and H. Esfandiari, “Optimization of the Preparation Condition of 2,4,5-Triphenyl-1H-Imidazole over BaSO4 Nanoparticles as Catalyst Using a Response Surface Methodology (RSM),” Current Nanoscience 11, no. 1 (2014): 56–63. doi:10.2174/1573413710666140923211414
  • Z. Li, B. Hu, Y. Wu, C. Fei, and L. Deng, “Control of Chemoselectivity in Asymmetric Tandem Reactions: Direct Synthesis of Chiral Amines Bearing Nonadjacent Stereocenters,” Proceedings of the National Academy of Sciences 115, no. 8 (2018): 1730–1735. doi:10.1073/pnas.1718474115
  • A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron Transport Materials for Organic Light-Emitting Diodes,” Chemistry of Materials 16, no. 23 (2004): 4556–4573. doi:10.1021/cm049473l
  • M. Antolini, A. Bozzoli, C. Ghiron, G. Kennedy, T. Rossi, and A. Ursini, “Analogues of 4,5-Bis(3,5-Dichlorophenyl)-2-Trifluoromethyl-1H-Imidazole as Potential Antibacterial Agents,” Bioorganic & Medicinal Chemistry Letters 9, no. 7 (1999): 1023–1028. doi:10.1016/s0960-894x(99)00112-2
  • J. C. Lee, J. T. Laydon, P. C. McDonnell, T. F. Gallagher, S. Kumar, D. Green, D. McNulty, M. J. Blumenthal, J. R. Heys, S. W. Landvatter, et al. “A Protein Kinase Involved in the Regulation of Inflammatory Cytokine Biosynthesis,” Nature 372, no. 6508 (1994): 739–746., doi:10.1038/372739a0
  • R. Sharma, K. Upadhyaya, B. Gupta, K. K. Ghosh, R. P. Tripathi, K. Musilek, and K. Kuca, “Glycosylated-Imidazole Aldoximes as Reactivators of Pesticides Inhibited AChE: Synthesis and in-Vitro Reactivation Study,” Environ. Toxicol.Pharmaco 80 (2020) : 1–26.
  • A. P. G. Nikalje, S. V. Tiwari, A. P. Sarkate, and K. S. Karnik, “Imidazole-Thiazole Coupled Derivatives a Novel Lanosterol 14- α Demethylase Inhibitors: Ionic Liquid Mediated Synthesis, Biological Evaluation and Molecular Docking Study,” Medicinal Chemistry Research 27, no. 2 (2018): 592–606. doi:10.1007/s00044-017-2085-5
  • Y. Tao, R. Dong, I. V. Pavlidis, B. Chen, and T. Tan, “Using Imidazolium-Based Ionic Liquidsas Dual Solvent-Catalysts for Sustainable Synthesis of Vitamin Esters: Inspiration from Bio-and Organo-Catalysis,” Green Chemistry 18, no. 5 (2016): 1240–1248. doi:10.1039/C5GC02557E
  • T. Welton, “Room-Temperature Ionic Liquids-Solvents for Synthesis and Catalysis,” Chemical Reviews 99, no. 8 (1999): 2071–2084. doi:10.1021/cr980032t
  • X.-J. Wu, R. Jiang, X.-P. Xu, X.-M. Su, W.-H. Lu, and S.-J. Ji, “Practical Multi-Component Synthesis of Di- or Tri-Aryl (Heteraryl)Substituted-2-(Pyridin-2-yl)Imidazoles from Simple Building Blocks,” Journal of Combinatorial Chemistry 12, no. 6 (2010): 829–835. doi:10.1021/cc100079b
  • N. Kerru, S. V. H. S. Bhaskaruni, L. Gummidi, S. N. Maddila, S. Maddila, and S. B. Jonnalagadda, “Recent Advances in Heterogeneous Catalysts for the Synthesis of Imidazole Derivatives,” Synthetic Communications 49, no. 19 (2019): 2437–2459. doi:10.1080/00397911.2019.1639755
  • A. Akbari, “Tri(1-Butyl-3-Methylimidazolium)Gadolinium Hexachloride,([Bmim]3[GdCl6]), a Magnetic Ionic Liquid as a Green Salt and Reusable Catalyst for Thesynthesis of Tetra Substituted Imidazoles,” Tetrahedron Letters. 57, no. 3 (2016): 431–434. doi:10.1016/j.tetlet.2015.12.053
  • J.-F. Zhou, G.-X. Gong, X.-J. Sun, and Y.-L. Zhu, “Facile Method for One-Step Synthesis of 2,4,5-Triarylimidazoles under Catalyst-Free, Solvent-Free, and Microwave-Irradiationconditions,” Synthetic Communications 40, no. 8 (2010): 1134–1141. doi:10.1080/00397910903043025
  • N. Bhuvanesh, S. Suresh, K. Velmurugan, A. Thamilselvan, and R. Nandhakumar, “Quinoline Based Probes: Large Blue Shifted Fluorescent and Electrochemical Sensing of Cerium Ion and Its Biological Applications,” Journal of Photochemistry and Photobiology A: Chemistry (2020): 103–112. doi:10.1016/j.jphotochem.2019.112103
  • B. Aygün, B. Alaylar, K. Turhan, E. Şakar, M. Karadayı, M. I. A. Al-Sayyed, E. Pelit, M. Güllüce, A. Karabulut, Z. Turgut, et al. “Investigation of Neutron and Gamma Radiation Protective Characteristics of Synthesized Quinoline Derivatives,” International Journal of Radiation Biology 96, no. 11 (2020): 1423–1434., doi:10.1080/09553002.2020.1811421
  • S. K. Rangappa, and A. P. Siddappa, “Quinoline: A Promising Antitubercular Target,” Biomedicine & Pharmacotherapy 68 (2014): 1161–1175.
  • A. Krishna, V. Vijayakumar, and S. Sarveswari, “Synthesis of New 3-(2-Amino-6-Arylpyrimidin-4-yl)-4-Hydroxy Quinolin-2(1H)-Ones and Their in Vitro Antimicrobial and “DPPH” Scavenging Activity Evaluation,” ChemistrySelect 5, no. 26 (2020): 7967–7972. doi:10.1002/slct.202002082
  • L. Jyothish Kumar, and V. Vijayakumar, “A New Class of Aryl Sulfonamide Based 3-Acetyl-2-Methyl-4-Phenylquinolines and Their Evaluation towards in-Vitro Antioxidant, Antifungal and Antibacterial Activities,” Research on Chemical Intermediates 43, no. 10 (2017): 5691–5705. doi:10.1007/s11164-017-2956-x
  • R. Jesu Jaya Sudan, J. Lesitha JeevaKumari, P. Iniyavan, S. Sarveswari, and V. Vijayakumar, “Evaluation of Xanthene-Appended Quinoline Hybrids as Potential Leads against Antimalarial Drug Targets,” Molecular Diversity 27, (2023): 709–727. doi: 10.1007/s11030-022-10450-4.
  • L. Jyothish Kumar, Y. Suresh, R. Rajasekaran, S. Rajeswara Reddy, and V. Vijayakumar, “Synthesis and Exploration of in-Silico and in-Vitro α-Glucosidase and α-Amylase Inhibitory Activities of N-(3-Acetyl-2-Methyl-4-Phenylquinolin-6-yl)Arylamides,” Journal of the Iranian Chemical Society 16, no. 5 (2019): 1071–1080. doi:10.1007/s13738-018-01580-4
  • P. Hemanth Kumar, L. Jyothish Kumar, G. Pavithrra, R. Rajasekaran, V. Vijayakumar, Rohith Karan, and S. Sarveswari, “Design, Synthesis and Exploration of in Silico α-Amylase and α-Glucosidase Binding Studies of Pyrrolidine-Appended Quinoline-Constrained Compounds,” Research on Chemical Intermediates 46, no. 3 (2020): 1869–1880. doi:10.1007/s11164-019-04068-9
  • N. Lohitha, and V. Vijayakumar, “Synthesis, Characterization and Hypoglycemic Efficacy of Isonicotinohydrazide Phenoxy Quinolines: An in Silico Studies,” Asian Journal of Chemistry 34, no. 9 (2022): 2241–2246. doi:10.14233/ajchem.2022.23814
  • L. Narayanaswamy, S. Yarrappagaari, S. Cheemanapallia, R. Reddy Saddala, and V. Vijayakumar, “Synthesis, Characterization and Hypoglycemic Efficacy of Nitro and Amino-Acridines and 4-Phenylquinoline on Starch Hydrolyzing Compounds: An in-Silico and in-Vitro Studies,” Structural Chemistry 31, no. 5 (2020): 2063–2074. doi:10.1007/s11224-020-01529-5
  • N. Lohitha, and V. Vijayakumar, “Imidazole Appended Novel Phenoxyquinolines as New Inhibitors of α-Amylase and α-Glucosidase Evidenced with Molecular Docking Studies,” Polycyclic Aromatic Compounds 42, no.8 (2022): 5521–5533. 10.1080/10406638.2021.1939069)
  • J. H. Caufield, Y. Zhou, A. O. Garlid, S. P. Setty, D. A. Liem, Q. Cao, J. M. Lee, S. Murali, S. Spendlove, W. Wang, et al. “A Reference Set of Curated Biomedical Data and Metadata from Clinical Case Reports,” Scientific Data 5, no. 1 (2018): 180258. doi:10.1038/sdata.2018.258
  • H. W. Lee, J. Y. Yang, and H. S. Lee, “Quinoline-2-Carboxylic Acid Isolated from Ephedra Pachyclada and Its Structural Derivatives Show Inhibitory Effects against α-Glucosidase and α-Amylase,” Journal of the Korean Society for Applied Biological Chemistry 57, no. 4 (2014): 441–444. doi:10.1007/s13765-014-4156-3
  • M. S. Ganesan, K. K. Raja, K. Narasimhan, S. Murugesan, and B. K. Kumar, “Design, Synthesis, α-Amylase Inhibition and in Silico Docking Study of Novel Quinoline Bearing Proline Derivatives,” Journal of Molecular Structure 1208 (2020): 127873. doi:10.1016/j.molstruc.2020.127873
  • J. H. Park, and H. S. Lee, “Inhibitory Effects of Quinoline Isolated from Rutachalepensis and Its Structurally Related Derivatives against α-Amylase or α-Glucosidase,” Journal of Applied Biological Chemistry 58, no. 1 (2015): 5–8. doi:10.3839/jabc.2015.002
  • A. A. Adegboye, K. M. Khan, U. Salar, S. A. Aboaba, S. Chigurupati, I. Fatima, M. Taha, A. Wadood, J. I. Mohammad, H. Khan, et al. “2-Aryl Benzimidazoles: Synthesis, in Vitro α-Amylase Inhibitory Activity, and Molecular Docking Study,” European Journal of Medicinal Chemistry 150 (2018): 248–260. doi:10.1016/j.ejmech.2018.03.011
  • H. W. Lee, and H. S. Lee, “2-Hydroxyquinoline and Its Structural Analogs Show Antidiabetic Effects against α-Amylase and α-Glucosidase,” Journal of Applied Biological Chemistry 58, no. 1 (2015): 1–3. doi:10.3839/jabc.2015.001
  • F. Ali, K. M. Khan, U. Salar, M. Taha, N. H. Ismail, A. Wadood, M. Riaz, and S. Perveen, “Hydrazinylarylthiazole Based Pyridine Scaffolds: Synthesis, Structural Characterization, in Vitro α-Glucosidase Inhibitory Activity, and in Silico Studies,” European Journal of Medicinal Chemistry 138 (2017): 255–272. doi:10.1016/j.ejmech.2017.06.041
  • E. Lilkova, P. Petkov, N. Ilieva, and L. Litov, “ThePyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC." (2015).
  • M. Réau, F. Langenfeld, J. F. Zagury, and M. Montes, “Predicting the Affinity of Farnesoid X Receptor Ligands through a Hierarchical Ranking Protocol: A D3R Grand Challenge 2 Case Study,” Journal of Computer-Aided Molecular Design 32, no. 1 (2018): 231–238. doi:10.1007/s10822-017-0063-0
  • I. Reulecke, G. Lange, J. Albrecht, R. Klein, and M. Rarey, “Towards an Integrated Description of Hydrogen Bonding and Dehydration: Decreasing False Positives in Virtual Screening with the HYDE Scoring Function,” ChemMedChem 3, no. 6 (2008): 885–897. doi:10.1002/cmdc.200700319
  • N. Schneider, G. Lange, S. Hindle, R. Klein, and M. Rarey, “A Consistent Description of HYdrogen Bond and DEhydration Energies in Protein–Ligand Complexes: Methods behind the HYDE Scoring Function,” Journal of Computer-Aided Molecular Design 27, no. 1 (2013): 15–29. doi:10.1007/s10822-012-9626-2
  • B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, et al. “CHARMM: Molecular Dynamics Simulation Package,” Journal of Computational Chemistry 30, no. 10 (2009): 1545–1614. doi:10.1002/jcc.21287
  • H. J. Chakraborty, A. Gangopadhyay, and A. Datta, “Prediction and Characterisation of Lantibiotic Structures with Molecular Modelling and Molecular Dynamics Simulations,” Scientific Reports 9, no. 1 (2019): 7169. doi:10.1038/s41598-019-42963-8
  • B. Hess, C. Kutzner, D. V. Spoel, and E. Lindahl, “GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation,” Journal of Chemical Theory and Computation 4, no. 3 (2008): 435–447. doi:10.1021/ct700301q
  • H. A. Al-Ghulikah, E. U. Mughal, E. B. Elkaeed, N. Naeem, Y. Nazir, A. Y. A. Alzahrani, A. Sadiq, and S. W. A. Shah, “Discovery of Chalcone Derivatives as Potential α-Glucosidase and Cholinesterase Inhibitors: Effect of Hyperglycemia in Paving a Path to Dementia,” Journal of Molecular Structure. 1275 (2023): 134658. doi:10.1016/j.molstruc.2022.134658
  • A. Singh, K. Singh, A. Sharma, K. Kaur, K. Kaur, R. Chadha, and P. M. S. Bedi, “Recent Developments in Synthetic α-Glucosidase Inhibitors: A Comprehensive Review with Structural and Molecular Insight,” Journal of Molecular Structure. 1281 (2023): 135115. doi:10.1016/j.molstruc.2023.135115
  • R. Forozan, M. K. Ghomi, A. Iraji, M. N. Montazer, M. Noori, N. Dastyafteh, S. Mojtabavi, M. A. Faramarzi, S. E. Sadat-Ebrahimi, B. Larijani, et al. “Synthesis, in Vitro Inhibitor Screening, Structure-Activity Relationship, and Molecular Dynamic Simulation Studies of Novel Thioquinoline Derivatives as Potent α-Glucosidase Inhibitors,” Scientific Reports 13, no. 1 (2023): 7819. doi:10.1038/s41598-023-35140-5
  • H. Ghorbani, A. Ebadi, M. A. Faramarzi, S. Mojtabavi, M. Mahdavi, and Z. Najafi, “Synthesis, in Vitro α-Glucosidase Inhibitory Activity and Molecular Dynamics Simulation of Some New Coumarin-Fused 4H-Pyran Derivatives as Potential anti-Diabetic Agents,” Journal of Molecular Structure. 1284 (2023): 135349. doi:10.1016/j.molstruc.2023.135349
  • A. Swargiary, M. K. Roy, and S. Mahmud, “Phenolic Compounds as α-Glucosidase Inhibitors: A Docking and Molecular Dynamics Simulation Study,” Journal of Biomolecular Structure & Dynamics 41, no. 9 (2023): 3862–3871. doi:10.1080/07391102.2022.2058092

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.