Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 52, 2007 - Issue 11
993
Views
156
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Investigation of Nanofluid Laminar Convective Heat Transfer through a Circular Tube

, &
Pages 1043-1058 | Received 08 Oct 2006, Accepted 01 Mar 2007, Published online: 19 Sep 2007

References

  • A. S. Ahuja , Augmentation of Heat Transport in Laminar Flow of Polystyrene Suspension, I. Experimental and Results , J. Appl. Phys. , vol. 46 , pp. 3408 – 3418 , 1975 .
  • B. M. Da Silva Miranda and N. K. Anand , Convective Heat Transfer in Channel with Porous Baffles , Numer. Heat Transfer A , vol. 46 , pp. 425 – 452 , 2004 .
  • A. E. Bergles , Recent Development in Convective Heat Transfer Augmentation , Appl. Mech. Rev. , vol. 26 , pp. 675 – 684 , 1973 .
  • H. Masuda , A. Ebata , K. Teramat , and N. Hishinuma , Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-fine Particles (Dispersion of γ-Al2O3, SiO2 and TiO2 Ultra-fine particles) , Netsu Bussei (Japan) , vol. 4 , pp. 227 – 233 , 1993 .
  • P. Kebliski , S. R. Phillpot , S. U. S. Choi , and J. A. Eastman , Mechanism of Heat Flow in Suspension of Nano-Sized Particle (Nanofluids) Int. J. Heat Mass Transfer , vol. 45 , pp. 855 – 863 , 2002 .
  • H. Xie , J. Wang , T. Xi , and Y. Liu , Thermal Conductivity of Suspensions Containing SiC particles , Int. J. Thermophys. , vol. 23 , pp. 571 – 580 , 2002 .
  • B. X. Wang , L. P. Zhou , and X. F. Peng , A Fractal Model for Predicting the Effective Thermal Conductivity of Fluid with Suspension of Nanoparticles , Int. J. Heat Mass Transfer , vol. 46 , pp. 2665 – 2672 , 2003 .
  • S. U. S. Choi , Enhancing Thermal Conductivity of Fluid with Nanoparticles , in D. A. Siginer and H. P. Wang (eds.), Developments and Applications of Non-Newtonian flows , FED-vol. 231/MD , vol. 66 , p. 99 , American Society of Mechanical Engineers , New York , 1995 .
  • S. Lee , S. U. S. Choi , S. Li , and J. A. Eastman , Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transfer , vol. 121, pp. 280–289, 1999.
  • S. U. S. Choi , Z. G. Zhang , W. Yu , F. E. Lockwood , and E. A. Grulke , Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions , Appl. Phys. Lett. , vol. 79 , pp. 2252 – 2254 , 2001 .
  • J. A. Eastman , S. U. S. Choi , S. Li , W. Yu , and L. J. Thompson , Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles , Appl. Phys. Lett. , vol. 78 , pp. 718 – 720 , 2001 .
  • S. K. Das , N. Putra , P. Theisen , and W. Roetzel , Temperature Dependence of Thermal Conductivity Enhancement for Nanofluid , J. Heat Transfer , vol. 125 , pp. 567 – 574 , 2003 .
  • J. C. Maxwell , A Treatise on Electricity and Magnetism, , 2nd ed. , Oxford University Press , Cambridge , UK , 1904 .
  • R. L. Hamilton and O. K. Crosser , Thermal Conductivity of Heterogeneous Two Component Systems , I & Ec. Fundam. , vol. 1 , pp. 182 – 186 , 1962 .
  • S. U. S. Choi and Z. G. Zhang , Nanofluid for Thermal Management, SAE, LNC , vol. 01 , p. 1711 , 2001 .
  • B. X. Wang and L. P. Zhou , A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles , Int. J. Heat Mass Transfer , vol. 46 , pp. 2665 – 2672 , 2003 .
  • W. Yu and S. U. S. Choi , The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , J. Nanoparticle Res. , vol. 5 , pp. 167 – 171 , 2003 .
  • L. Xue , P. Keblinski , S. R. Phillpot , S. U. S. Choi , and J. A. Eastman , Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport , Int. J. Heat Mass Transfer , vol. 47 , pp. 4277 – 4284 , 2004 .
  • Q. Xue and W. M. Xu , A Model of Thermal Conductivity of Nanofluids with Interfacial Shells , Mater. Chem. Phys. , vol. 90 , pp. 298 – 301 , 2005 .
  • S. M. S. Murshed , K. C. Leong , and C. Yang , Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids , Int. J. Thermal Sci. , vol. 44 , pp. 367 – 373 , 2005 .
  • Q. Li and Y. Xuan , Experimental Investigation of Transport Properties of Nanofluids , in Wang Buxan (ed.), Heat Transfer Science & Technology , pp. 757 – 762 , Higher Education Press , Beijing , 2000 .
  • J. A. Eastman , S. U. S. Choi , G. Soyez , L. J. Thompson , and R. J. D. Melfi , Novel Thermal Properties of Nanostructured Materials , Mater. Sci. Forum , vol. 312–314 , pp. 629 – 634 , 1999 .
  • Y. Xuan and Q. Li , Heat Transfer Enhancement of Nanofluids , Int. J. Heat Fluid Flow , vol. 21 , pp. 58 – 64 , 2000 .
  • Y. Xuan and W. Roetzel , Conception for Heat Transfer Correlation of Nanofluid , Int. J. Heat Mass Transfer , vol. 43 , pp. 3701 – 3707 , 2000 .
  • Y. Xuan and Q. Li , Investigation on Convective Heat Transfer and Flow Features of Nanofluids , J. Heat Transfer , vol. 125 , pp. 151 – 155 , 2003 .
  • G. Roy , C. T. Nguyen , and P. R. Lajoie , Numerical Investigation of Laminar Flow and Heat Transfer in a Radial Flow Cooling System with the Use of Nanofluids , Superlattices and Microstructures , vol. 35 , pp. 497 – 511 , 2004 .
  • S. E. B. Maiga , S. J. Palm , C. T. Nguyen , G. Roy , and N. Galanis , Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows , Int. J. Heat Fluid Flow , vol. 26 , pp. 530 – 546 , 2005 .
  • Y. Yang , Z. G. Zhang , E. A. Grulke , W. B. Andersen , and G. Wu , Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow , Int. J. Heat Mass Transfer , vol. 48 , pp. 1107 – 1116 , 2005 .
  • B. C. Pak and Y. Cho , Hydrodynamic and Heat Transfer Study of Dispersed Fluid with Submicron Metallic Oxide Particles, Exp. Heat Transfer , vol. 11, pp. 151–170, 1998.
  • D. Wen and Y. Ding , Experimental Investigation into Convective Heat Transfer of Nanofluid at the Entrance Rejoin under Laminar Flow Conditions , Int. J. Heat Transfer , vol. 47 , pp. 5181 – 5188 , 2004 .
  • J. J. Vadasz , S. Govender , and P. Vadasz , Heat Transfer Enhancement in Nano-fluids Suspensions: Possible Mechanisms and Explanations , Int. J. Heat Mass Transfer , vol. 48 , pp. 2673 – 2683 , 2005 .
  • J. Koo and C. Kleinstreuer , Laminar Nanofluid Flow in Micro Heat Sinks , Int. J. Heat Mass Transfer , vol. 48 , pp. 2652 – 2661 , 2005 .
  • N. Putra , W. Roetzel , and S. K. Das , Natural Convection of Nanofluids , Heat Mass Transfer , vol. 39 , pp. 775 – 781 , 2003 .
  • K. Khanafer , K. Vafai , and M. Lightstone , Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids , Int. J. Heat Mass Transfer , vol. 46 , pp. 3639 – 3653 , 2003 .
  • W. S. Fu and B. H. Tong , Numerical Investigation of Heat Transfer of a Heated Channel with an Oscillating Cylinder , Numer. Heat Transfer A , vol. 43 , pp. 639 – 658 , 2003 .
  • V. I. Bubnovich , N. O. Morago , and C. E. Rosas , Numerical Forced Convection in a Circular Pipe with Nonuniform Blowing or Suction through the Porous Wall , Numer. Heat Transfer A , vol. 33 , pp. 875 – 890 , 1998 .
  • A. V. Kuznetsov , L. Cheng , and M. Xiong , Effects of Thermal Dispersion and Turbulence in Forced Convection in a Composite Parallel-Plate Channel: Investigation of Constant Wall Heat Flux and Constant Wall Temperature Cases , Numer. Heat Transfer A , vol. 42 , pp. 365 – 383 , 2002 .
  • G. I. Taylor , Dispersion of Soluble Matter in Solvent Flowing through a Tube , Proc. R. Soc. Lond. , vol. A21 , pp. 186 – 203 , 1954 .
  • D. A. Drew and S. L. Passman , Theory of Multi Component Fluids , Springer-Verlag , Berlin , 1999 .
  • W. Yu and S. U. S. Choi , The Role of International Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , J. Nanoparticle Res. , vol. 5 , pp. 167 – 171 , 2003 .
  • S. Z. Heris , M. N. Esfahany , and S. G. Etemad , Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube , Int. J. Heat Fluid Flow , vol. 28 , pp. 203 – 210 , 2007 .
  • S. Z. Heris , M. N. Esfahany , and S. G. Etemad , CuO/Water Nanofluid Laminar Convective Heats Transfer Investigation Through Circular Tube , J. Enhanced Heat Transfer , vol. 13 , pp. 279 – 289 , 2006 .
  • J. Koo and C. Kleinstreuer , A New Thermal Conductivity Model for Nanofluids , J. Nanoparticles Res. , vol. 6 , pp. 577 – 588 , 2004 .
  • S. P. Jang and S. U. S. Choi , Cooling Performance of a Microchannel Heat Sink with Nanofluid , Appl. Thermal Eng. , vol. 26 , pp. 2457 – 2463 , 2006 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.