Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 65, 2014 - Issue 9
327
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Simulation of Laser Rapid Manufacturing of Multi-Layer Thin Wall Using an Improved Mass Addition Approach

, , , , &
Pages 885-910 | Received 12 Aug 2013, Accepted 13 Sep 2013, Published online: 04 Mar 2014

REFERENCES

  • J. Lawrence , D. K. Y. Low , J. Pou , and E. Toyserkani , Advances in Laser Materials Processing Technology , CRC Press , Boca Raton , FL , 2010 .
  • C. P. Paul , P. Bhargava , A. Kumar , A. K. Pathak , and L. M. Kukreja , Laser Rapid Manufacturing: Technology, Applications, Modelling and Future Prospects , in Lasers in Manufacturing , Ed. J. Paulo Davim , Wiley-ISTE , London , UK , 2012 .
  • R. Vilar , Laser Cladding , J. Laser. Appl. , vol. 11 , pp. 64 – 79 , 1999 .
  • P. Ganesh , R. Kaul , S. K. Mishra , P. Bhargava , C. P. Paul , C. H. P. Singh , P. Tiwari , S. M. Oak , and R. C. Prasad , Laser Rapid Manufacturing of Bi-Metallic Tube with Stellite-21 and Austenitic Stainless Steel , Trans. Indian Inst. Met. , vol. 62 , pp. 169 – 174 , 2009 .
  • W. Liu and J. N. DuPont , Fabrication of Functionally Graded TiC/Ti Composites by Laser Engineered Net Shaping , Scr. Mater. , vol. 48 , pp. 1337 – 1342 , 2003 .
  • M. Naveed Ahsan , C. P. Paul , L. M. Kukreja , and A. J. Pinkerton , Porous Structures Fabrication by Continuous, and Pulsed Laser Metal Deposition for Biomedical Applications, Modelling and Experimental Investigation , J. Mater. Process. Technol. , vol. 211 , pp. 602 – 609 , 2011 .
  • C. P. Paul , S. K. Mishra , C. H. Premsingh , P. Bhargava , P. Tiwari , and L. M. Kukreja , Studies on Laser Rapid Manufacturing of Cross-Thin-Walled Porous Structures of Inconel 625 , Int. J. Adv. Manuf. Tech. , vol. 61 , pp. 757 – 770 , 2012 .
  • C. P. Paul and A. Khajepour , Automated Laser Fabrication of Cemented Carbide Components , Opt. Laser. Technol. , vol. 40 , pp. 735 – 741 , 2008 .
  • S. J. Davis , K. G. Watkins , G. Dearden , E. Fearon , and J. Zeng , Optimum Deposition Parameters for the Direct Laser Fabrication (DLF) of Quasi-Hollow Structures, Proc. Photon Conf. Manchester, P3.14, 2006 .
  • X. He , G. Yu , and J. Mazumder , Temperature, and Composition Profile during Double-Track Laser Cladding of H13 Tool Steel , J. Phys. D: Appl. Phys. , vol. 43 , pp. 015502 , 2010 .
  • R. J. Moat , A. Pinkerton , L. Li , P. J. Withers , and M. Preuss , Crystallographic Texture and Microstructure of Pulsed Diode Laser-Deposited Waspaloy , Acta Mater. , vol. 5 , pp. 1220 – 1229 , 2009 .
  • L. Wang and S. Felicelli , Analysis of Thermal Phenomena in LENSTM Deposition , Mater. Sci. Eng. A , vol. 435–436 , pp. 625 – 631 , 2006 .
  • A. Vasinonta , J. L. Beuth , and M. L. Grifith , A Process Map for Consistent Build Condition in the Solid Free Form Fabrication of Thin-Walled Structures , J. Manuf. Sci. Eng. , vol. 123 , pp. 615 – 622 , 2001 .
  • P. Peyre , P. Aubry , R. Fabbro , R. Neveu , and A. Longuet , Analytical, and Numerical Modeling of the Direct Metal Deposition Laser Process , J. Phys. D: Appl. Phys. , vol. 41 , pp. 025403 , 2008 .
  • M. Rohde , O. Baldus , D. Dimitrova , and S. Schreck , Numerical Simulation of Laser-Induced Modification Processes of Ceramic Substrates , Numer. Heat Transfer A , vol. 50 , pp. 835 – 849 , 2006 .
  • S. Z. Shuja and B. S. Yilbas , Laser Heating and Flow Field Developed in the Melt Pool , Numer. Heat Transfer A , vol. 59 , pp. 970 – 987 , 2011 .
  • A. K. Skouras , N. Chakraborty , S. Chakraborty , Computational Analysis of the Effects of Process Parameters on Molten Pool Transport in Cu-Ni Dissimilar Laser Weld Pool , Numer. Heat Transfer A , vol. 58 , pp. 272 – 294 , 2010 .
  • N. Ahmed , K. T. Voisey , and D. G. McCartney , Investigation into the Effect of Beam Shape on Melt Pool Characteristics using Analytical Modelling , Opt. Laser. Eng. , vol. 48 , pp. 548 – 554 , 2010 .
  • E. Toyserkani , A. Khajepour , and S. F. Corbin , 3-D Finite Element Modeling of Laser Cladding by Powder Injection: Effects of Laser Pulse Shaping on the Process, Opt. Laser Eng. , vol. 41, pp. 849–867, 2004.
  • J. Liu and L. Li , Direct Fabrication of Thin-Wall Parts by Laser Cladding , J. Manuf. Processes , vol. 8 , pp. 1 – 7 , 2006 .
  • H. Qi , J. Mazumder , and H. Ki , Numerical Simulation of Heat Transfer, and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition , J. Appl. Phys. , vol. 100 , pp. 024903 , 2006 .
  • X. He , G. Yu , and J. Mazumder , Temperature, and Composition Profile During Double-Track Laser Cladding of H13 Tool Steel , J. Phys. D: Appl. Phys. , vol. 43 , pp. 015502 , 2010 .
  • H. Yin , L. Wang , and S. Felicelli , Comparison of Two-Dimensional and Three-Dimensional Thermal Models of the LENS Process . J. Heat Transfer , vol. 130 , pp. 1 – 7 , 2008 .
  • L. Wang , S. Felicelli , Y. Gooroochurn , P. T. Wang , and M. F. Horstemeyer , Optimization of the LENS Process for Steady Molten Pool Size , Mater. Sci. Eng. A , vol. 474 , pp. 148 – 156 , 2008 .
  • Y. Zhang , G. Yu , X. He , W. Ning , and C. Zheng , Numerical and Experimental Investigation of Multilayer SS410 Thin Wall Built by Laser Direct Metal Deposition , J. Materials Proc. Tech. , vol. 212 , pp. 106 – 112 , 2012 .
  • C. P. Paul , S. K. Mishra , Atul Kumar , and L. M. Kukreja , Laser Rapid Manufacturing on Vertical Surfaces: Analytical and Experimental Studies , Surf. and Coatings Tech. , vol. 224 , pp. 18 – 28 , 2013 .
  • M. Alimardani , E. Toyserkani , J. P. Huissoon , A 3-D Dynamic Numerical Approach for Temperature and Thermal Stress Distributions in Multilayer Laser Solid Freeform Fabrication Process , Opt. Lasers Eng. , vol. 45 , pp. 1115 – 1130 , 2007 .
  • M. Alimardani , E. Toyserkani , J. P. Huissoon , and C. P. Paul , On the Delamination and Crack Formation in a Thin Wall Fabricated using Laser Solid Freeform Fabrication Process: An Experimental–Numerical Investigation , Opt. Lasers Eng. , vol. 47 , pp. 1160 – 1168 , 2009 .
  • M. Alimardani , E. Toyserkani , and J. P. Huissoon , Three-Dimensional Numerical Approach for Geometrical Prediction of Multilayer Laser Solid Freeform Fabrication Process , J. Laser Applications , vol. 19 , pp. 14 – 25 , 2007 .
  • J. T. Hofman , D. F. de Lange , B. Pathiraj , and J. Meijer , FEM Modeling and Experimental Verification for Dilution Control in Laser Cladding , J. Mater. Process. Technol. , vol. 211 , pp. 187 – 196 , 2011 .
  • Z. Wang , S. Dong , B. Xu , and W. Xia , Laser Clad Geometry: Experimental Observation and Geometric Modeling , Adv. Mater. Research , vol. 148–149 , pp. 628 – 632 , 2011 .
  • A. J. Pinkerton and L. Li , Modelling the Geometry of a Moving Laser Melt Pool and Deposition Track via Energy and Mass Balances , J. Phys. D: Appl. Phys. , vol. 37 , pp. 1885 – 1895 , 2004 .
  • M. Hao and Y. Sun , A FEM Model for Simulating Temperature Field in Coaxial Laser Cladding of TI6AL4V Alloy using an Inverse Modeling Approach , Int. J. Heat and Mass Transfer , vol. 64 , pp. 352 – 360 , 2013 .
  • S. Safdar , A. J. Pinkerton , L. Li , M. A. Sheikh , and P. J. Withers , An Anisotropic Enhanced Thermal Conductivity Approach for Modelling Laser Melt Pools for Ni-Base Super Alloys , Appl. Math. Modelling , vol. 37 , pp. 1187 – 1195 , 2013 .
  • F. K. Mirzade , V. G. Niziev , V. Y. Panchenko , M. D. Khomenko , R. V. Grishaev , S. Pityana , and C. V. Rooyen , Kinetic Approach in Numerical Modelling of Melting and Crystallization at Laser Cladding with Powder Injection , Physica B , vol. 423 , pp. 69 – 76 , 2013 .
  • S. Kumar and S. Roy , Development of a Theoretical Process Map for Laser Cladding using a Three-Dimensional Conduction Heat Transfer Model, Numer. Heat Transfer A , vol. 56, pp. 478–496, 2009.
  • A. Kumar , C. P. Paul , A. K. Pathak , P. Bhargava , and L. M. Kukreja , A Finer Modeling Approach for Numerically Predicting Single Track Geometry in Two Dimensions during Laser Rapid Manufacturing , Opt. Laser Tech. , vol. 44 , pp. 555 – 65 , 2012 .
  • M. Picasso , C. F. Marsden , J. D. Wagniere , A. Frend , and M. Rappaz , A Simple but Realistic Model for Laser Cladding , J. Metall. Mater. Trans. B , vol. 25 , pp. 281 – 291 , 1994 .
  • S. Kumar , S. Roy , C. P. Paul , and A. K. Nath , Three-Dimensional Conduction Heat Transfer Model for Laser Cladding Process , Numer. Heat Transfer B , vol. 53 , pp. 271 – 287 , 2008 .
  • R. W. Lewis , P. Nithiarasu , and K. N. Seetharamu , Fundamentals of the Finite Element Method for Heat and Fluid Flow , pp. 164 – 166 , John Wiley & Sons Ltd. , Chichester , England , 2004 .
  • C. Lampa , A. F. H. Kaplan , J. Powell , C. Magnusson , Analytical Thermodynamic Model of Laser Welding , J. Phys. D: Appl. Phys. , vol. 30 , pp. 1293 – 1299 , 1997 .
  • L. X. Yang , X. F. Peng , and B. X. Wang , Numerical Modeling and Experimental Investigation on the Characteristics of Molten Pool during Laser Processing , Int. J. Heat. Mass Transfer , vol. 44 , pp. 4465 – 4473 , 2001 .
  • K. R. Balasubramanian , N. Siva Shanmugam , G. Buvanashekaran , and K. Sankaranarayanasamy , Numerical and Experimental Investigation of Laser Beam Welding of AISI 304 Stainless Steel Sheet , Adv. Prod. Eng. Manage. , vol. 3 , pp. 93 – 105 , 2008 .
  • Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/unht.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.