Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 66, 2014 - Issue 4
178
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Use of Thermal Lattice Boltzmann Numerical Scheme for Particle-Laden Channel Flow with a Cavity

, , &
Pages 433-448 | Received 14 May 2013, Accepted 03 Dec 2013, Published online: 04 Jun 2014

REFERENCES

  • R. Nasrin , S. Parvin , M. A. Alim , and A. J. Chamkha , Transient Analysis on Forced Convection Phenomena in a Fluid Valve Using Nanofluid , Numer. Heat Transfer A , vol. 62 , pp. 589 – 604 , 2012 .
  • S. Bhattacharyya and A. K. Singh , Wake Flow and Heat Transfer Due to a Spherical Viscous Droplet , Numer. Heat Transfer A , vol. 57 , pp. 138 – 158 , 2010 .
  • V. S. Sutkar , N. G. Deen , and J. A. M. Kuiper , Spout Fluidized Beds: Recent Advances in Experimental and Numerical Studies , Chem. Eng. Sci. , vol. 86 , pp. 124 – 136 , 2013 .
  • Y. Su , A. Zheng , and B. Zhao , Numerical Simulation of Effect on Inlet Configuration on Square Cyclone Separator Performance , Powder Technol. , vol. 210 , pp. 293 – 303 , 2011 .
  • T. Yamada , Y. Asako , O. J. Gregory , and M. Faghri , Simulation of Thermal Conductivity of Nanofluids using Dissipative Particle Dynamics , Numer. Heat Transfer A , vol. 61 , pp. 323 – 337 , 2012 .
  • T. Tan and Y. Chen , Review of Study on Solid Particle Solar Receivers , Numer. Heat Transfer A , vol. 57 , pp. 138 – 158 , 2010 .
  • P. G. Saffman and J. S. Truner , On the Collision of Drops in Turbulent Clouds , J. Fluid Mech. , vol. 1 , pp. 16 – 30 , 1956 .
  • J. Abrahamson , Collision Rates of Small Particles in a Vigorously Turbulent Fluid , Chem. Eng. Sci. , vol. 30 , pp. 1371 – 1379 , 1975 .
  • R. Weidling , C. Guttler , and J. Blum , Free Collisions in a Microgravity Many-Particle Experiment, I. Dust Aggregate Sticking at Low Velocitites , Icarus , vol. 218 , pp. 688 – 700 , 2012 .
  • E. Beitz , C. Guttler , R. Weidling , and J. Blum , Free Collisions in a Microgravity Many Particle Experiment, II. The Collision Dynamics of Dust-Coated Chondrules , Icarus , vol. 218 , pp. 701 – 706 , 2012 .
  • Y. Shi , Y. Hairui , Z. Hai , L. Shaohua , and Y. Guangxi , A Transient Method to Study the Pressure Drop Characteristics on the Cyclone in a CFB System , Powder Technol. , vol. 192 , pp. 105 – 109 , 2009 .
  • C. S. Nor Azwadi and M. S. Idris , Mesoscale Numerical Approach to Predict Macroscale Fluid Flow Problems , J. of Appl. Sciences , vol. 10 , pp. 1511 – 1524 , 2010 .
  • M. Guala and A. Stocchino , A Large-Scale Flow Structures in Particle-Wall Collision at Low Deborah Numbers , Eur. J. Mech. B—Fluids , vol. 26 , pp. 511 – 530 , 2007 .
  • Y. Jie , L. Kun , F. Jianren , T. Yutaka , and C. Kefa , Direct Numerical Simulation of Particle Dispersion in a Turbulent Jet Considering Inter-Particle Collisions , Int. J. Multiphas. Flow , vol. 34 , pp. 723 – 733 , 2008 .
  • M. Zohreh , S. A. Majid , B. T. Hassan , A. Goodarz , and L. Santiago , Thermo-Mechanical Modeling of Turbulent Heat Transfer in Gas–Solid Flows Including Particle Collisions, Int. J. Heat Fluid Fl. , vol. 23, pp. 792–806, 2002.
  • J. Z. Xiao , X. Li , and H. Z. You , Exploration of Probability Distribution of Velocities of Saltating Sand Particles based on the Stochastic Particle–Bed Collisions , Phys. Lett. A , vol. 341 , pp. 107 – 118 , 2005 .
  • N. A. C. Sidik and L. Jahanshaloo , Lattice Boltzmann Numerical Scheme for Transient Hydrodynamics of Solid Particles in an Enclosure , CFD Letters , vol. 4 , no. 3 , pp. 102 – 111 , 2012 .
  • N. A. C. Sidik and L. Jahanshaloo , Prediction of Dynamics of Solid Particles using Lattice Boltzmann Method , Int. Rev. of Mechanical Engi. , vol. 5 , pp. 1235 – 1240 , 2011 .
  • L. C. Fang , D. Nicolaou , and J. W. Cleaver , Numerical Simulation of Time-Dependent Hydrodynamic Removal of a Contaminated Fluid from a Cavity , Int. J. Numer. Meth. Fl. , vol. 42 , pp. 1087 – 1103 , 2003 .
  • X. He , G. D. Doolen , and T. Clark , Comparison of the Lattice Boltzmann Method and the Artificial Compressibility Method for Navier–Stokes Equations , J. Comput. Phys. , vol. 179 , pp. 439 – 451 , 2002 .
  • L. Jahanshaloo , E. Pouryazdanpanah , N. A. C. Sidik . ( 2013 ). A Review on Application of Lattice Boltzmann Method for Turbulent Flow Simulation , Numer. Heat Transfer A , vol. 64 , pp. 938 – 953 , 2013.
  • C. S. Nor Azwadi , M. Zeinali , A. Safdari , and A. Kazemi , Adaptive-Network-Based Fuzzy Inference System Analysis to Predict the Temperature and Flow Fields in a Lid-Driven Cavity , Numer. Heat Transfer A , vol. 63 , pp. 906 – 920 , 2013 .
  • E. Fattahi , M. Farhadi , and K. Sedighi , Lattice Boltzmann Simulation of Mixed Convection Heat Transfer in Eccentric Annulus , Int. Commun. Heat Mass , vol. 38 , pp. 1135 – 1141 , 2011 .
  • S. Soleimani , M. Sheikholeslami , D. D. Ganji , and M. Gorji , Natural Convection Heat Transfer in a Nanofluid Filled Semi-Annulus Enclosure , Int. Commun. Heat Mass , vol. 39 , pp. 565 – 574 , 2012 .
  • P. Lopez and Y. Bayazitoglu , High Knudsen Number Thermal Flows with the D2Q13 Lattice Boltzmann Model , Numer. Heat Transfer A , vol. 64 , pp. 93 – 106 , 2013 .
  • G. McNamara and B. Alder , Analysis of the Lattice Boltzmann Treatment of Hydrodynamics , Physica A , vol. 194 , pp. 218 – 228 , 1993 .
  • M. A. Mussa , S. Abdullah , C. S. Nor Azwadi , and R. Zulkifli , Lattice Boltzmann Simulation of Cavity Flows at Various Reynolds Numbers , Int. Review of Modelling and Simulations , vol. 4 , pp. 1909 – 1919 , 2011 .
  • X. Shan , Simulation of Rayleigh-Bénard Convection using a Lattice Boltzmann Method , Phys. Rev. E , vol. 55 , pp. 2780 – 2788 , 1997 .
  • X. He , S. Chen , and G. D. Doolen , A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , J. Comput. Phys. , vol. 146 , pp. 282 – 300 , 1998 .
  • A. J. C. Ladd , Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation, Part 1. Theoretical Foundation , J. Fluid Mech. , vol. 271 , pp. 285 – 309 , 1994 .
  • A. J. C. Ladd , Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation, Part 2. Numerical Results , J. Fluid Mech. , vol. 271 , pp. 311 – 339 , 1994 .
  • O. Behrend , Solid-Fluid Boundaries in Particle Suspension Simulations via the Lattice Boltzmann Method , Phys. Rev. E , vol. 52 , pp. 1164 – 1175 , 1995 .
  • P. Lallemand and L. S. Luo , Lattice Boltzmann Method for Moving Boundaries , J. Comput. Phys. , vol. 184 , pp. 406 – 421 , 2003 .
  • A. K. Singh , S. Roy , and T. Basak , Visualization of Heat Transport during Natural Convection in a Tilted Square Cavity: Effect of Isothermal and Nonisothermal Heating, Numer. Heat Transfer A , vol. 61, pp. 417–441, 2012.
  • H. Wang , H. Zhao , Z. Guo , Y. He , and C. Zheng , Lattice Boltzmann Method for Simulations of Gas-Particle Flows over a Backward-Facing Step , J. Comput. Phys. , vol. 239 , pp. 57 – 71 , 2013 .
  • F. A. Munir , N. A. C. Sidik , and N. I. N. Ibrahim , Numerical Simulation of Natural Convection in an Inclined Square Cavity , J. of Appl. Sci. , vol. 11 , pp. 373 – 378 , 2011 .
  • A. A. Mohamad and A. Kuzmin , A Critical Evaluation of Force Term in Lattice Boltzmann Method, Natural Convection Problem , Int. J. Heat Mass Tran. , vol. 53 , pp. 990 – 996 , 2010 .
  • A. A. Mehrizi , M. Farhadi , H. H. Afroozi , K. Sedighi , and A. A. R. Darz , Mixed Convection Heat Transfer in a Ventilated Cavity with Hot Obstacle: Effect of Nanofluid and Outlet Port Location , Int. Commun. Heat Mass , vol. 39 , pp. 1000 – 1008 , 2012 .
  • M. Jourabian , M. Farhadi , K. Sedighi , A. A. R. Darzi , and Y. Vazifesenas , Melting of NEPCM within a Cylindrical Tube: Numerical Study using the Lattice Boltzmann Method , Numer. Heat Transfer A , vol. 61 , pp. 929 – 948 , 2012 .
  • Q. Zou and X. He , On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model , Phys Fluids , vol. 9 , pp. 1591 – 1598 , 1997 .
  • A. D'Orazio and S. Succi , Simulating Two-Dimensional Thermal Channel Flows by Means of a Lattice Boltzmann Method with New Boundary Conditions , Future Gener. Comp. Sy. , vol. 20 , pp. 935 – 944 , 2004 .
  • G. H. Tang , W. Q. Tao , and Y. L. He , Thermal Boundary Condition for the Thermal Lattice Boltzmann Equation , Phys. Rev. E , vol. 72 , pp. 016703 , 2005 .
  • M. S. Valipour and A. Z. Gahdi , Numerical Investigation of Fluid Flow and Heat Transfer around a Solid Circular Cylinder utilizing Nanofluid , Int. Commun. Heat Mass , vol. 38 , pp. 1296 – 1304 , 2011 .
  • M. A. Van Der Hoef , R. Beetsta , and J. A. M. Kuipers , Lattice-Boltzmann Simulations of Low-Reynolds-Number Flow Past Mono- and Bidisperse Arrays of Spheres: Results for the Permeability and Drag Force , J. Fluid Mech. , vol. 528 , pp. 233 – 254 , 2005 .
  • F. S. Mirhashemi and S. H. Hashemabadi , Experimental and CFD Study of Wall Effects on Orderly Stacked Cylindrical Particles Heat Transfer in a Tube Channel , Int. Commun. Heat Mass , vol. 39 , pp. 449 – 455 , 2012 .
  • L. Schiller and A. Neumann , Uber die grundlegenden Berechungen bei der Schwer kraftaufbereitung , Verein Deutscher Ingenieure , vol. 77 , pp. 318 , 1933 .
  • P. A. Kosinski , A. Kosinska , and A. C. Hoffmann , Simulation of Solid Particles Behaviour in a Driven Cavity Flow , Powder Technol. , vol. 191 , pp. 327 – 339 , 2009 .
  • L. C. Fang , Effect of Mixed Convection on Transient Hydrodynamic Removal of a Contaminant From a Cavity , Int. J. Heat Mass Tran. , vol. 46 , pp. 2039 – 2049 , 2003 .
  • Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/unht.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.